โครงการวิจัย "การเพิ่มประสิทธิภาพการผลิตน้ำนมโคโดยใช้อาหารผสมครบส่วน และอาหารขันคุณภาพดี"

บทคัดย่อ

เพื่อศึกษาการรักษาสภาพในรูเมนมิให้เกิดกรดมากเกินไป (ป้องกันการเกิดแอสิโดสิส, acidosis) ซึ่งเป็นปัญหาของโคที่ให้นมสูงในระยะต้นของการให้นม รวมทั้งการเพิ่มปริมาณโปรตีนไหลผ่าน ตลอดจนการผลิตอาหารผสมครบส่วนที่เหมาะสมสำหรับโคที่ให้นมระดับต่าง ๆ กัน โดยการเพิ่มคุณค่า ทางโภชนาการของอาหารหยาบหลัก พร้อมทั้งการสร้างสูตรอาหารข้นที่เหมาะสมอันจะนำไปสู่การ เพิ่มประสิทธิภาพการผลิตน้ำนมนั้น ทางโครงการได้ทำการศึกษา 12 โครงการย่อย (27 การทดลอง) ผลการทดลองทั้งหมดพอสรุปได้ว่า หญ้าแห้งเป็นอาหารหยาบที่สำคัญสำหรับ**โคที่ให้นมสูง** ในการ กระตุ้นการบีบตัวของรูเมนให้เกิดการเคี้ยวเอื้องและขับน้ำลายอย่างเพียงพอที่จะลดความเป็นกรดใน กระเพาะ ซึ่งเกิดเนื่องจากการได้รับอาหารข้นในปริมาณมาก การให้หญ้าหมักร่วมกับอาหารข้นใน ระดับสูงจะทำให้โคแสดงอาการแอสิโดสิสอย่างชัดเจน ซึ่งสภาพดังกล่าวกระทบต่อผลผลิตและ องค์ประกอบของน้ำนมรวมทั้งสุขภาพของโค เช่น ทำให้เกิดอาการกีบเจ็บอย่างรุนแรง ซูบผอม ลุกไม่ขึ้น ทำให้ต้องถูกคัดทิ้งออกจากฝูงในที่สุด และเมื่อทำการวัดปริมาณกรดไขมันระเหยได้ในรูเมน (โดยใช้ โคนมแห้งเป็นตัวแทน) พบว่า การให้หญ้าหมักร่วมกับอาหารข้นระดับสูง ทำให้รูเมนมีสัดส่วนของ กรดอะซิติก : โพรพิโอนิก ลดต่ำกว่าปกติ (3 : 1) เหลือเพียง 2.7 : 1 เท่านั้น ซึ่งคาดว่าในกรณีของโคที่ ให้นมสูง สัดส่วนนี้คงจะลดต่ำลงกว่านี้อีก การใช้สารบัฟเฟอร์และสารที่มีสภาพเป็นด่าง เช่น NaHCO₃ และ MgO สามารถช่วยแก้ปัญหาได้ในระดับหนึ่ง แต่ยังมีประสิทธิภาพไม่ดีเท่ากับการใช้หญ้าแห้ง

สำหรับการเพิ่ม**โปรตีนไหลผ่าน** ซึ่งมีความสำคัญสำหรับโคที่ให้น้ำนมสูงนั้น สามารถผลิต ได้ง่าย โดยการใช้ฟอร์มัลดีไฮด์คลุกกับกากถั่วเหลืองเก็บไว้ในถุงพลาสติกที่ปิดรัดให้แน่นเป็นเวลา 24 ชั่วโมง โดยระดับของฟอร์มัลดีไฮด์ที่เหมาะสมคือ 0.3% เพราะสามารถป้องกันการย่อยสลายของ โปรตีนในรูเมนได้เกือบ 100% และโปรตีนสามารถถูกย่อยในลำไส้เล็กได้ถึง 99.10% ทำให้กรดอะมิโน ที่จำเป็นในกากถั่วเหลืองถูกดูดซึมนำไปใช้ประโยชน์ในตัวโคได้โดยตรง วิธีนี้สามารถทำได้ง่าย ปลอดภัย ไม่มีสารพิษตกค้างที่เป็นอันตราย และมีต้นทุนการผลิตเพิ่มเพียง 0.22 บาท/กก. กากถั่วเหลือง เท่านั้น เมื่อนำไปใช้ผสมอาหารโคนมในระดับ 7% ของอาหารขัน ก็สามารถทำให้โคมีแนวโน้มให้ สมรรถภาพการผลิตดีขึ้นกว่าการใช้กากถั่วเหลืองธรรมดา 4% (FCM 17.4 vs 16.4 กก./วัน; FCR 0.75 vs 0.81) และดีทัดเทียมกับกลุ่มที่ใช้ปลาปน 7% เช่นกัน นอกจากนี้ยังให้ผลตอบแทนที่สูงกว่า

ทั้ง 2 กลุ่มด้วย แม้การเสริมโปรตีนไหลผ่านจะไม่แสดงผลชัดเจนในระดับการให้นมที่ทดลองนี้ แต่ใน โคที่ให้นมมากโดยเฉพาะระยะพีคจะมีความจำเป็น

หญ้าแห้งที่นำมาใช้ในสูตรอาหารโคนมควรมีอายุการตัดประมาณ 60 – 65 วัน เพราะหญ้าที่ ตัดอายุน้อยกว่านี้ (30 และ 45 วัน) แม้ว่าจะมีข้อดีในแง่ที่มีคุณค่าทางโภชนะสูง และเมื่อนำข้อมูล ด้านผลผลิตและการย่อยได้มาคำนวณเป็นปริมาณโภชนะที่เป็นประโยชน์ต่อตัวสัตว์ โดยคิดต่อหน่วย พื้นที่และต่อระยะเวลาที่เท่ากันแล้วจะพบว่า หญ้าที่ตัดอายุ 30 วัน มีโปรตีนสูงที่สุดและหญ้าที่ตัด อายุ 45 วัน มีอินทรีย์วัตถุย่อยได้และพลังงาน (ME และ NEL) สูงที่สุดก็ตาม แต่หญ้าอายุน้อยเหล่านี้ มีข้อจำกัดในแง่ที่มีเยื่อใยต่ำ ไม่เพียงพอในการกระตุ้นการบีบตัวของรูเมน โดยเฉพาะอย่างยิ่งสำหรับ โคที่ให้นมสูงที่จำเป็นต้องเสริมอาหารข้นเพิ่มขึ้นจึงต้องเพิ่มความเข้มข้นของเยื่อใยให้พอเพียง

การแก้ปัญหาด้านคุณค่าทางอาหารของหญ้าอายุมาก (60 – 65 วัน) นี้ สามารถแนะนำให้ เกษตรกรทำได้โดยเสริมอาหารแหล่งพลังงานและโปรตีนเล็กน้อย เช่น กากน้ำตาล ข้าวโพดบด รำละเอียด และกากถั่วเหลือง เป็นต้น แล้วใช้ร่วมกับอาหารข้นที่มีจำหน่ายในท้องตลาดตามปกติ ในท้องที่ที่มีกระถินมากอาจแนะนำให้เกษตรกรนำมาใช้ประโยชน์โดยการตัดมาตากให้แห้งทั้งกิ่ง แล้ว เคาะเอาใบออกมาใช้เสริมอาหารหยาบเพื่อปรับคุณค่าทางโภชนะก็ได้

ในกรณีที่ผสมอาหารข้นใช้เองอาจใช้วัตถุดิบที่มีราคาไม่แพง เช่น รำละเอียด มันสำปะหลังบด กากเรปซีด กากถั่วเหลืองทั้งแบบธรรมดาและชนิดทีทรีตด้วยฟอร์มัลดีไฮด์ กากถั่วลิสง กากมะพร้าว กากทานตะวัน กากน้ำตาล ยูเรีย (1%) แร่ธาตุผง และสารบัฟเฟอร์ (โซเดียมไบคาร์บอเนตและ แมกเนเซียมออกไซด์) คำนวณให้มีโภชนะต่าง ๆ เพียงพอกับความต้องการของโคนม โดยคำนึงถึง โภชนะที่มีในอาหารหยาบด้วย สูตรอาหารข้นที่โครงการผลิตขึ้นเองสามารถใช้ได้ผลดีทัดเทียมกับสูตร ที่มีขายเป็นการค้า แต่มีต้นทุนการผลิตที่ต่ำกว่าและถ้าผลิตเป็นอาหารอัดเม็ดจะสามารถใช้ยูเรียได้ถึง 1.5%

ในกรณีของโคที่ให้นมระดับกลาง (ประมาณ 15 กก./วัน) หรืออยู่ในระยะกลางของการให้นม อาจใช้อาหารผสมครบส่วนที่ประกอบด้วยหญ้ารูซี่แห้งปรับโภชนะด้วยการเสริมกากน้ำตาล ข้าวโพดบด รำละเอียด และกากถั่วเหลือง เลี้ยงร่วมกับอาหารข้นที่มีจำหน่ายในท้องตลาด พบว่าโคสามารถให้ ผลผลิตได้ทัดเทียมกับการใช้ข้าวโพดหมักเป็นอาหารหยาบ สำหรับในท้องถิ่นที่มีการปลูกมันสำปะหลัง อาจใช้ใบมันสำปะหลังหมัก หรือใบมันสำปะหลังแห้งเป็นส่วนประกอบของอาหารเสริมดังกล่าวได้ โดยโคสามารถให้ผลผลิตและองค์ประกอบของน้ำนมได้ใกล้เคียงกับสูตรที่ไม่มีใบมัน

ในกรณีของ**โคที่ให้นมระดับต่ำ** (ประมาณ 10 กก./วัน) หรืออยู่ในช่วงปลายของการให้นมนั้น สามารถใช้ฟางข้าวที่ปรับปรุงคุณภาพด้วยยูเรีย (ฟางหมัก) เป็นอาหารหยาบ ในสูตรอาหารผสมครบส่วน ที่มีความชื้นสูงได้ดีกว่าการใช้ฟางหมักยูเรีย 4% หรือการใช้ฟางธรรมดาเสริมด้วยยูเรีย 1% ของวัตถุแห้ง ในสูตรอาหาร เพราะสามารถยืดอายุการเก็บได้นานกว่า และมีการย่อยได้ตลอดจนมีพลังงานที่สัตว์ สามารถนำไปใช้ประโยชน์ได้สูงกว่าอาหารทั้ง 2 สูตร และเมื่อนำไปใช้เลี้ยงโครีดนม โดยผสมฟางหมัก ยูเรีย 6% กับอาหารขัน ให้กินวันต่อวัน พบว่าทำให้สมรรถภาพการผลิตและผลตอบแทนใกล้เคียงกับ การใช้หญ้ารูซี่หมักเป็นอาหารหยาบหลัก นอกจากนี้ยังพบว่าโคที่ให้นมในระดับต่ำนี้อาจใช้หญ้ารูซี่แห้ง ที่ทำการเพิ่มโภชนะโดยการเสริมข้าวโพดบด รำ กากถั่วเหลือง และกากน้ำตาลก็ได้ ซึ่งการเสริม โภชนะให้แก่อาหารหยาบเช่นนี้ สามารถทำกับฟางธรรมดาที่ไม่ได้หมักยูเรียได้เช่นกัน แล้วนำไปใช้ เลี้ยงโคร่วมกับอาหารข้นตามปกติ นอกจากนี้ทางโครงการยังได้ทดลองผลิตอาหารข้นเองสำหรับ โคให้นมระดับต่ำโดยใช้วัตถุดิบที่หาได้ง่ายคือ รำละเอียด ข้าวโพดบด กากถั่วเหลือง กากมะพร้าว กากน้ำตาล ยูเรีย และแร่ธาตุผสม โดยไม่ต้องอัดเม็ด พบว่าสามารถใช้ได้ทัดเทียมกับอาหารอัดเม็ดที่ มีจำหน่ายเชิงการค้า แต่มีต้นทุนการผลิตที่ต่ำกว่า ทำให้ได้รับผลตอบแทนสูงกว่าด้วย

เป็นที่น่าสังเกตว่า อาหารที่ใช้ทดลองในทุกโครงการย่อยโดยเฉพาะอย่างยิ่งสูตรอาหารที่โครงการ แนะนำ ไม่ทำให้เกิดปัญหาปริมาณของแข็งในน้ำนม (total solid) หรือเนื้อนมต่ำ ซึ่งมีผลกระทบต่อ คุณภาพของผลิตภัณฑ์อันเป็นปัญหาที่วงการโคนมกำลังพยายามแก้ไขกันอยู่ ดังนั้นจึงถือว่าสูตรอาหาร ที่โครงการแนะนำเป็นสูตรที่ดี

โดยสรุป อาหารผสมครบส่วนที่มีประสิทธิภาพสำหรับโคที่ให้นมสูง ปานกลาง และต่ำ จึงเป็น อาหารหยาบผสมที่ประกอบด้วยหญ้ารูซี่แห้ง ร่วมกับแหล่งของโปรตีนจากกากถั่วเหลือง รำละเอียด หรือใช้ใบกระถินแห้ง หรือใบมันสำปะหลังหมักหรือแห้ง และแหล่งพลังงานจากข้าวโพดบด และ กากน้ำตาล นำมาผสมกับอาหารข้น ซึ่งสามารถใช้ทดแทนอาหารผสมครบส่วนที่ทำจากอาหารหยาบหมัก โดยไม่ก่อให้เกิดปัญหาในกระเพาะหมัก

ผลการทดลองและองค์ความรู้ที่ได้จากโครงการย่อยเหล่านี้ได้ถูกนำไปถ่ายทอดให้แก่เกษตรกร โดยการฝึกอบรม 7 ครั้ง โดยการเผยแพร่ในระดับชาติและนานาชาติในรูปของการเสนอผลงานวิชาการ (วารสาร & โปสเตอร์) 9 ครั้ง (เรื่อง) เผยแพร่ในรูปของแผ่นพับ 4 เรื่อง (คาดว่าผลงานวิจัยอีกส่วน หนึ่งคงจะได้รับการตีพิมพ์เผยแพร่ในอนาคต) นอกจากนี้โครงการยังได้ทำการสร้างนักวิจัยรุ่นเยาว์ โดยการผลิตมหาบัณฑิตจำนวน 8 คน ด้วย กิจกรรมและผลการศึกษาทั้งหมดนี้บรรลุวัตถุประสงค์ที่ วางไว้ทุกประการ

Increasing efficiency of milk production through good quality total mixed ration (TMR) and concentrate mixture

Abstract

The main aims of this project are: 1) to prevent acidosis which is the main problem of high producing cow in early lactation 2) to increase the proportion of bypass protein which is necessary for high producing cows 3) to produce total mixed ration and concentrate mixtures suitable for different levels of milk production. Twelve subprojects with 27 experiments were conducted. The result can be summarized as follows: Grass hay is important for high producing cows to activate rumen motivation, rumination and sufficient salivation in order to buffer acidosis due to the high consumption of concentration. Cows consuming silage in combination with high concentrate showed acidosis symptom which affected milk production, milk composition and health such as laminitis and emaciation. Buffer and alkali substances such as NaHCO₃ and MgO can alleviate acidosis problem at a certain level but the efficiency was lower than grass hay.

Bypass protein can be easily produced by mixing soybean meal with 0.3% formaldehyde in an airtight plastic bag and kept for 24 hours. This method can inhibit protein degradation in the rumen to nearly 100% but allow the digestion in small intestine to be as high as 99.10% with no harmful residual effect. The cost of treating was only 0.22 baht/kg soybean meal. The use of formaldehyde treated soybean at 7% in the concentrate ration fed to milking cows gave similar performances to the group fed fishmeal but tended to be better than the untreated soybean meal. In addition, it gave higher profit than the other 2 groups. Although the results in this experiment, with the cows producing around 17 kg milk/day, showed no significant difference among groups but bypass protein tended to be necessary for high producing cows.

The suitable cutting age of hay for milking cows should be 60-65 days, even though the younger grass had higher nutritive value. When digestible organic matter and energy value (ME and NEL) were calculated per unit area (rai) in 120 days, it was found that 30-day grass had the highest protein content while the 45-day grass had the highest energy content. However these grass hays had lower fiber and physical structure to stimulate rumen motivation than the higher age grass.

The problem of low nutritive value of old age grass hay could be solved by supplementing an amount of energy and protein feed such as molasses, corn, rice bran and soybean meal. This upgraded roughage-mix can be used in a combination with commercial concentrate with satisfactory result. In the area where plenty of leuceana trees are available, farmers should be suggested to use them as dairy feed by cutting the twigs and dried under the sun. The dry leaves can substitute rice bran and soybean meal in the upgraded roughage-mix.

The home mixed concentrate in this project composed of low price ingredients such as rice bran, cassava meal, rape seed meal, soybean meal (both treated and normal types) peanut meal, coconut meal, sunflower meal, molasses, urea (1%), mineral mixed and buffer (NaHCO₃ and MgO). The amount and proportion should be relevant to the requirement of milking cows with regarded of nutrients in roughages. Concentrate mix in this project gave milking performance comparable to the commercial mix, but had with lower production cost. In the case of pelleted concentrate, urea level can be as high as 1.5%.

For cows of medium production (around 15 kg milk/day) the use of upgraded ruzi hay gave satisfactory result comparable to corn silage when both roughages were used in combination with commercial concentrate. In the area where cassava leaves are available, they can be used either in the form of silage or hay as an ingredient to upgrade ruzi hay. The combination of these roughage-mixes with commercial concentrate also gave good dairy performances comparable to that without cassava leaves.

For low producing cows (around 10 kg milk/day), 6% urea treated rice straw was considered as a good roughage. The use of this feed in combination with concentrate, and kept for around 2-3 weeks in an airtight plastic bags, gave better quality of high moisture TMR compared to that of 4% UTS or that of normal rice straw mix with 1% urea. The freshly mixed TMR (6% urea plus concentrate) when fed to milking cows gave satisfactory performance and income over feed comparable to the TMR of ruzi silage.

When normal rice straw or ruzi hay is used as a source of roughage, it should be upgraded by supplementing with molasses, ground corn, rice bran and soybean meal. In addition, home made concentrate composed of local available ingredients such as rice bran, ground corn, soybean meal, coconut meal, molasses, urea (1%) and mineral premix

was also tested. It gave good dairy performances comparable to the commercial concentrate with lower production cost and higher income over feed.

In conclusion, the efficient TMR for high, medium and low producing cows should be composed of roughage-mix and concentrate. Roughage-mix is the combination of ruzi hay supplemented with protein source (soybean meal plus rice bran or dry leuceana leaves or cassava leaves, either in the form of hay or silage) and carbohydrate source (ground molasses plus corn). These roughage-mixes can substitute silage without causing acidosis.

The rations used in this project particularly those being recommended, gave satisfactory level of total solid in milk ($\geq 12.5\%$).

The knowledge and technology gained from this project have been transferred to public by training 7 groups of farmers. Four pieces of extension papers were produced, while six and one topics (papers) were published and/or presented at the national and the international levels, respectively. More publications will be produced in the future. In addition 8 young researchers were trained though a master degree program of Chiang Mai University. All results and activities have served all objectives of the project.

