รหัสโครงการ: RDG4530022

ชื่อโครงการ : การพัฒนาชุดตรวจสอบ ELISA KIT ต้นแบบเพื่อตรวจหาสารพิษไมโครซิสตินในน้ำ

ชื่อนักวิจัย: วิเชียร ยงมานิตซัย¹, สุวรรณา กลัดพันธุ์²
¹คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์,
²สถาบันวิจัยและพัฒนา มหาวิทยาลัยเกษตรศาสตร์

E-mail address: fsciwcy@ku.ac.th

ระยะเวลาโครงการ : กรกฎาคม 2545 – มิถุนายน 2547

บทคัดย่อ

สารพิษไมโครซิสตินเป็นสารพิษที่มีความรุนแรงสูงต่อเนื้อเยื่อตับและกระตุ้นให้เกิดเนื้อ งอกซึ่งอาจพัฒนาเป็นเซลล์มะเร็งต่อไป สารพิษนี้สร้างโดยบางสายพันธุ์ของไซยาโนแบคทีเรียสกุล Microcystis ที่พบในแหล่งน้ำต่างๆ ทั่วประเทศไทย โดยเฉพาะอย่างยิ่งในหน้าแล้ง Microcystis จะมี การเจริญอย่างรวดเร็วและหนาแน่นมองเห็นเป็นชั้นสีเขียวบนผิวน้ำ วิธีการวิเคราะห์สารพิษนี้ส่วน ใหญ่จะใช้ HPLC ซึ่งมีระดับความไวไม่เพียงพอที่จะใช้ในการหาปริมาณในระดับที่เป็นอันตรายที่ กำหนดโดยองค์การอนามัยโลก โครงการวิจัยนี้มีวัตถุประสงค์ที่จะพัฒนาชุดตรวจสอบ ELISA kit ตันแบบสำหรับการตรวจหาสารพิษไมโครซิสตินในน้ำ ที่มีความไวสูง สามารถใช้ในการตรวจวัดใน ภาคสนามได้ เพื่อใช้เป็นเฝ้าระวังและเป็นระบบเตือนภัยสำหรับเกษตรกรและสัตว์เลี้ยงที่ต้องอาศัย แหล่งน้ำธรรมชาติ

จากการตรวจวิเคราะห์สารพิษไมโครซิสตินจาก Microcystis aeruginosa ทั้งหมด 66 สาย พันธุ์ ที่ได้จาก ห้องปฏิบัติการทรัพยากรชีวภาพ ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ 54 สายพันธุ์ และที่คัดแยกเพิ่มเติมจากแหล่งน้ำภาคตะวันออกและ ภาคใต้ อีก 12 สายพันธุ์ พบว่าสารพิษส่วนใหญ่ ประกอบด้วย MCYST-RR และพบ MCYST-LR และ MCYST-YR โดยสายพันธุ์ M50058 มีการสะสม MCYST-RR มากที่สุด จึงได้คัดเลือกไว้เพื่อ ศึกษาสภาวะที่เหมาะสมต่อการเจริญและการผลิตสารพิษ สำหรับใช้เป็น antigen ในผลิต polyclonal antibody ต่อไป นอกจากนี้ยังได้คัดเลือกสายพันธุ์ M50020 เป็นตัวแทนของสายพันธุ์ที่ ไม่สร้างสารพิษ เพื่อทดสอบสภาวะที่อาจเหนี่ยวนำให้มีการสร้างสารพิษ

จากการศึกษาเพื่อปรับปรุงสูตรอาหาร MA ได้ดัดแปลงให้มีส่วนประกอบดังนี้ Ca(NO₃₎₂ 50 มิลลิกรัมต่อลิตร, KNO₃ 150 มิลลิกรัมต่อลิตร, NaNO₃ 10 มิลลิกรัมต่อลิตร, β-sodium-glycerophosphate 150 มิลลิกรัมต่อลิตร และ Bicine 300 มิลลิกรัมต่อลิตร ส่วนประกอบของแร่ธาตุ อื่น ๆนั้นคงเดิม สำหรับสภาวะที่เหมาะสมต่อการเจริญและการผลิตสารพิษไมโครซิสติน M.

aeruginosa สายพันธุ์ M50058 ได้แก่ pH เริ่มต้นที่ 9.2 อุณหภูมิ 35 องศาเซลเซียส สำรับการ เจริญ และ 25 องศาเซลเซียส สำหรับการสร้างสารพิษ ความเข้มแสงที่ 250 - 300 ไมโครไอสไตน์ ต่อตารางเมตรต่อวินาทีและพบว่าไม่สามารถเหนี่ยวนำให้สายพันธุ์ M50020 สร้างสารพิษใน ห้องทดลอง

จากการเปรียบเทียบจลนพลศาสตร์ในการเจริญ และการผลิตสารพิษไมโครซิสตินของ

Microcystis aeruginosa สายพันธ์ M50058 ที่เพาะเลี้ยงในสูตรอาหาร MA และ modified MA สรุป
ได้ว่า M50058 สามารถเจริญและผลิตสารพิษไมโครซิสตินในอาหาร modified MA ได้ดีกว่าใน
อาหาร MA สูตรเดิม โดยได้สารพิษที่ประกอบด้วย MCYST-RR 2.22 มิลลิกรัมต่อกรัมน้ำหนักแห้ง
MCYST-YR 0.18 มิลลิกรัมต่อกรัมน้ำหนักแห้ง และ MCYST-LR 0.24 มิลลิกรัมต่อกรัมน้ำหนัก
แห้ง อย่างไรก็ตามอัตราการเจริญในห้องปฏิบัติการของ Microcystis ยังต่ำมาก ทำให้การผลิต
สารพิษไมโครซิสตินต้องใช้ไซยาโนแบคทีเรียจากแหล่งธรรมชาติ จึงทำให้สามารถผลิต MCYSTRR ได้ในปริมาณมากและสามารถผลิตสารพิษที่มีคุณภาพดีเพียงพอสำหรับการเตรียมเป็น antigen
เพื่อการผลิตแอนติซีรัม

ในการเตรียม antiserum จากไมโครซิสตินได้เลือก antigen ที่เตรียมจาก protein carrier ชนิด cBSA หรือ BSA จำนวน 20 มิลลิกรัม เชื่อมเข้ากับ MCYST-RR จำนวน 10 มิลลิกรัม โดย การเชื่อมใช้วิธี water-soluble carbodiimide (EDPC) ใช้สารจำนวน 600 มิลลิกรัม และการใช้ 10%EDA ปริมาตร 1 มิลลิลิตร มีความเหมาะสมกับการวิธีการที่จะนำไปเชื่อมกับ MCYST-RR ได้ ทั้งนี้การเตรียม protein carrier- cBSA ได้ทดลองยืนยันแล้วว่า protein carrier ได้มีการเชื่อม โมเลกุลกับ MCYST-RR แล้วจริง ด้วยการตรวจสอบการเปลี่ยนแปลงค่าการดูดกลินแสงที่ 238 และ 278 nm ซึ่ง immungen ที่เตรียมได้จะนำไปฉีดกระตุ้นเข้าสัตว์ทดลองต่อไป ซึ่งพบว่าแอนติบอดี สามารถทำปฏิกิริยาได้ดีกับแอนติเจนที่ใช้ MCYST-RR 10 มิลลิกรัม จากการทดสอบหาค่าไดเตอร์ ที่ได้จากกระต่ายแต่ละตัวพบ กระต่ายบางตัวมีค่าใตเตอร์สูงกว่า 100,000 และยังให้ผลในการทำ ปฏิกิริยากับ free MCYST-RR ได้สูงด้วย

ในการทดลองหาความสัมพันธ์ระหว่าง % of binding (%B/B₀) กับความเข้มข้นของ สารละลายมาตรฐาน MCYST-RR ที่มีความเข้มข้น 0.2-20 ppb ได้ค่า correlation (R² = 0.9889) และพบว่าความเข้มข้นของ MCYST-RR ตั้งแต่ 0.5 ppb ขึ้นไปสามารถมองเห็นความแตกต่างของสี ได้ด้วยตาเปล่า นั่นแสดงว่าระดับความไวนี้สามารถนำไปใช้ในภาคสนามได้โดยไม่ต้องการ เครื่องตรวจวัด ELISA Reader

สำหรับการทดสอบปฏิกิริยาข้าม (cross reactivity) กับสารพิษมาตรฐานไมโครซิสตินชนิด อื่น ได้แก่ MCYST-YR และ MCYST-LR โดยการเทียบกับ MCYST-RR พบว่า MCYST-RR ได้ค่า correlation (R²=0.9911) และได้สมการเชิงเส้นแบบเอกโพเนนเซียล คือ y=66.005e^{-0.5355x} ส่วน MCYST-YR และ MCYST-LR ได้ค่า R² เท่ากับ 0.9792 และ 0.9771 ตามลำดับ และได้สมการเชิง เส้นแบบเอกโพเนนเซียล คือ y=68.292e^{-0.5186x} และ y=66.115e^{-0.5072x} ตามลำดับ ซึ่งสามารถสรุป ได้ว่า การทำปฏิกิริยาข้ามของแอนติบอดีต่อสารพิษมาตรฐาน MCYST-YR ได้ 86.3% และ 94.2%

สำหรับสารพิษ MCYST-LR ทำให้การใช้วิธีนี้สามารถตรวจวัดปริมาณสารพิษไมโครซิสตินรวมใน แหล่งน้ำได้

ในการทดลองเพื่อหา %recovery ในน้ำชนิดต่างๆ ได้แก่ น้ำกลั่น และน้ำประปา โดยการ เติมสารพิษมาตรฐาน MCYST-RR ลงไป ในอัตรา 0.5, 1, 5 และ 10 ppb แล้วทดสอบด้วยวิธี direct competitive ELISA พบว่า %recovery ของน้ำกลั่นเท่ากับ 96.67, 90.73, 98.6 และ 89.2% ในส่วน ของน้ำประปาได้เท่ากับ 92.0, 85.0, 102.3, 88.7 และ 85.1% ตามลำดับ

จากการทุดสอบหา limit of detection (LOD) โดยการเติมสารพิษ MCYST-RR 0.2 ppb ลง ในน้ำกลั่น น้ำประปา และน้ำบ่อธรรมชาติ แล้วทำการตรวจวัดปริมาณสารพิษด้วยวิธี direct competitive ELISA ได้ค่าใกล้เคียงกับปริมาณสารพิษที่ได้เติมลงไปนั่นแสดงว่า วิธีการนี้ให้ผลใน การตรวจวัดได้ค่อนข้างแม่นยำ ในขณะที่วิธีการวิเคราะห์ด้วย HPLC ไม่สามารถวิเคราะห์ได้

จากผลการทดลองทั้งหมดข้างต้นสามารถผลิตชุดตรวจสอบ ELISA kit ต้นแบบ สำหรับ ตรวจหาสารพิษไมโกรซิสตินในน้ำได้สำเร็จ โดยสามารถตรวจวัดปริมาณสารพิษได้ในระดับ 0.2 ppb เมื่อวัดด้วย ELISA Reader และสามารถตรวจวัดได้ในระดับ 0.5 ppb โดยจะเห็นความแตกต่าง ด้วยตาเปล่า ซึ่งทั้งสองระดับนี้ต่ำกว่าเกณฑ์มาตรฐานที่กำหนดโดยองค์การอนามัยโลกที่ระดับไม่ เกิน 1 ppb

ซึ่งจากผลสำเร็จของโครงการ จึงควรจะทำการผลิตชุดตรวจสอบนี้ในเชิงพาณิชย์ เพื่อ นำไปใช้ในหน่วยงานที่เกี่ยวข้องกับการผลิตและดูแลคุณภาพน้ำ เช่น การประปานครหลวง การ ประปาส่วนภูมิภาค การไฟฟ้าฝ่ายผลิต และกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม เป็นต้น อย่างไรก็ตามควรจะมีการวิจัยต่อเนื่องเพิ่มอีกเล็กน้อยในด้านปัจจัยที่มีผลต่อประสิทธิภาพ ความ แม่นยำ และข้อจำกัดการใช้งานของชุดตรวจสอบ ELISA Kit ในการตรวจหาสารพิษไมโครซิสติน

คำสำคัญ: ชุดตรวจสอบอีไลซา ไมโครซิสติน โพลีโคนอลแอนติบอดี ประเทศไทย

Project Code: RDG4530022

Project Title: Development of ELISA Kit Prototype for Rapid Detection of Microcystin in

Water

Investigators: Yongmanitchai W. 1 and Cladpan S. 2

¹Faculty of Science, Kasetsart University

²Research and Development Institute, Kasetsart University

E-mail address: fsciwcy@ku.ac.th

Project Duration: July 2002 - June 2004

Abstract

Microcystin is a highly toxic hepta-cyclic peptide affects liver tissue, tumor promoter and leads to liver cancer. It is produced by most strains of a cyanobacterium in the genus *Microcystis*. They are commonly found in reservoirs all over the kingdom, particularly in dry season. *Microcystis* blooms is recognized by scum of cells on the surface of water. The toxin is usually analyzed by HPLC which is not adequately sensitive at the safe limit recommended by World Health Organization. This project is aiming at developing the prototype of an ELISA kit for detection of microcystin in water. The technique is very sensitive at very low microcystin concentration and can be used at site without any special equipment. Therefore, the kit can be used to monitor and warning system of danger from this toxin for farmers and their livestocks.

Analysis of microcystin content in 66 strains of *Microcystis aeruginosa*, including 54 strains from the collection at the Bioresource Laboratory, Department of Microbiology, Kasetsart University and 12 newly isolates from reservoirs in the Eastern and Southern regions revealed that MCYST-RR was the major toxin while MCYST-LR and MCYST-YR were minor variants. The strain M50058 accumulated largest amounts of MCYST-RR, therefore it was selected for further studies on growth and toxin production which would be used as antigen for polyclonal antibody production. In addition a non-toxic strain, M50020 was chosen for induction of microcystin in laboratory conditions.

Studies on modification of MA culture medium showed that the optimal concentrations of some ingredients should be adjusted, i.e. Ca(NO₃)₂ 50 mg/L, KNO₃ 150

mg/L, NaNO₃ 10 mg/L, β -sodium-glycerophosphate 150 mg/L and Bicine 300 mg/L. Other compounds in the medium remained unchanged. Optimal conditions for growth and toxin production of M50058 were initial pH at 9.2, temperature at 35°C for growth and 25°C for toxin production and light intensity at 250-300 μ E/m²/s. It is also found that toxin production by the strain M50020 was not inducible under laboratory conditions.

Comparison on kinetics growth and toxin accumulation showed that *Microcystis* aeruginosa strain M50058 grew and produced toxin better in modified MA medium as compare to the original formulae. Toxin yields consisted of MCYST-RR, MCYST-LR and MCYST-YR at 2.22, 0.18 and 0.24 mg/g dry weight. However, it should be noted that growth rate of *Microcystis* in the laboratory was still very low, as well as the amounts of toxin obtained. Therefore, to attain sufficient MCYST-RR for use as antigen at milligrams level, biomass of *Microcystis* was collected from blooming reservoirs for toxin extraction and purification.

Preparation of antiserum from microcystin was done by using antigen obtained from conjugating 20 mg cBSA or BSA to 10 and 15 mg. Conjugation was performed using 600 mg of water-soluble carbodiimide (EDPC) and 1 ml of 10%EDA. Before selecting protein carrier, it was confirmed that cBSA attached to MCYST-RR by comparing changes of absorbance at 238 and 278 nm. The immunogen obtained will be used later for immunization to experimental animals (New Zealand white rabbit). Antibodies reacted well with antigen prepared from 10 mg MCYST-RR by observing titer values which showed that several animals gave the titer higher than 100,000 and also reacted very well with free microcystin.

The relationship between % of binding (%B/B₀) and standard MCYST-RR at various concentrations from 0.2-20 ppb yielded very high correlation coefficient (R² = 0.9889). It is also noted that changes of color could be noticed by naked eye at MCYST-RR concentrations higher than 0.5 ppb which indicated that the sensitivity was sufficiently high to be used in field applications without the needs of ELISA Reader.

Tests on cross reactivity of the antibody with other variants of microcystins, i.e., MCYST-YR and MCYST-LR as compare to MCYST-RR revealed that MCYST-RR gave R^2 at 0.9911 and exponential correlation with the equation of y=66.005e^{-0.5355x}. On the other hand, MCYST-YR and MCYST-LR yields R^2 at 0.9792 and 0.9771, respectively which resulted in the correlation equations of y=68.292e^{-0.5186x} and y=66.115e^{-0.5072x}, respectively. In conclusion the cross reactivities of antibody to standard MCYST-YR and MCYST-LR

were at 86.3% and 94.2%, respectively suggested that this method could be used effectively for determining total microcystin content of water.

Recovery rates of MYCST-RR at the concentrations of 0.5, 1, 5 และ 10 ppb in distilled water and tap water resulted in surprisingly high values of 96.67, 90.73, 98.6, 89.2% and 92.0, 85.0, 102.3, 88.7, 85.1%, respectively. In addition, determination of limit of detection (LOD) using direct competitive ELISA techniques by spiking 0.2 ppb of standard microcystin in distilled water, tap water and natural pond water revealed the detection values close to the actual amounts and indicated the accuracy while HPLC technique could not detect the toxin at all.

From the results of the above experiments, prototype of an ELISA kit for detection of microcystin in water was successfully developed. The kit could detect toxin at the level as low as 0.2 ppb (by ELISA Reader) or at the level of 0.5 ppb (by naked eye). Both levels were far below safety limit recommended by World Health Organization at 1 ppb.

From the success in development of the kit, commercial production of this kit should be implemented. The product can be used by several organizations that involve in production and monitoring of water quality, for example, Metropolitan Waterwork Authority, Provincial Waterwork Authority, Electric Generating Authority of Thailand and Ministry of Natural Resources and Environment. However, further research on factors affecting efficiency, accuracy and limitation of the kit should be carried out.

Keywords: ELISA Kit, Microcystin, polyclonal antibody, Thailand