บทกัดย่อ

กวามด้องการใช้ถั่วลิสงเมล็ด โตเพื่อการค้าและอุตสาหกรรมมีปีละขั้นต่ำ 2,000 ตัน ซึ่งค้องนำเข้า มาจากต่างประเทศ การผลิตถั่วลิสงเมล็ด โดจะเป็นการสนองตอบต่อการใช้ภายในประเทศ ลดการนำเข้า และเป็นพืชทางเลือกใหม่สำหรับเกษตรกรไทย รวมทั้งพืชชนิดนี้มีไรโซเบียมในการตรึงในโตรเจนได้ใน ระดับสูง จึงเป็นพืชที่จะช่วยในการปรับปรุงบำรุงดิน เป็นประโยชน์ต่อพืชปลูกตามเพื่อให้การใช้ที่ดินเพื่อ การเกษตรยั่งยืน การศึกษานี้เพื่อสร้างและพัฒนาระบบการผลิตถั่วลิสงเมล็ด โดของประเทศไทยขึ้น โดยมี วัตถุประสงค์ 1.) เพื่อทดสอบรูปแบบการผลิตและศึกษาปัจจัยส่งเสริมและปัจจัยอุปสรรคของระบบการ ผลิต 2.) เพื่อศึกษาการจัดการซากต้นถั่วลิสงในการเพิ่มผลผลิตของพืชที่ปลูกตาม 3.) การใช้อินทรีย์วัตถุ ในการเพิ่มผลผลิตของถั่วลิสง 4.) เพื่อหาวิธีเพิ่มประสิทธิภาพในการเก็บรักษาเมล็ดพันธุ์ และการ แก้ปัญหาการพักตัว 5.) เพื่อศึกษาถึงสภาพการปฏิบัติของโรงงานในการพรมน้ำก่อนการกะเทาะ กับการ ปนเปื้อนของสารอะฟลาทอกซิน และ 6.) เพื่อพัฒนาวิธีการตรวจสอบการปนเปื้อนของสารอะฟลาทอกซิ นอย่างง่าย

จากการดำเนินงานพบว่า รูปแบบการดำเนินงานโดยมีโครงการเป็นศูนย์กลางของระบบการผลิต ถั่วลิสงฝักแห้งในสภาพนาให้น้ำชลประทาน บีศักยภาพการผลิตมากกว่าพื้นที่ปลูกทคสอบในสภาพ ชายฝั่งริมน้ำ ที่ลาคเชิงเขา และพื้นที่ไร่ทั้งนี้เพราะมีศักยภาพของการให้ผลผลิตสูง มีเสถียรภาพของ ผลผลิตดี และมีต้นทุนต่อกิโลกรัมของผลผลิตฝักแห้งต่ำ น้ำเป็นปัจจัยสำคัญส่งผลทำให้การผลิตในสภาพ นี้มีผลผลิตสูง เพราะเป็นระบบที่มีการให้น้ำชลประทานได้ตลอดฤดูปลูก ส่วนการผลิตเมล็ดถั่วลิสงพบว่า เมล็ดถั่วลิสงที่ได้จากการผลิตในนาชลประทาน มีต้นทุนต่อกิโลกรัมต่ำสุด เพราะมีเปอร์เซ็นต์การกะเทาะ สูง เมล็ดเกรด 1 มีมาก ทำให้มีศักยภาพในการแข่งขันกับวัตถุดิบต่างประเทศมากกว่าการผลิตในพื้นที่อื่น ๆ ปัจจัยส่งเสริมความสำเร็จของการผลิตถั่วลิสงฝักแห้งของเกษตรกร คือ การรวมกลุ่ม มีแหล่งเงินทุนและ ปัจจัยการผลิต และมีระบบการซื้อขายผลผลิต ส่วนปัจจัยอุปสรรคของการผลิตถั่วลิสงฝักแห้ง คือ อายุถั่ว ลิสงยาว การเก็บเกี่ยว การปลิดฝักทำให้ยาก ต้องใช้แรงงานมาก ส่วนการคำเนินการแปรรูปของโครงการ เป็นผลิตภัณฑ์ 3 ชนิค คือ ถั่วทอคโรยเกลือ ถั่วทอคสมุนไพร และถั่วป่น ปัจจัยสำคัญที่ไปสู่ความสำเร็จ คือ การแปรรูปทำได้ง่าย ไม่ต้องลงทุนมาก วัตถุดิบมีในท้องถิ่น ผู้บริโภคชื่นชอบผลิตภัณฑ์ที่มีขนาดเมล็ด โต สำหรับปัจจัยอุปสรรคของส่วนแบ่รรูป คือ การลอกเยื่อทำได้ยาก บรรจุภัณฑ์ยังไม่ดี มีราคาค่อนข้าง แพงหากเทียบกับถั่วลิสงเมล็ดเล็ก สำหรับส่วนแปรรูปในภาคอุตสาหกรรมปัจจัยสำคัญที่นำไปส่ ความสำเร็จ คือ มีระบบการตรวจรับรองเรื่องการปนเปื้อนของสารอะฟลาทอกซิน และปัจจัยอุปสรรค คือ ยังไม่สามารถคำเนินการผลิตเพื่อสนองความต้องการวัตถุดิบได้ตามเป้าหมาย

รูปแบบที่มีองค์กรชุมชนเป็นศูนย์กลางของระบบ อาทิ องค์การบริหารส่วนตำบล (อบต.) ในการ สนับสนุนการผลิตถั่วลิสง โรงงานกะเทาะและคัดแยก และการแปรรูปถั่วลิสง พบว่า ปัจจัยส่งเสริมที่ สำคัญ คือ การสร้างกลุ่มเกษตรกรและผู้แปรรูป การจัดฝึกอบรมให้ความรู้ด้านต่าง ๆ การระคมหุ้นเงินทุน ของสมาชิก การได้รับการสนับสนุนงบประมาณจาก อบต. ในการตั้งโรงงานกะเทาะ และจัดซื้อเครื่อง กะเทาะ และการแปรรูปเป็นผลิตภัณฑ์ทำได้ง่าย มีวัตถุดิบในท้องถิ่น ปัจจัยอุปสรรคที่สำคัญของกลุ่ม

โรงงานและการแปรรูป ขาดวัตถุดิบ ไม่มีวัสคุบรรจุเมล็คที่ดี ผลผลิตฝักหากชื้อไว้นานรอการผลิตเมล็คมัก มีปัญหาแมลงเจาะ การแบ่รรูปผลิตภัณฑ์วัสคุบรรจุภัณฑ์ยังไม่ดี ไม่ดึงคูดใจผู้บริโภค ตลาดขายผลิตภัณฑ์ ยังแคบ ขายยังไม่ได้มาก ส่วนรูปแบบที่ 3 โดยมีบริษัทเอกชนเป็นศูนย์กลางของระบบ อุปสรรคที่สำคัญ คือ ยังไม่มีบริษัทเอกชนเข้ามาดำเนินการแบบครบวงจรตามรูปแบบที่ 1 ทั้งนี้เพราะวัตถุดิบนำเข้ามีราคา ก่อนข้างต่ำ หากเทียบกับการผลิตในประเทศไทย และเกษตรกรร่วมมือผลิตในระบบลูกไร่ของบริษัทชอบ ที่จะผลิตถั่วลิสงเมล็ดเล็กมากกว่าเพราะการผลิตทำได้ง่ายกว่า ถั่วลิสงมีอายุสั้นกว่าจึงควรมีการพัฒนา พันธุ์ถั่วลิสงเมล็ดโตมีอายุสั้น มีทรงต้นพุ่มตั้ง เมล็ดไม่มีการพักตัว จะทำให้ไม่ยุ่งยากในการผลิตและ เกษตรกรน่าจะยอมรับมากขึ้น

การศึกษาการจัดการซากถั่วลิสงในการเพิ่มผลผลิตของพืชไร่ที่ปลูกตาม จากการศึกษาชี้ชัดว่า หากมีการปลูกถั่วลิสงและนำซากถั่วลิสงกลับไปสู่แปลงปลูกจะทำให้การเจริญเติบโต และให้ผลผลิตพืช ปลูกตามสูงขึ้น ทั้งข้าวในสภาพนา และในสภาพไร่ ทั้งข้าวไร่ ข้าวโพค และมันสำปะหลัง ดังนั้นจึงควรมีการใช้เศษซากถั่วลิสงในระบบการปลูกพืชหมุนเวียนและใส่ซากถั่วลิสงให้กับพืชที่ปลูกตาม จะทำให้ลดการใช้ปุ๋ยเคมีของเกษตรกรลง

การศึกษาการเพิ่มประสิทธิภาพในการเก็บรักษาเมล็ดพันธุ์ถั่วลิสง โดยการเก็บฝักหรือเมล็ดถั่ว ลิสงร่วมกับวัสดุคูดกวามชื้นทั้งปูนเผา สามารถลดกวามชื้นในเมล็ดในขณะเก็บรักษาได้ และมีแนวโน้มว่า การเสื่อมสภาพของเมล็ดทั้งการเก็บไว้ทั้งฝัก และเก็บไว้ในสภาพเมล็ด โดยกวรมีการใช้ปูนเผาประมาณ 20% หรือมากกว่าของน้ำหนักเมล็ดถั่วที่เก็บรักษา ส่วนการแก้ปัญหาการพักตัวของถั่วลิสงซึ่งปกติใช้สาร เอธิฟอลซึ่งใช้ได้ดี แต่หายากในระดับเกษตรกร จึงพยายามหาวิธีการแก้การพักตัวของเมล็ดก่อนปลูก โดย ใช้น้ำส้มควันไม้ การใช้แกลเซียมการ์บายด์ พบว่าการใช้น้ำส้มควันไม้ไม่สามารถแก้ปัญหาการพักตัวของ ถั่วลิสงเมล็ดโต แต่การใช้สารแถลเซียมการ์บายด์ สามารถแก้ปัญหาการพักตัวของเมล็ดได้ดี ในสภาพชื้น โดยแคลเซียมการ์บายด์ จะปลดปล่อยก๊าซอะเชทธิลีน ทำให้แก้การพักตัวได้ แต่สภาพโดยรวมยังแก้ไม่ได้ ดีเท่าการใช้สารละลายเอธิฟอล

การศึกษาสภาพการพรมน้ำของโรงงานก่อนการกะเทาะถั่ว พบว่า ส่วนใหญ่โรงงานในเขต ภาคเหนือยังมีการพรมน้ำก่อนการกะเทาะ เพื่อลดการแตกหักของเมล็ดก่อนกะเทาะจึงมีการติดเชื้อ Aspergillus สูง แต่จากการวิเคราะห์สารอะฟลาทอกซินพบว่ายังมีการปนเปื้อนในระดับต่ำ และจากการ จำลองสภาพการณ์การปฏิบัติของโรงงานพบว่า การพรมน้ำก่อนกะเทาะ และไม่พรมน้ำให้ผลต่อการ ปนเปื้อนของเชื้อราไม่แตกต่างกัน หากรีบลดความชื้นในเมล็ดหลังกะเทาะให้เหลือต่ำกว่า 9% อย่างไรก็ ตามหลังจากการกะเทาะ ควรนำเมล็ดไปใช้แปรรูปเพราะหากเก็บเมล็ดไว้นานกว่า 30 วัน ตรวจพบว่าถั่วมี การปนเปื้อนของสารอะฟลาทอกซินเกินค่าความปลอดภัย

การศึกษาวิธีตรวจสอบการปนเปื้อนของสารอะฟลาทอกซินอย่างง่าย ๆ จากการศึกษาพบว่า การ ตรวจพินิจโดยดูจากการปนเปื้อนของเชื้อราไม่สามารถเป็นเครื่องบ่งบอกการปนเปื้อนของสารอะฟลา ทอกซินได้ ดังนั้นข้อมูลประวัติการตาก การเก็บเกี่ยว และการเก็บรักษาเป็นข้อมูลประกอบในการตรวจ พินิจ การตรวจวิเคราะห์เพื่อรับรองความปลอดภัยจึงยังมีความจำเป็น การตรวจสอบการปนเปื้อนโดยการ ตรวจพินิจจากระดับการเรื่องแสงของน้ำสกัดจากเมล็ดถั่วลิสง ผลการทดสอบความเป็นไปได้ของการใช้

สารเรื่องแสงจากน้ำสกัดถั่วลิสงโดยใช้แสงช่วงคลื่นสั้น (แสงจาก Black light) พบว่า มีการรบกวนจาก สารเรื่องแสงที่มีอยู่ในเมล็ดถั่วลิสงปกติก่อนข้างมากทำให้หาสหสัมพันธ์ระหว่างความเข้มแสง กับระดับ การปนเปื้อนของสารอะฟลาทอกซินได้ยาก

Abstract

Prior to the establishment of production system of large-seeded peanut Thailand had to import large quantity of large-seeded peanut to meet its growing demand for local consumption. Local production can help reducing the importation of large-seeded peanut, and also gives an opportunity for small holder farmers to produce an alternative cash crop. Peanut is also a good nitrogen-fixing legume that provides nitrogen nutrient for succeeding crops, and thus it is an important component for sustainable agriculture. The research project was initiated with the ultimate goal to create and develop a model production system of large-seeded peanut. The specific objectives were;

- 1. to study factors enhancing and limiting the success of large-seeded peanut production
- 2.. to study the utilization of peanut stover to increase productivity of succeeding crops
- to study the utilization of organic matters as soil amendments to increase productivity of large-seeded peanut
- to study how to increase the efficiency of seed storage and to find out the effective methods to break seed dormancy
- 5. to study whether method for removing seed shell by water spray to soften seed shell is related to aflatoxin contamination
- 6. to develop reliable user-friendly and inexpensive methods to test aflatoxin contamination in peanut.

The results found that irrigated areas were more suitable for large-seeded peanut production than hilly rain-fed areas, upland rain-fed areas and river bank areas in terms of productivity, yield stability and cost of pod production (Baht/kg). Availability of water supply is the most important factor for the success. Production under irrigated conditions also gave the lowest cost of kernel production (Baht/kg) because of the highest shelling percentage and prime-graded kernel grain, and therefore production under irrigated conditions was the most competitive means to imported peanut.

The factors enhancing the success of peanut production were: unity of producer groups, availability of loans and production factors, inputs and fair terms and conditions of buying and selling processes. Late maturity of peanut varieties, which were not suitable for cropping systems, was the main factor limiting the success, and harvest and pod removing were labor intensive and costly.

Three types of peanut processed products were launched to the market under the operation of the Peanut Improvement Project. They were salted peanut, fried peanut with herbs, and crushed peanut. Factors enhancing the success of processed products were: the user-friendly technology of processing processes which was easy to operate and did not need high cost of investment; availability of raw materials; and the acceptance of the customers for large-seeded peanut. Factors limiting the success were: difficulty in removing seed coat, poor packaging and high packaging cost, and high retail price when compared with small-seeded peanut. For large scale processing, the control of aflatoxin contamination was the main factor for the success, and the limiting factor was the supply of raw materials that was still not enough for industrial use.

A model system 2 having the community organization or sub-district (Tumbol) administration organization as a core of the system was also set up. Sub-district administration organization played an important role in supporting large-seeded peanut production, setting up peanut shelling, sorting and processing plants. The factors enhancing the success were: the setting up of producer groups and processor groups, the intensive training for group members and funds raised by the group members. Sub district administration organization also provided additional funds for setting up shelling plants and acquiring shelling machines. Processing technology was user-friendly, and raw materials were available in the communities.

Lack of suitable containers for storing peanut kernel, storage pests and insufficient raw materials were main factors limiting the success of this system. For processing sector, low quality of packaging materials which were not attractive to customers and limited distribution of the products were also the factors limiting the success.

Business firms were the inters of model system 3. This system had not succeeded because of the lack of interested business arms that would run all activities involving production through marketing. Factor limiting the success was the inability of local peanut to compete with imported peanut in term of price. Another limiting factor was that contract farmers preferred to produce small-seeded peanut because production of this type was easier, and small-seeded peanut varieties matured earlies then large-seeded peanut varieties. Therefore The development of new varieties of large-seeded peanut with early maturity, erect stand and non-dormant seed is important in order to gain acceptance of the farmers.

The results of the study on the effects of peanut stover on succeeding crops provided obvious evidence that peanut stover when returned to the soil gave beneficial effects on growth and yield of lowland rain-fed rice, upland rain-fed rice, field maize and cassava. It is recommended that peanut should be used as a component in cropping systems to provide nitrogen nutrient to succeeding crops and reduce the use of nitrogen chemical fertilizer.

The results of the study on seed storage suggested that storage of pods and seeds with anhydrous lime at the rate of 2:10 by weight or higher could reduce seed moisture and deterioration of seed viability. The results of study on breaking seed dormancy found that wood vinegar could not break seed dormancy, whereas calcium carbide (CaC₂) could be used to break seed dormancy of peanut. Calcium carbide emits acetylene under high moisture condition and acetylene accelerates seed germination. Although calcium carbine is not as effective as ethrel (2-chloroethylphosphonic acid), it is available in the market.

The study on mist spray before shelling found that shelling plants in the North still used this technique to reduce kernel breakage although it caused high contamination of aflatoxin. Mimic situation in laboratory found that mist spray and control was not significantly different for aflatoxin contamination if kernel moisture was reduced to 9% immediately after shelling. However, shelled kernel should be used soon after shelling. If necessary shelled kernel should not be stored more than 30 days because levels of aflatoxin contamination were higher than acceptable level.

The study on the techniques to measure aflatoxin contamination in peanut found that the observation of mold colonies was not a good indicator for aflatoxin contamination in peanut. Post harvest and storage practices should be used as a guide for the risk of aflatoxin contamination. Aflatoxin analysis in laboratory was still necessary for certification. The possibility to use fluorescent in peanut extract to determine the levels of aflatoxin contamination was not useful because low correlation between fluorescence intensities and aflatoxin levels.