Abstract

The development of color in gemstones depends on the atmosphere in the heating part of the furnace. Brown zircon which was heated under air, inert or oxidizing atmosphere became colorless, while heated under reducing atmosphere became light blue. Gemmological properties, elemental compositions and the XRD powder patterns of unheat – treated and heat – treated zircons revealed that they are zircons with zirconium and silicon as main components. The uranium content was determined by NAA technique. The Raman spectra of unheat-treated and heat-treated zircons gave four important peaks: two stretching vibrations of SiO₄ at 1000 – 1010 cm⁻¹ and 965 – 975 cm⁻¹ and two bending vibrations at 430 – 435 cm⁻¹, and 350 cm⁻¹. The electronic spectra of unheat-treated brown zircons and heat-treated blue zircons showed a broad band at 500 nm and 653 nm respectively. The former band disappeared when the zircons were heat-treated under reducing atmosphere at 1000°C. The latter band may be a result of electronic transition of tetravalent uranium ions in the blue zircons.

The heat treatments of colorless quartz under air, inert, oxidizing and reducing atmosphere caused no change in color except cracking with small orange patches on the surface. All gemological and chemical properties of unheat-treated and heat-treated quartz were similar as expected. The broad band at 500 - 550 nm of unheat-treated quartz spectra disappeared when quartz was heated .

The heat treatments of pink tourmaline under air, inert and reducing atmosphere caused the pink color of tourmaline lighter. When the temperature was above 600 °C the pink tourmaline became colorless. The intensity of weak band at 680 nm decreased as the temperature increased and this band disappeared when pink tourmaline was heated up above 600 °C. For dark green tourmaline, the dark color turn lighter tourmaline was heated under oxidizing atmosphere. The heat treatment of colorless topaz under air and inert atmosphere caused no change in color

การพัฒนาเทคโนโลยีการเผาพลอยเนื้ออ่อน

Development of Heating Technology of Semi-Precious Stones

บทคัดย่อ

การพัฒนาสีของพลอยขึ้นอยู่กับสภาวะบรรยากาศในห้องเผา การเผาพลอยเซอร์คอนในสภาวะ บรรยากาศแบบอากาศ แบบเฉื่อย และแบบออกซิเดชัน ทำให้เซอร์คอนเปลี่ยนจากสีน้ำตาลเป็นไม่มีสี แต่ การเผาภายใต้สภาวะบรรยากาศแบบรีดักชันเปลี่ยนสีของพลอยเซอร์คอนจากสีน้ำตาลเป็นสีฟ้า สมบัติ ทางอัญมณี ธาตุองค์ประกอบและแบบ XRD ผงของเซอร์คอนก่อนเผาและหลังเผา แสดงให้เห็นว่าเป็น เซอร์คอนและมีเซอร์โคเนียมและซิลิกอนเป็นองค์ประกอบหลัก ปริมาณของยูเรเนียมหาโดยวิธีนิวตรอน แอกติเวชัน ในสเปกตรัมรามานของเซอร์คอนก่อนเผาและหลังเผา มีพีคที่สำคัญ 4 พีค ประกอบด้วย การสั่นแบบยืดของของ SiO₄ 2 พีค เกิดที่ 1000-1010 cm⁻¹ และ 965-975 cm⁻¹ และการสั่นแบบงอมุมอีก 2 พีค เกิดที่ 430-435 cm⁻¹ และ 350 cm⁻¹ สเปกตรัมอิเล็กโตรนิกของเซอร์คอนก่อนเผาและหลังเผามีแถบ กว้างที่ 500 และ 653 nm ตามลำดับ แถบที่ 500 cm⁻¹ หายไปเมื่อเซอร์คอนถูกเผาภายใต้สภาวะ บรรยากาศแบบรีดักชันที่ 1000°C และแถบที่ 653 cm⁻¹ น่าจะเกิดจากการทรานซิชันของอิเล็กตรอนใน ใอออนยูเรเนียม (IV)

เมื่อเผาควอทซ์ไม่มีสี ภายใต้สภาวะบรรยากาศแบบอากาศเฉื่อย แบบออกซิเดชันและแบบ รีคักชัน ไม่ทำให้ควอทซ์มีสี แต่มีหย่อมสีส้มๆบนผิว สมบัติทางอัญมณีและทางเคมีของควอทซ์ก่อนเผา และหลังเผาเหมือนกันตามที่คาดไว้ แถบกว้างที่ 500-550 nm ในสเปกตรัมอิเล็กโตรนิกหายไป เมื่อควอทซ์ถูกเผา เมื่อเผาทัวมาลีนสีชมพูภายใต้สภาวะบรรยากาศแบบอากาศ แบบเฉื่อย และแบบรีคิวซ์ ที่อุณหภูมิต่ำกว่า 600°C ทำให้สีชมพูจางลง เมื่อเผาสูงกว่า 600°C ทัวมาลีนสีชมพูกลายเป็นไม่มีสี พีคที่ มีความเข้มต่ำที่ 680 nm ในสเปกตรัมอิเล็กโตรนิกของทัวมาลีนสีชมพูหายไปเมื่อเผาที่ 600°C การลดสี เขียวเข้มของทัวมาลีนทำได้โดยการเผาทัวมาลีนภายใต้สภาวะบรรยากาศแบบออกซิเดชัน การเผาโทปาซ ไม่มีสีในสภาวะบรรยากาศแบบอากาศและแบบเฉื่อยไม่มีผลต่อการเกิดสี