Abstract

The effects of silicon on anti-tarnish and mechanical properties of sterling silver (silver content more than 92.5%) were investigated. The amount of silicon additions was varied from 0-0.5% by weight. To obtain the homogeneous melting and perform the experiment easier silicon additive was prepared in the form of master alloy with the copper to silicon ratio of 90:10 To prevent the silicon loss during melting the experiments were done using an induction caster with vacuum system and covering with argon gas. Anti-tarnish property test of cast specimens was obtained by inserting the specimens in the atmosphere of sulfur preparing from saturated Na₂S solution. After finishing test, the surface of specimens were examined by using spectrophotometer to find out the difference of color change. It was found that increasing in silicon content produced better tarnish resistance. In addition silicon also provided the casting surface of silicon-added sterling silver more shiny and white than those of specimens without silicon. Silver content also affected to the anti-tarnish property. For example, more silver content (95%Ag) in specimens more tarnish resistance could be obtained when compared with low silver content (92.5%) However the microstructural analysis which examined by using both optical and scanning electron microscopes indicated that with increasing silicon contents the microstructure of silicon-added specimens changed to net work formation of copper silicon rich phase occurring at grain boundary. This was due to the low solubility limit of silicon in silver. As a result, the ductility decreased significantly with increasing very small amount of silicon (0.04%) The suitable content of silicon additive was approximately in the range of 0.02-0.2% by weight. This value providing both good tarnish resistance and proper mechanical properties.

Sterling silver with calcium silicide additive were also investigated. The results indicated that calcium and silicon acted as deoxidizing elements in order to reduce the oxygen in molten metal. It was also found that calcium silicide gave the same effects on both antitarnish property and casting surface color as silicon additive. However the loss of calcium and silicon had to take in account due to the low density of calcium silicide to make the occurrence of oxidation reaction with air easily. The holding time during open-air melting had affected to the quantity of silicon in solidified metal too. The suitable holding time was not more than 6 minutes otherwise the loss of silicon and calcium was high in quantity.

บทคัดย่อ

ผลของซิลิคอนต่อคุณสมบัติการต้านทานการหมองและคุณสมบัติทางกลของโลหะเงินสเตอร์ ลิง (ปริมาณเงินมากกว่า 92.5%) ได้ถูกศึกษา ปริมาณของซิลิคอนที่เติมอยู่ในช่วง 0 ถึง 0.5% โดยน้ำหนัก การเตรียมซิลิคอนผลิตขึ้นโดยอยู่ในรูปของมาสเตอร์อัลลอยที่มีอัตราส่วนระหว่างทองแดงกับซิลิคอนเท่ากับ 90:10 เพื่อทำให้การหลอมได้โลหะที่มีส่วนผสมสม่ำเสมอและทำให้การทดลองง่ายขึ้น โลหะจะใช้เครื่องหล่อหลอมโลหะแบบเหนี่ยวนำด้วยไฟฟ้าที่มีระบบสุญญากาสและปกคลุมด้วยก๊าซ อาร์กอนเพื่อป้องกันการสูญเสียซิลิคอนระหว่างการหลอม การทดสอบคุณสมบัติการต้านทานการหมองของ ชิ้นงานที่หล่อทำได้โดยใส่ชิ้นงานในบรรยากาศซัลเฟอร์ที่เตรียมขึ้นจากสารละลายโซเดียมซัลไฟด์อิ่มตัว หลังจากทคสอบเสร็จสิ้น ผิวชิ้นงานได้นำมาตรวจสอบการเปลี่ยนแปลงสีโดยใช้เครื่องสเปคโตรโฟโต การตรวจสอบพบว่าเมื่อเพิ่มปริมาณซิลิคอนจะทำให้ความต้านทานการหมองคี่ขึ้น ซิลิคอนยังช่วยให้ผิวงานหล่อของชิ้นงานที่เติมซิลิคอนมีผิวเงาและขาวขึ้นมากกว่าผิวของชิ้นงานที่ปราศจาก ซิลิคอน ปริมาณเงินยังมีผลต่อคุณสมบัติการต้านทานการหมองด้วย ตัวอย่างเช่น ปริมาณเงินสูงขึ้น (95%) จะได้ความต้านทานการหมองสูงขึ้นด้วยเมื่อเทียบกับชิ้นงานที่เมื่อปริมาณเงิน 92.5% วิเคราะห์ โครงสร้างจุลภาค โดยตรวจสอบด้วยกล้องจุลทรรศน์แบบแสงและกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่องกวาด แสดงให้เห็นว่า การเพิ่มปริมาณซิลิคอนทำให้โครงสร้างเปลี่ยนเป็นโครงร่างตาข่ายที่เกิดจากเฟส ของทองแดง-ซิลิคอนที่ขอบแกรน ้ ด้วยผลประการนี้ความเหนียวลดลงอย่างเห็นได้ชัดเมื่อปริมาณซิลิคอน เพิ่มขึ้นเพียงเล็กน้อย (0.04%) ปริมาณซิลิคอนที่เหมาะสมจะอยู่ในช่วง 0.02-0.2% โดยน้ำหนัก ซึ่งจะให้ ความต้านทานการหมองร่วมกับคณสมบัติทางกลที่ดี

โลหะเงินสเตอร์ลิงที่เติมแกลเซียมซิลิไซด์ก็ได้นำมาตรวจสอบด้วยเช่นกัน ผลการทดลองชี้ให้ เห็นถึงแกลเซียมและซิลิคอนเป็นธาตุคืออกซิไดซิ่งที่จะลดปริมาณออกซิเจนในน้ำโลหะ นอกจากนี้ แกลเซียมซิลิไซด์ยังให้ผลทั้งการต้านทานการหมองและสีผิวงานหล่อเช่นเดียวกับซิลิคอน อย่างไรก็ตามการ สูญเสียแกลเซียมและซิลิคอนต้องถูกนำมาพิจารณาด้วยเพราะแกลเซียมซิลิไซด์มีความหนาแน่นต่ำทำให้เกิด ปฏิกิริยาออกซิเดชันกับอากาสได้ง่าย ระยะเวลาการหลอมในบรรยากาสเปิดมีผลต่อปริมาณซิลิคอนในโลหะด้วย ระยะเวลาการหลอมที่เหมาะสมไม่ควรเกิน 6 นาทีมิฉะนั้นซิลิคอนและแคลเซียมจะสูญเสียในปริมาณสูง