รหัสโครงการ: RDG45-3-0008

ชื่อโครงการ: ศูนย์วิจัยและทคสอบการเติมอากาศ

ชื่อนักวิจัย: อนุรักษ์ ปีติรักษ์สกุล , สุริยันต์ เทียมเพ็ชร์

่ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

email address: arp@kmitnb.ac.th

ระยะเวลาโครงการ: พฤศจิกายน 2544-มีนาคม 2547

วัตถุประสงค์โครงการ คือ รวบรวมข้อมูลการทดสอบเครื่องเติมอากาศชนิดต่างๆ ออกแบบ และจัดสร้างบ่อทดสอบเครื่องเติมอากาศ ตามมาตรฐานการทดสอบโดยใช้น้ำสะอาดเป็นตัวกลาง จัดหา เครื่องมือมาตรฐานในการตรวจวัดคุณภาพน้ำทดสอบ จัดหาเครื่องมือมาตรฐานในการตรวจวัดค่าอัตรา การถ่ายเทออกซิเจนต่อกำลังงาน และ จัดตั้งศูนย์วิจัยและทดสอบการเติมอากาศ

การดำเนินงานได้รวบรวมข้อมูลการทคสอบเครื่องเติมอากาศจากมาตรฐานต่างๆ ได้แก่ มาตรฐาน ASCE, ATV และ EN เป็นต้น ออกแบบและจัคสร้างบ่อทคสอบเครื่องเติมอากาศขนาด 1.5×2×5 เมตร และ 6×6×5 เมตร พร้อมทั้งจัดหาเครื่องมือมาตรฐานในการวิเคราะห์น้ำ การ ละลายของออกซิเจนในน้ำ และการวัดกำลังไฟฟ้าของเครื่องเติมอากาศ รวมทั้งเรียนเชิญกรมควบคุม มลพิษ ร่วมจัดการประชุมสัมมนาเชิงปฏิบัติการ โดยความร่วมมือของภาครัฐ (กรมชลประทาน) และ ภาคเอกชน (ผู้ผลิตและผู้ใช้เครื่องเติมอากาศ) จัดทำข้อกำหนดในการทคสอบเครื่องเติมอากาศขึ้น นอกจากนี้ยังมีการศึกษาคุณลักษณะของน้ำเสียรวมทั้งแอลฟาและเบต้าแฟคเตอร์ สุดท้ายได้ทำการ ทดลองวัดความเร็วน้ำภายในบ่อเพื่อใช้ศึกษาไฮโดรไดนามิกส์ของการเติมอากาศโดยใช้เครื่องเติมอากาศ แบบเวนทูรีเป็นกรณีศึกษา

ในปัจจุบันศูนย์วิจัยฯ มีความสามารถทดสอบประสิทธิภาพเครื่องเติมอากาศ ขนาดไม่เกิน 20 แรงม้า ในน้ำสะอาด ตามข้อกำหนดที่ได้ทำการรวบรวมขึ้นมาอีกทั้งอุปกรณ์ที่มีอยู่สามารถนำไปทดสอบ ประสิทธิภาพเครื่องเติมอากาศตามมาตรฐานสากลได้เช่นกัน ซึ่งจากงานวิจัยนี้สามารถตรวจสอบฉุประสิทธิภาพเครื่องเติมอากาศได้ตามหลักวิชาการ ทำให้ผู้ผลิตสามารถนำวิธีการตรวจวัดไปใช้ปรับปรุง เครื่องเติมอากาศ และผู้ใช้มีความมั่นใจในการซื้อสินค้า รวมทั้งวิศวกรออกแบบสามารถกำหนดขนาด เครื่องเติมอากาศให้มีความแม่นยำมากขึ้น วิจัยที่น่าจะทำการศึกษาต่อไปคือการทดสอบเครื่องเติมอากาศ โดยใช้น้ำกระบวนการ การศึกษาการกวนผสมภายในบ่อเติมอากาศ และการทดลองหาค่าแอลฟา และเบต้าแฟกเตอร์ของน้ำเสียชนิดต่างๆ

คำหลัก: เครื่องเติมอากาศ มาตรฐานการทคสอบ อัตราการถ่ายเทออกซิเจน ประสิทธิภาพการเติม อากาศ ประสิทธิภาพการถ่ายเทออกซิเจน

1

Project Code: RDG45-3-0008

Project Title: The center of aeration research and testing

Investigators: Petiraksakul A.¹, Suriyan TiamPet¹

¹ Faculty of Engineering, King Mongkut's Institute of Technology North-Bangkok

email address: arp@kmitnb.ac.th

Project Duration: November 2001-March 2004

The objectives of this research are to search and summarize the information of aeration testing systems, to design and set up the testing containers, to prepare the testing equipment for measuring water quality and aerator performance and, finally, to establish the center of aeration research and testing (KMITNB).

Three testing standards, namely, ASCE, German ATV and EN standard were collected. Two testing contrainers were designed and built from steel and reinforced concrete, respectively. The small testing tank(1.5x2x5m) located in KIMTNB, Bangkok was used to test the performance of diffused aerators and small mechanical aerators (less than 5 Hps) while the other tank (6x6x5m) located in KMITNB, Prajinburi was prepared for testing performance of bigger aerators (less than 20 Hps) and a study of hydrodynamics in aeration tanks. Three DO-meters, power meter, current meter, etc., were also prepared.

To collaborate with the Pollution Control Department, Industrial Ministry, two workshop seminars were arranged. The first protocol named "the protocol of oxygen transfer measurement in clean water, KMITNB" was printed in September 2003 after the conclusion of the second workshop seminar. Furthermore, the testing procedure, organization chart and charge of aeration performance have been set. Finally, wastewater characteristics including alpha and beta factors were studied and, the hydrodynamics of venturi aerator was also investigated.

At present, the center can give services in testing of aerator performance in clean water, training people who work in wasteawter treatment systems and relating area, and measuring water velocities in an aeration tank. These activities could gain confidence to manufacturers who design and improve their products, wastewater treatment consultants and customers who use the acrators in their processes. For the future works, the testing of aerator performance in process water, and mixing inside the aeration tank might be studied, and the determination of alpha and beta factors should be investigated for various wastwwater sources.

Keywords: Aerator, Standard of testing, Oxygen transfer rate(OTR), Aeration efficiency(AE), Oxygen transfer efficiency(OTE)