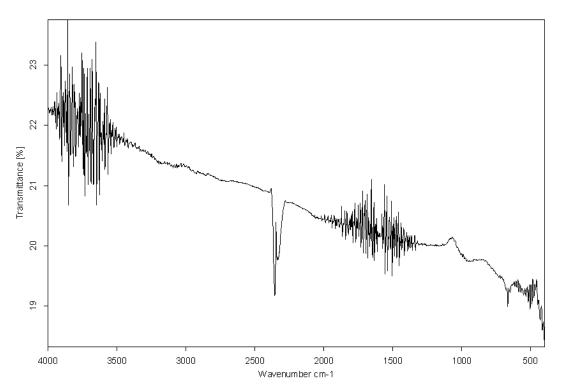
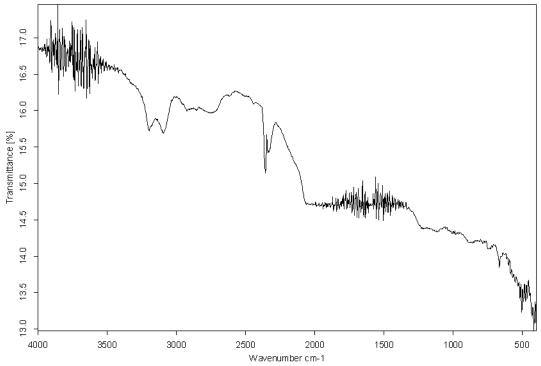
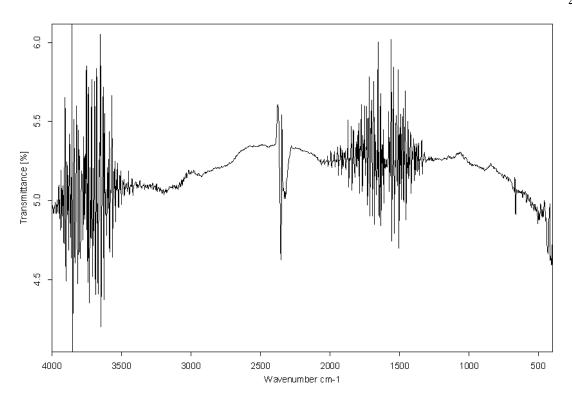
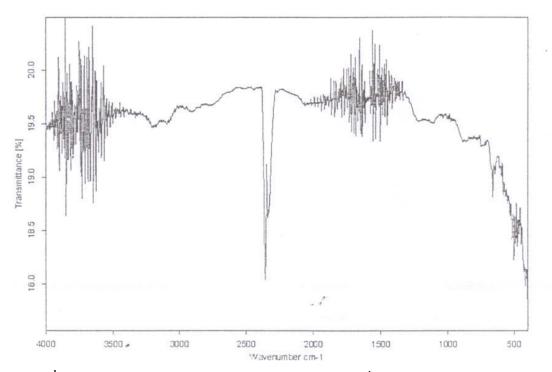
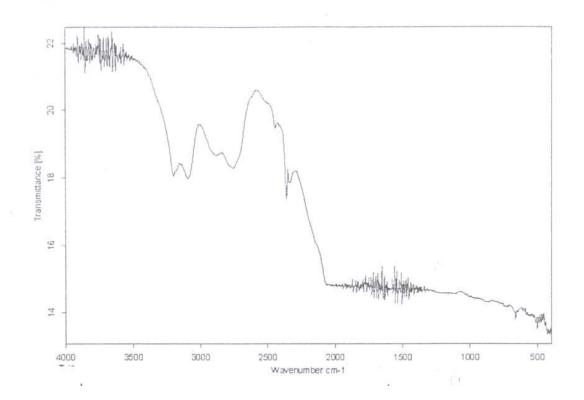

รูปที่ 21 อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีก่อนเผา

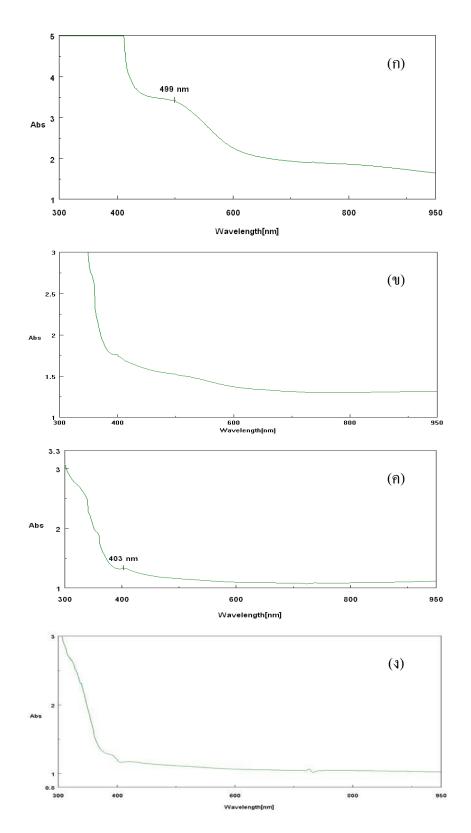

ร**ูปที่ 22** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 300/300/2

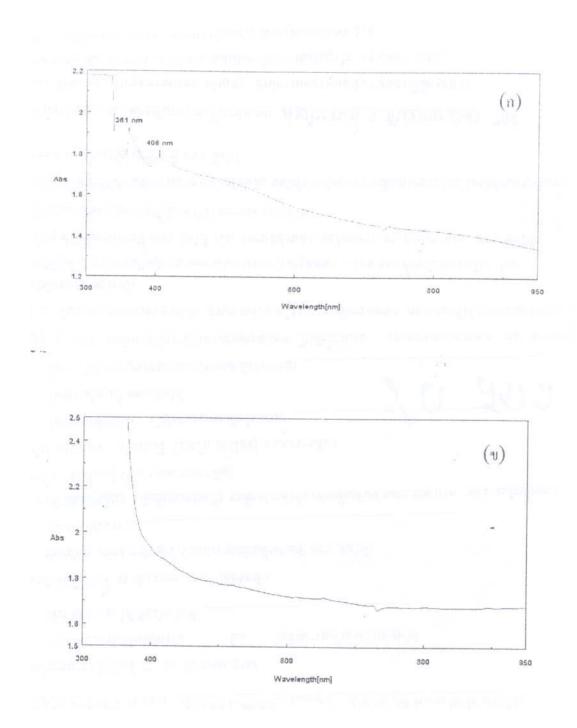

ร**ูปที่ 23** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีคักชัน R 400/300/2


ร**ูปที่ 24** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 500/300/2

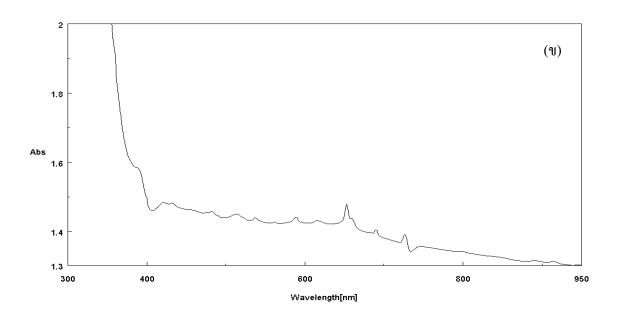

ร**ูปที่ 25** อินฟราเรดสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 600/300/2


ร**ูปที่ 26** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 700/300/2

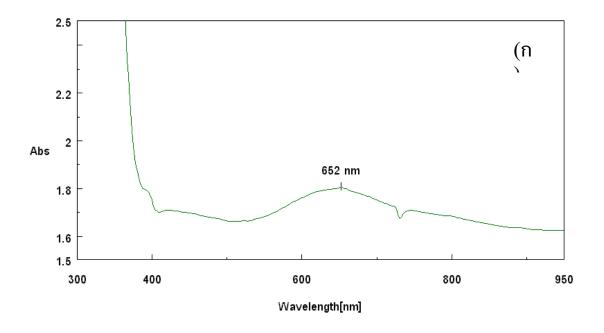

ร**ูปที่ 27** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 800/300/2

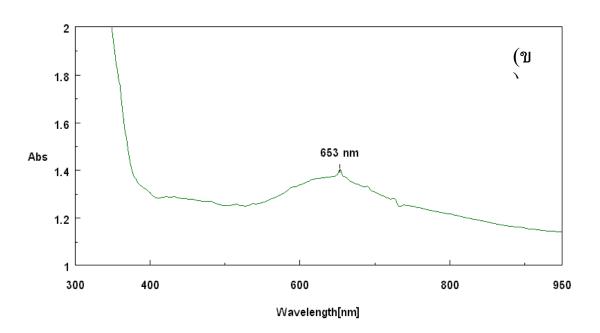

ร**ูปที่ 28** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 900/300/2

ร**ูปที่ 29** อินฟราเรคสเปกตรัมของเซอร์คอนรัตนคีรีหลังเผาที่สภาวะแบบรีดักชัน R 1000/300/2

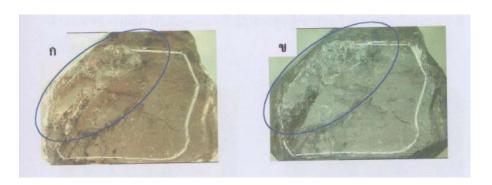


ร**ูปที่ 30** เปรียบเทียบสเปกตรัม UV/VIS/NIR ของพลอยเซอร์คอนแหล่งรัตนคีรี (ก) ก่อนเผา (ข) หลังเผาที่สภาวะ A 500/300/2 (ค) ที่สภาวะ N 500/300/2 (ง) ที่สภาวะ O 500/300/2




ร**ูปที่ 31** เปรียบเทียบสเปกตรัม UV/VIS/NIR ของพลอยเซอร์คอนแหล่งรัตนคีรีหลังจากเผาที่ สภาวะ (ก) R 300/300/2 (ข) R 700/300/2

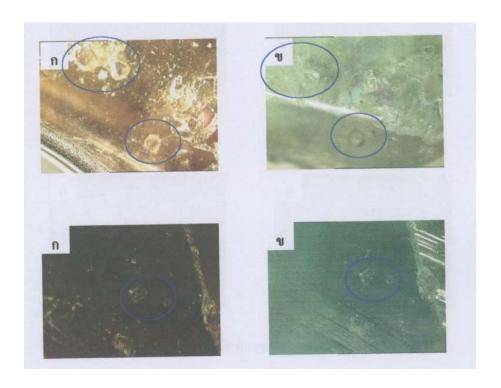
รูปที่ 32 เปรียบเทียบสเปกตรัม UV/VIS/NIR ของพลอยเซอร์คอนแหล่งรัตนคีรีหลังจากเผาที่ สภาวะ (ก) R 800/300/2 (ข) R 900/300/2



รูปที่ 33 เปรียบเทียบสเปกตรัม UV/VIS/NIR ของพลอยเซอร์คอนแหล่งรัตนคีรีหลังจากเผาที่ สภาวะ (ก) R 1000/300/2 (ข) R 1200/300/2

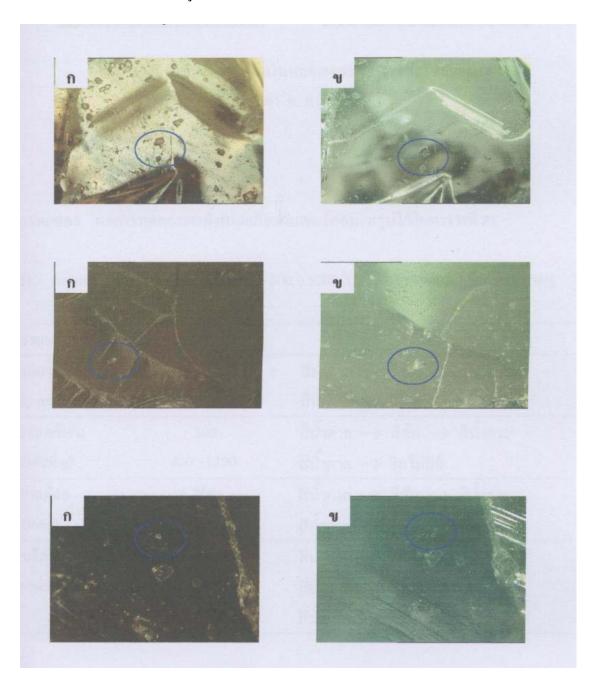
ตำหนิต่าง ๆที่พบในพลอยที่ทำการทคลองมีดังนี้

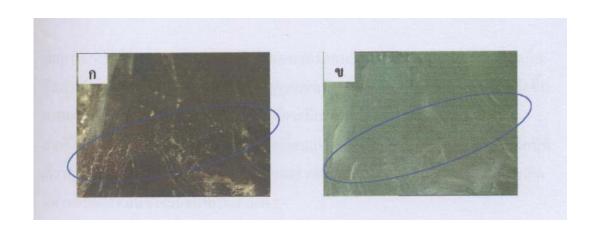
1. ตำหนิแถบสี


- ตำหนิแถบสีน้ำตาลที่ปรากฏอยู่ก่อนเผาได้หายไปหลังจากการเผา ดังรูปที่ 34

รูปที่ 34 ตำหนิแถบสีน้ำตาลในพลอยเซอร์คอนแหล่งรัตนคีรี ก. ก่อนเผา ข. หลังเผา

2. ตำหนิของเหลว


- ตำหนิของเหลวยังคงมีปรากฏอยู่ทั้งก่อนเผาและหลังเผา ดังรูปที่ 35


ร**ูปที่ 35** ตำหนิของเหลวในพลอยเซอร์คอนแหล่งรัตนคีรี ก. ก่อนเผา ข. หลังเผา

3. ตำหนิของผลึก

- ตำหนิของผลึกยังคงมีปรากฏอยู่ทั้งก่อนเผาและหลังเผา ส่วนรอยขรุขระที่ผิว หลังเผานั้นสมานกัน ทำให้ผิวพลอยเรียบขึ้น ดังรูปที่ 36
 - ตำหนิของแผงผลึก (fingerprint) ซึ่งมีปรากฏอยู่ก่อนเผายังคงมีอยู่หลังการเผาแต่ เปลี่ยนเป็นสีดำ ดังรูปที่ 37

รูปที่ 36 ตำหนิของผลึกในพลอยเซอร์คอนแหล่งรัตนคีรี ก. ก่อนเผา ข. หลังเผา

รูปที่ 37 ตำหนิของแผงผลึกในพลอยเซอร์คอนแหล่งรัตนคีรี ก. ก่อนเผา ข. หลังเผา

สรุปผลการทดลอง ผลการทดลองเผาทั้งหมดเกี่ยวกับเซอร์คอน สรุปไว้ในตารางที่ 21

ตารางที่ 21 ผลของการเผาเซอร์คอน ที่อุณหภูมิ $300-1200~^{\circ}\mathrm{C}$ ในสภาวะบรรยากาศแบบต่างๆ

บรรยากาศ	อุณหภูมิ	การเปลี่ยนสี
แบบอากาศ	300	สีน้ำตาล $ o$ สีส้ม $ o$ สีน้ำตาล
(slightly oxidizing)	400 - 1200	สีน้ำตาล → ใสไม่มีสี
แบบออกซิเจน	300	สีน้ำตาล $ ightarrow$ สีส้ม $ ightarrow$ สีน้ำตาล
(oxidizing)	400 - 1200	สีน้ำตาล → ใสไม่มีสี
แบบเฉื่อย	300	สีน้ำตาล $ ightarrow$ สีส้ม $ ightarrow$ สีน้ำตาล
(inert)	400 - 1200	สีน้ำตาล → ใสไม่มีสี
แบบรีดักชัน	300	สีน้ำตาล $ ightarrow$ สีส้ม $ ightarrow$ สีน้ำตาล
(reducing)	400 - 800	สีน้ำตาล → ใสไม่มีสี
	900 - 1200	สีน้ำตาล → สีฟ้า

จากการศึกษาการเผาเซอร์คอนครั้งนี้สามารถสรุปผลเกี่ยวกับเทคโนโลยีการเผาได้ดังนี้

- 1. การเผาเซอร์คอนให้เกิดสีฟ้า ทำได้ในสภาวะบรรยากาศแบบรีดักชันเท่านั้น
- 2. การเผาเซอร์คอนให้ไม่มีสี ทำได้ในสภาวะบรรยากาศแบบอากาศ, แบบเฉื่อยและแบบ ออกซิเดชัน

- 3. ที่สภาวะการเผาแบบ R1000/300/2 สีเดิมของเซอร์คอนมีผลต่อความเข้มของสีฟ้าที่เกิดขึ้น
 - 4. ที่สภาวะการเผาแบบ R1000/300/2 แหล่งของเซอร์คอนมีผลต่อความเข้มของสีฟ้าที่ เกิดขึ้น
- 5. การเผาเซอร์คอนไม่จำเป็นต้องเผานาน แต่ควรมีการอบ
- 6. สมบัติทางเคมีภายในของเซอร์คอนมีการเปลี่ยนแปลงบ้าง แต่สมบัติ ทางสเปกโตรสโกปีที่ เกี่ยวกับการคูคกลื่นแสงมรการเปลี่ยนแปลงอย่างเห็นได้ชัดและมีความสัมพันธ์กับการเกิด สีฟ้าของเซอร์คอนซึ่งจะอธิบายในส่วนที่ 2
- 7. เมื่อเผาเซอร์คอนให้ได้สีฟ้าที่สภาวะรีดักชันเพื่อเพิ่มคุณภาพของพลอย พบว่าตำหนิแถบสี ที่มีในเนื้อพลอยของเซอร์คอนนั้นหายไป ส่วนตำหนิของผลึกและของเหลวยังคงมีปรากฏ อยู่หลังการเผาที่สภาวะนี้ นอกจากนี้ยังสังเกตพบว่ารอยขรุขระที่ผิว และใกล้ ๆ ที่ผิวนั้น หลอมรวมกันทำให้เนื้อของพลอยใสและเรียบขึ้นด้วย

ควอทซ์ (Quartz)

แร่ที่มีองค์ประกอบเป็นซิลิกา มีแร่หลายชนิด กลุ่มที่เกิดเป็นผลึกได้แก่ ควอทซ์ ทริโคไมท์ และคริสโตมาไลต์ ควอทซ์เป็นแร่ที่พบมากที่สุดในกลุ่มนี้ สมาชิกของแร่กลุ่มควอทซ์ประกอบด้วย SiO, ซึ่งอยู่ในรูปต่อไปนี้

- (1) ผลึกขนาดใหญ่ เช่น rock crystal citrine และ amethyst
- (2) Cryptocrystalline chalcedony, jasper, agate และ chrysophrase

ควอทซ์มีสูตรเคมีเป็น ${
m SiO}_2$ ควอทซ์บริสุทธ์ไม่มีสีและใสคล้ายน้ำแข็ง เมื่อมีธาตุอื่นปนอยู่ ในโครงผลึกจะมีสีต่างๆกัน เช่น ควอทซ์สีม่วงเรียกว่า amethyst ควอทซ์สีเหลืองเรียกว่า citrine ที่ อุณหภูมิและความดันต่ำ ควอทซ์เกิดเป็นผลึกที่มีระบบผลึกแบบ trigonal เรียกว่า α -quartz ซึ่งซิ ลิกอนเกิดพันธะกับออกซิเจน 4 อะตอมแบบเตตระฮีดรอล ที่อุณหภูมิสูงขึ้นเกิดการจัดตัวใหม่เพื่อให้ โครงสร้างมีสมมาตรมากขึ้น เกิดเป็นโครงผลึกแบบเฮกซะโกเนล (hexagonal) เรียกว่า β -quartz ควอทซ์มีความแข็งเท่ากับ 7 Mohr scale ความถ่วงจำเพาะ 2.65 ค่าดัชนีหักเห 1.544-1.553 ควอทซ์ทั่ว ใปมีลักษณะเป็นแท่งหกเหลี่ยม ยาวแหลมทั้งหัวและท้าย บางครั้งเกิดเป็นผลึกแฝด

ในงานวิจัยนี้ได้ใช้ควอทซ์ไม่มีสี (rock crystal) เป็นตัวอย่าง ได้ทำการเผาเพื่อดูการเปลี่ยนแปลง ของควอทซ์เมื่อเผาในสภาวะบรรยากาศต่าง ๆ

วิธีทดลอง

1. การเตรียมตัวอย่าง

แช่พลอยตัวอย่างในกรดไฮโดรคลอริก (HCl) แล้วนำมาล้างให้สะอาด

2. การเผาควอทซ์

อุณหภูมิที่ทำการทดลองเริ่มที่ 300 ถึง 800°C ใช้ตัวอย่างควอทซ์ครั้งละ 3-5 ชิ้น แต่ละเม็ด เผาเพียงครั้งเดียว สภาวะการเผาที่ทำการทดลองได้สรุปไว้ในตาราง 22

การศึกษาสมบัติทางอัญมณี ทางกายภาพและทางเคมี

3.1 สมบัติทางอัญมณีและทางกายภาพ

ตรวจสอบสมบัติทางอัญมณีของควอทซ์ทุกเม็ดก่อนและหลังเผา วัดสมบัติทาแสงและการ เกิดฟลูโอเรสเซนต์ภายใต้รังสีอุลตราไวโอเลตคลื่นสั้น (254 nm) และคลื่นยาว (356 nm) และหา ความถ่วงจำเพาะ

ตารางที่ 22 รหัสการเผาควอทซ์

รหัสการเผา				
A	N	O	R	
A 300/300/2	N 300/300/2	O 300/300/2	R 300/300/2	
A 400/300/2	N 400/300/2	O 400/300/2	R 500/300/2	
A 500/300/2	N 500/300/2	O 500/300/2	R 600/300/2	
A 600/300/2	N 600/300/2	O 600/300/2	R 800/300/2	
A 700/300/2	N 700/300/2	O 700/300/2		
A 800/300/2	N 800/300/2	O 800/300/2		
A 500/300/10	N 500/300/10			

3.2 การวิเคราะห์ทางเคมีด้วยเทคนิค X-ray Fluorescence (XRF)

ทำการบันทึกสเปกครัม XRFโดยวางพลอยให้อยู่ระหว่างแผ่นฟิล์มโพลีโพรพิลีนในถ้วยสำหรับ วางตัวอย่าง ปล่อยรังสี X จากหลอดผ่านตัวอย่าง ใช้วิธีวิเคราะห์แบบไม่มีพลอยมาตรฐาน (Standardless Method) คำนวณปริมาณธาตุเป็นเปอร์เซ็นต์สัมพัทธ์

3.3 การวิเคราะห์ทางสเปกโตรสโกปี

ในการบันทึกสเปกตรัมของควอทซ์ก่อนเผาและหลังเผาได้วางตัวอย่างพลอยในตำแหน่งและ ลักษณะทิศทางเดิม เพื่อให้เป็นผลการเปรียบเทียบจากตำแหน่งเดียวกัน

3.3.1 Raman Spectroscopy

บันทึกสเปกตรัมในช่วง 0-4000 cm⁻¹

3.3.2 Fourier Transform Infrared Spectroscopy

บันทึกสเปกตรัมในช่วง 500-4000 cm⁻¹

3.3.3 UV/VIS/NIR Spectroscopy

บันทึกสเปกตรัมในช่วง 200-1100 nm

ผลการทดลอง

1. การเตรียมตัวอย่าง

ควอทซ์ที่ล้างแล้วมีลักษณะใสไม่มีสี มีรอยแตกภายในมากน้อยต่างกันในแต่ละชิ้น

2. การเผาควอทซ์

การเผาควอทซ์ที่อุณหภูมิต่างๆ พบว่าการเผาที่อุณหภูมิ 600-800 °C แช่พลอย 2 ชั่วโมง ทั้งใน สภาวะบรรยากาศเฉื่อย แบบออกซิเดชัน แบบอากาศ และแบบรีดักชัน ทำให้เกิดสีแดงที่ผิว (ตารางที่ 23-26) และพบว่าการเผาควอทซ์ทำให้เกิดรอยแตกในเนื้อพลอยมากขึ้น ตามทฤษฎีการเผาควอทซ์ไม่ทำให้เกิดการเปลี่ยนแปลงใด ๆ ในงานวิจัยได้เผาควอทซ์เพื่อเก็บเป็นข้อมูลตามที่งานวิจัยนี้ได้เสนอไว้ และ ต้องการดูว่าความร้อนจะทำให้เกิดการสมานของรอยแตกหรือไม่ จากผลการเผาพบว่าวิธีเผานี้ไม่ทำให้ เกิดการสมานผิวของรอยแตก

ตารางที่ 23 ลักษณะของควอทซ์หลังการเผาในสภาวะบรรยากาศแบบอากาศ เพื่อหาอุณหภูมิการเผา

รหัสการเผา	ลักษณะที่สังเกตเห็น
A 300/300/2	ความขุ่นลดลงและมีรอกแตกเกิดขึ้น
A 400/300/2	ไม่พบความเปลี่ยนแปลง
A 500/300/2	ความขุ่นลดลงและมีรอยแตกเกิดขึ้น
A 600/300/2	มีสีแคงที่ผิว
A 700/300/2	มีสีแคงที่ผิว
A 800/300/2	ความขุ่นมากขึ้น

ตารางที่ 24 ลักษณะของควอทซ์หลังการเผาในสภาวะบรรยากาศเฉื่อย เพื่อหาอุณหภูมิการเผา

รหัสการเผา	ลักษณะที่สังเกตเห็น	
N 300/300/2	ไม่พบความเปลี่ยนแปลง	
N 400/300/2	ไม่พบความเปลี่ยนแปลง	
N 500/300/2	มีรอกแตกเกิดขึ้น	
N 600/300/2	มีสีแดงที่ผิว	
N 700/300/2	พลอยแตกออก	
N 800/300/2	มีรอยแตกมากขึ้น	

ตารางที่ 25 ลักษณะของควอทซ์หลังการเผาในสภาวะบรรยากาศแบบออกซิเคชัน เพื่อหาอุณหภูมิ การเผา

 รหัสการเผา	ลักษณะที่สังเกตเห็น
O 300/300/2	มีรอยแตกเกิดขึ้น มีสีแดงที่ผิว
O 400/300/2	มีรอยแตกเกิดขึ้น มีสีแดงที่ผิว
O 500/300/2	พลอยใสขึ้น มีสีแคงที่ผิว
O 600/300/2	มีรอยแตกเกิดขึ้น มีสีแดงที่ผิว
O 700/300/2	มีรอยแตกเกิดขึ้น มีสีแดงที่ผิว
O 800/300/2	มีรอยแตกเกิดขึ้น มีสีแดงที่ผิว

ตารางที่ 26 ลักษณะของควอทซ์หลังการเผาในบรรยากาศออกซิ ไดซ์ เพื่อหาอุณหภูมิการเผา

รหัสการเผา	ลักษณะที่สังเกตพบ
R 300/300/2	มีรอกแตกเกิดขึ้น
R 500/300/2	ความขุ่นมากขึ้น มีรอยแตกเกิดขึ้น
R 600/300/2	ความขุ่นมากขึ้น มีรอยแตกเกิดขึ้น
	มีสีแดงที่ผิว
R 800/300/2	มีรอกแตกเกิดขึ้น มีสีแดงที่ผิว

3. การศึกษาสมบัติทางอัญมณี ทางกายภาพและทางเคมี

3.1 สมบัติทางอัญมณี และทางกายภาพของควอทซ์

ควอทซ์ที่ไม่ได้เผามีสมบัติทางแสงแบบหักเหคู่ (Double Refractive, DR) มีค่าดัชนีหักเห 1.540 - 1.553 ค่าความถ่วงจำเพาะที่หาได้อยู่ในช่วง 2.614 - 2.670 ไม่มีการเรื่องแสงในช่วง ความยาวคลื่นยาว (366 nm) และในช่วงความยาวคลื่นสั้น (254 nm) ควอทซ์ที่เผาแล้วมีสมบัติทาง อัญมณี และทางกายภาพเหมือนก่อนเผา ค่าดัชนีหักเหอยู่ในช่วง 1.545 – 1.551 ค่าความถ่วงจำเพาะอยู่ ในช่วง 2.602 – 2.645 และไม่มีการเรื่องแสงในช่วง UV

3.2 การวิเคราะห์ทางเคมีด้วยเทคนิค X-ray Fluorescence (XRF)

การวิเคราะห์ทางเคมีพบว่าควอทซ์มีซิลิกอนเป็นองค์ประกอบหลัก และมีชาตุอื่น ๆ เช่น MgO K₂O CaO และ CuO ในปริมาณน้อย (ตารางที่ 27)

ตารางที่ 27 เปอร์เซนต์สัมพัทธ์ของธาตุในควอทซ์

	SiO ₂	MgO	K ₂ O	CaO	CuO
ควอทซ์	99.486	0.302	0.121	0.091	trace

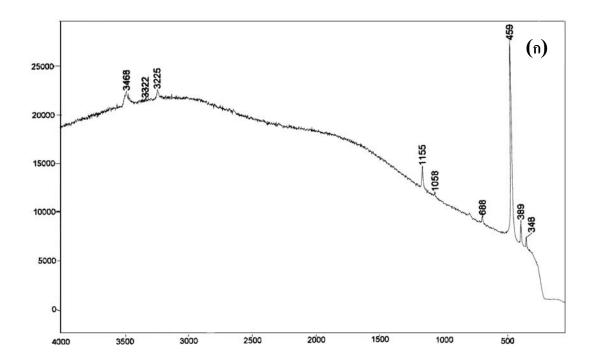
3.3 การวิเคราะห์ทางสเปกโตรสโกปี

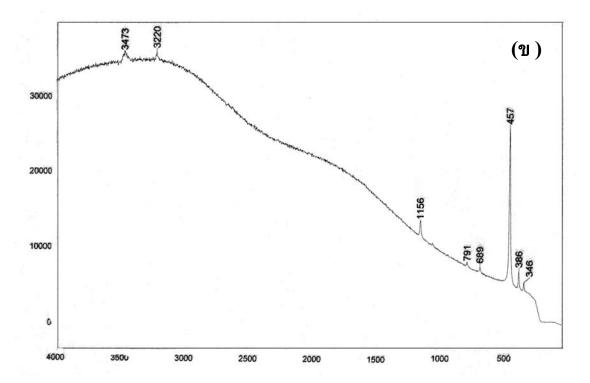
3.3.1 Raman Spectroscopy

พืคในสเปกตรัมรามานของควอทซ์ (รูปที่ 38) เกิดจากการสั่นของพันธะ Si—O การสั่น แบบยืดและหดของพันธะ Si—O ใช้พลังงานในช่วง 900 - 1300 cm⁻¹ และการบิดของมุมพันธะ Si—O—Si และ O—Si—O เกิดในช่วง 400 - 800 cm⁻¹ และ 600 - 800 cm⁻¹ ซึ่งสเปกตรัมรามานของ ควอทซ์ก่อนและหลังเผาทุกสภาวะไม่แตกต่างกัน สเปกตรัมรามานของควอทซ์ได้รวบรวมไว้ในภาค ผนวก ง

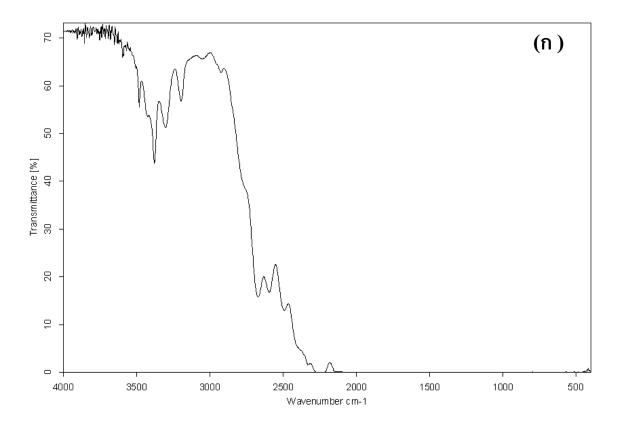
3.3.2 Fourier Transform Infrared Spectroscopy

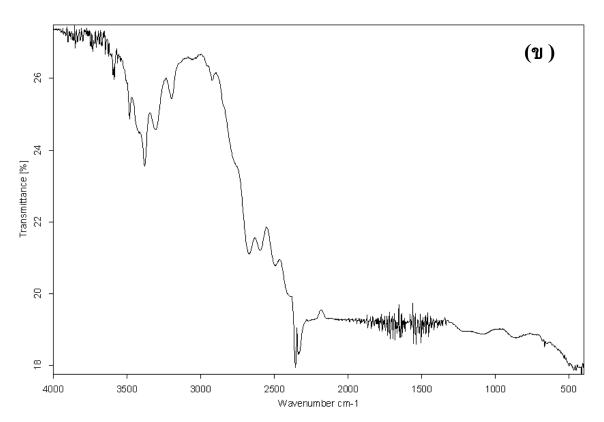
เนื่องจากสเปกตรัมอินฟราเรคไม่ให้ข้อมูลที่เป็นประโยชน์ต่อการเผา และการ เผาควอทซ์ไม่แสดงการเปลี่ยนสี สเปกตรัมอินฟราเรคจึงให้ผลเหมือนกันทั้งก่อนและหลังเผา (รูปที่ 39) แสดงสเปกครัมอินฟราเรคของควอทซ์ก่อนเผาและหลังเผา

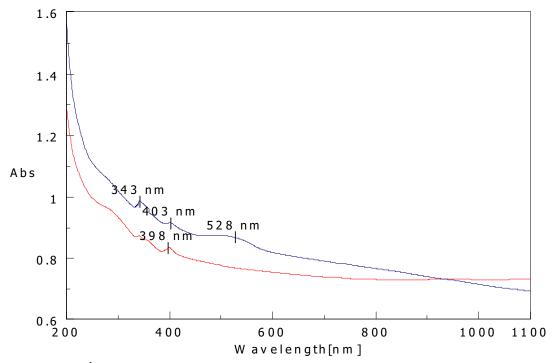

3.3.3 UV/VIS/NIR Spectroscopy


สเปกตรัมคูคกลื่นแสงของควอทซ์ก่อนเผามักมีแถบกว้างและความเข้มต่ำ อยู่ที่ ประมาณ 500 – 550 cm⁻¹ เมื่อเผาแล้วแถบนี้จะหายไป แถบนี้อาจใช้เป็นตัวชี้ว่าควอทซ์ถูกเผาแล้วหรือ ไม่ (รูป 40-47) เปรียบเทียบสเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผาและหลังเผาที่สภาวะต่าง ๆ ซึ่ง ได้รวบรวมไว้ในภาคผนวก ค

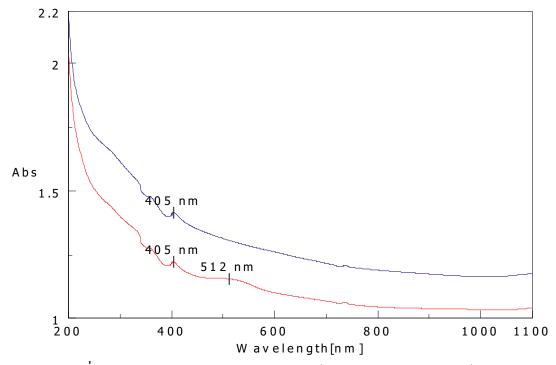
สรุปผลการทดลอง

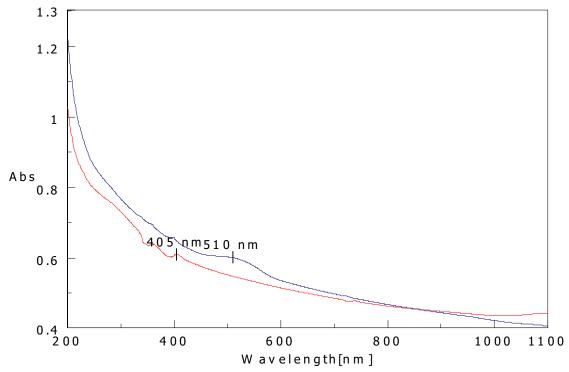

จากผลการเผาสรุปได้ว่า

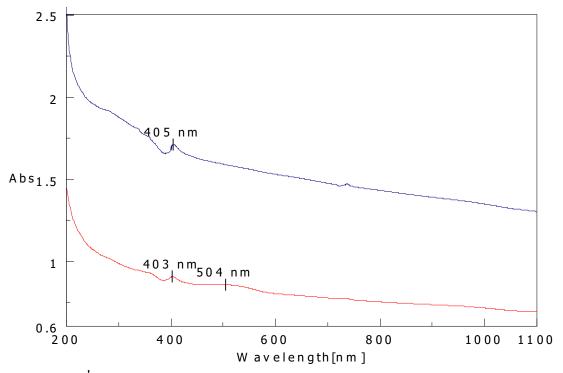

- 1. การเผาไม่ทำให้ควอทซ์เกิดการเปลี่ยนแปลงใด ๆ ไม่ว่าจะเป็นสมบัติทางอัญมณี ทางกายภาพ และทางเคมี
- 2. ตำแหน่งของแถบกว้างในสเปกตรัมดูดกลื่นแสงช่วง 500 550 nm อาจเป็นตัวชี้ว่าควอทซ์ ถูกเผาหรือไม่
 - 3. ไม่เกิดเทคโนโลยีการเผาควอทซ์

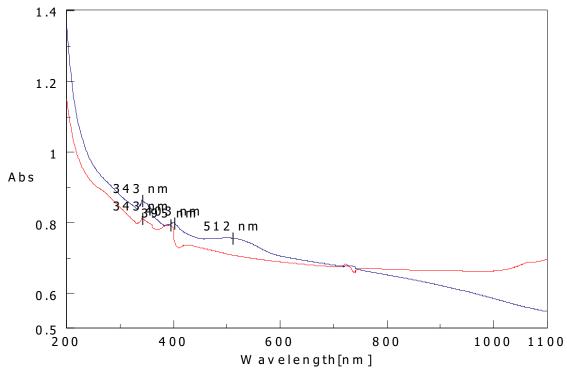


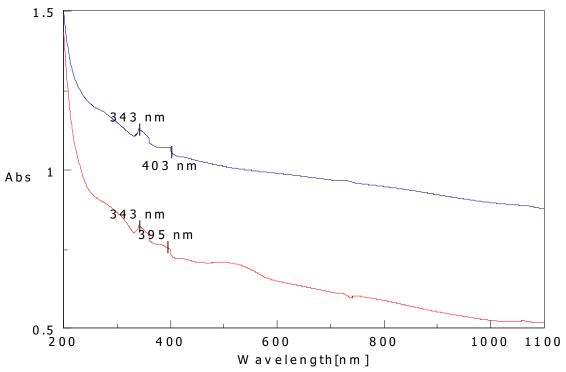
ร**ูปที่ 38** รามานสเปกตรัมของควอทซ์หลังเผาที่สภาวะบรรยากาศ (ก) แบบอากาศ A 800/300/2 (ข) แบบเลื่อย N 800/300/2

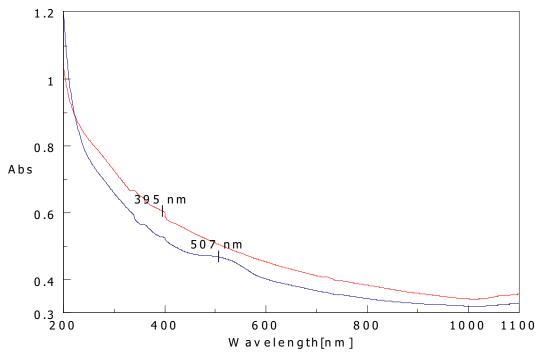


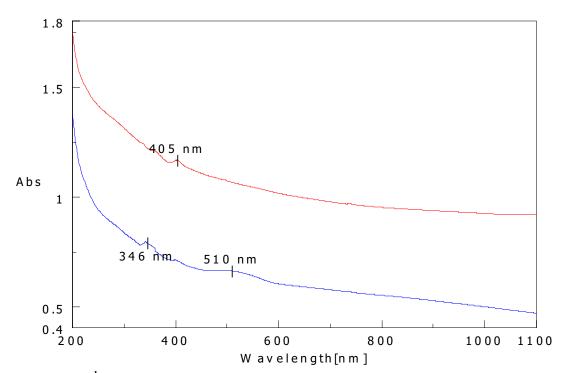

รูปที่ 39 อินฟราเรคสเปกตรัมของควอทซ์ (ก) ก่อนเผา (ข) หลังเผา


รูปที่ 40 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(บน) และควอทซ์หลังเผา รหัส A 300/300/2 (ล่าง)


รูปที่ 41 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(ล่าง) และควอทซ์หลังเผา รหัส A 400/300/2 (บน)


รูปที่ 42 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(บน) และควอทซ์หลังเผา รหัส A 500/300/2 (ล่าง)


รูปที่ 43 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(ล่าง) และควอทซ์หลังเผา รหัส A 600/300/2 (บน)


รูปที่ 44 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(บน) และควอทซ์หลังเผา รหัส N 300/300/2 (ล่าง)

รูปที่ 45 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(ล่าง) และควอทซ์หลังเผา รหัส N 400/300/2 (บน)

รูปที่ 46 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(ล่าง) และควอทซ์หลังเผา รหัส N 500/300/2 (บน)

รูปที่ 47 สเปกตรัม UV/VIS/NIR ของควอทซ์ก่อนเผา(ล่าง) และควอทซ์หลังเผา รหัส N 600/300/2 (บน)

3. ทั่วมาถิ่น (Tourmaline)

ทัวมาลืนเป็นแร่ในกลุ่มวงซิลิเกต (ring silicate) มีสูตรทั่วไปคือ XY_3AI_6 (Si_6O_{18}) (BO_3) $_3$ (OH) $_4$ เมื่อ $X = Ca^{2+}$, Na^+ และ $Y = Mg^{2+}$, Li^+ , AI^{3+} , Fe^{2+} หรือ Mn^{2+} สีของทัวมาลืนจึงมีหลายสีขึ้นอยู่ กับชนิดของธาตุที่อยู่ในโครงสร้าง เมื่อมี Mn^{2+} ปนอยู่ให้สีชมพู และเรียกชื่อว่า rubellite ถ้ามี Fe^{2+} ให้ ทัวมาลืนสีเขียว โครงสร้างทัวมาลืนประกอบด้วยอะตอมซิลิกอนเกิดพันธะกับออกซิเจน 4 อะตอมแบบ เตตระฮิดรอล โดยที่ออกซิเจน 2 อะตอมในแต่ละ SiO_4 มาจากออกซิเจนใน SiO_4 ที่อยู่ข้างเคียง ลักษณะ นี้ทำให้เกิดเป็นวงหกเหลี่ยมที่มีองค์ประกอบ Si_6O_{18} ส่วน AI เกิดพันธะกับออกซิเจน 6 อะตอม เป็นรูป ทรงแปดหน้า ผลึกของทัวมาลืนมีลักษณะเป็นแท่งและมีรอยเป็นแนวยาวมีลักษณะเป็นเนื้อสมานแน่น ทัวมาลืนมีความแข็งเท่ากับ 7 Morh Scale ไม่มีรอยแตก ผลึกมักเปราะ มีความถ่วงจำเพาะ 3.1-3.2 มี สมบัติทางแสงแบบหักเหคู่ และมีค่าดัชนีหักเห o-ray และ e-ray เท่ากับ 1.610-1.650 และ 1.635-1.675

ในงานวิจัยนี้ใช้ทั่วมาลืนสีชมพูและสีเขียวเข้มเป็นตัวอย่างในการทดลอง ได้ทำการเผาเพื่อหา สภาวะการเผาที่ทำให้ทั่วมาลืนสีชมพูมีสีเข้มขึ้นและลดสีเขียวเข้มของทั่วมาลืนสีเขียว

<u>วิธีทดลอง</u>

1. การเตรียมตัวอย่าง

แช่พลอยตัวอย่างในกรดไฮโดรคลอริก แล้วนำมาล้างให้สะอาด

2. การเผาทั่วมาถืน

2.1 ทั่วมาถืนสีชมพู

ได้ทดลองเผาในสภาวะบรรยากาศทั้ง 3 แบบ (แบบอากาศ แบบเฉื่อย และแบบรีดักชัน) เพื่อ ดูว่าแบบใดที่ทำให้สีขมพูเข้มขึ้น ในการทดลองการเผาทุกสภาวะไม่มีการเติมสารเติมแต่งและอัตราการ เพิ่มอุณหภูมิเท่ากับ 300 °C/ชั่วโมง คงที่ตลอดทุกการทดลอง อัตราการลดอุณหภูมิให้ลดตามธรรมชาติ ของเตาเผาไม่มีการจัดอัตราการลดอุณหภูมิ สภาวะการเผาที่ทำการทดลองได้สรุปไว้ในตารางที่ 28

2.2 ทั่วมาถืนสีเขียวเข้ม

ทั่วมาลืนสีเขียวเข้มน่าจะเกิดจากการมี Fe²⁺ มาก ดังนั้นการลดสีเขียวควรทำในสภาวะบรรยากาศ แบบออกซิเดชัน ในการทดลองนี้จึงทำการเผาในสภาวะบรรยากาศแบบอากาศ และแบบออกซิเดชันเท่า นั้น อุณหภูมิเริ่มที่ 300 ถึง 600 °C อัตราการเพิ่มอุณหภูมิคงที่ที่ 300 °C/ชั่วโมง และเวลาแช่พลอย 2 ชั่วโมง รหัสการเผารวมไว้ในตารางที่ 29

ตารางที่ 28 รหัสการเผาทั่วมาลืนสืชมพู

	รหัสการเผา	
A 300/300/2	N 300/300/2	R 300/300/2
A 400/300/2	N 400/300/2	R 500/300/2
A 500/300/2	N 500/300/2	R 600/300/2
A 600/300/2	N 600/300/2	R 800/300/2
A 700/300/2	N 700/300/2	
A 800/300/2	N 800/300/2	
A 500/300/10	N 500/300/10	

ตารางที่ 29 รหัสการเผาทั่วมาลืนสีเขียวเข้ม

	รหัสการเผา	
A 300/300/2	AS 300/300/2	O 300/300/2
A 400/300/2	AS 400/300/2	O 400/300/2
A 500/300/2	AS 500/300/2	O 500/300/6
A 600/300/2	AS 600/300/2	O 600/300/2
		O 700/300/2
		O 800/300/2

AS = เป็นการเผาในอากาศโดยในเบ้าใส่ทรายกลบทั่วมาลืน

3. การศึกษาสมบัติทางอัญมณี ทางกายภาพและทางเคมี

3.1 สมบัติทางอัญมณีและทางกายภาพ

ตรวจสอบสมบัติทางอัญมณีและทางกายภาพของทั่วมาถืนก่อนเผาและหลังเผา หาความถ่วง จำเพาะและดูการเรื่องแสงในช่วงUVความยาวคลื่นสั้น (254 nm) และความยาวคลื่นยาว (356 nm)

3.2 การวิเคราะห์ทางเคมีด้วยเทคนิก X-ray Fluorescence (XRF)

ทำการบันทึกสเปกครัม XRF โดยวางพลอยให้อยู่ระหว่างแผ่นฟิล์มโพลีโพรพิลีนในถ้วยสำหรับ

วางตัวอย่าง ปล่อยรังสี X จากหลอดผ่านตัวอย่าง ใช้วิธีวิเคราะห์แบบไม่มีพลอยมาตรฐาน (Standardless Method) คำนวณปริมาณธาตุเป็นเปอร์เซ็นต์สัมพัทธ์

3.3 การวิเคราะห์ทางสเปกโตรสโคปี

ในการบันทึกสเปกตรัมของทั่วมาถืนก่อนเผาและหลังเผาได้วางตัวอย่างพลอยในตำแหน่งและ ลักษณะทิศทางเดิม เพื่อให้เป็นผลการเปรียบเทียบจากตำแหน่งเดียวกัน

- 3.3.1 Raman Spectroscopy
 บันทึกสเปกตรัมในช่วง 0-4000 cm⁻¹
- 3.3.2 Fourier Transform Infrared Spectroscopy บันทึกสเปกตรัมในช่วง 500-4000 cm⁻¹
- 3.3.3 UV/VIS/NIR Spectroscopyบันทึกสเปกตรัมในช่วง 200-1100 nm

ผลการทดลอง

1. การเตรียมตัวอย่าง

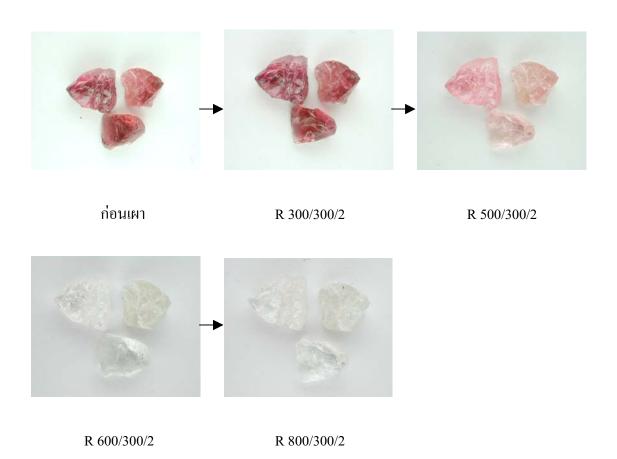
ทั่วมาลืนที่ล้างแล้วมีลักษณะใส มีสีชมพู ภายในมีรอยแตกบ้าง ทั่วมาลืนสีเขียวเข้มเห็นรอยเป็น ชั้นตามแนวยาวชัดเจน

2. การเผาทั่วมาถืน

การเผาทั่วมาลีนสีชมพูที่อุณหภูมิต่างๆ พบว่าการเผาที่อุณหภูมิ 600-800°C แช่พลอย 2 ชั่วโมง ทั้งในสภาวะบรรยากาศแบบอากาศ แบบเฉื่อย และแบบรีดักชัน ทำให้พลอยทั่วมาลีนสีจางลงจนไม่มีสี (ตารางที่ 30-32 และรูปที่ 48) และมีรอยแตกในเนื้อพลอยมากขึ้น ผลการทดลองหาเวลาแช่พลอยที่ 500°C ภายใต้สภาวะบรรยากาศแบบอากาศ และแบบเฉื่อย พบว่าเวลาแช่พลอยที่นานขึ้นทำให้สีของ ทั่วมาลีนจางลงมาก (ตารางที่ 33)

การเผาทั่วมาลืนสีเขียวเพื่อถอยสีในสภาวะบรรยากาศแบบอากาศ ทั้งแบบกลบทรายและ ไม่กลบทรายที่อุณหภูมิ 100-600 °C ทำให้สีเขียวของพลอยลดลง ช่วยสมานรอยแตกภายในได้บ้าง และลดจุด คำภายในพลอยได้บ้าง (ตารางที่ 34 และ 35)

ตารางที่ 30 ลักษณะของทั่วมาลื่นสีชมพูหลังเผาในสภาวะบรรยากาศแบบอากาศ


รหัสการเผา	ลักษณะที่สังเกตเห็น
A 300/300/2	ไม่พบความเปลี่ยนแปลง
A 400/300/2	พลอยสิชมพู
A 500/300/2	พลอสีชมพูอ่อน
A 600/300/2	พลอยใสไม่มีสี มีรอยแตกเกิดขึ้น
A 700/300/2	พลอยใสไม่มีสี (ใสเท่าเคิม)
A 800/300/2	พลอยใสไม่มีสี (ใสเท่าเคิม) รอยแตกเพิ่มขึ้น

ตารางที่ 31 ลักษณะของทัวร์มาลืนสีชมพูหลังเผาในสภาวะบรรยากาศแบบเฉื่อย

รหัสการเผา	ลักษณะที่สังเกตเห็น
N 300/300/2	สีชมพูจางลง ความใสเท่าเดิม
N 400/300/2	สีชมพูจางลง ความใสเท่าเดิม
N 500/300/2	สีชมพูจางลง ความใสเท่าเดิม
N 600/300/2	พลอยใสไม่มีสี(เคิมชมพูเข้ม) รอยแตกหายไป
N 700/300/2	พลอยใสไม่มีสี(เคิมชมพูเข้ม) มีรอยแตกเกิดขึ้น
N 800/300/2	พลอยใสไม่มีสี(เคิมชมพูเข้ม)

ตารางที่ 32 ลักษณะของทั่วมาลืนสีชมพูหลังเผาในสภาวะบรรยากาศแบบรีดักชั้น

รหัสการเผา	ลักษณะที่สั่งเกตเห็น	
R 300/300/2	สีชมพูเข้มขึ้น	
R 500/300/2	สีชมพูอ่อนลง เนื้อพลอยใสขึ้น	
R 600/300/2	ใสไม่มีสี บางเม็ดอมเหลืองอ่อน	
R 800/300/2	ใสไม่มีสี มีบางส่วนเป็นสีขาวขุ่น	

รูปที่ 48 ทัวมาลีนก่อนเผาและหลังเผาที่สภาวะรีดักชัน

ตารางที่ 33 ลักษณะของทั่วมาลืนสีชมพูหลังการเผาในสภาวะบรรยากาศแบบอากาศและแบบเฉื่อยเพื่อ หาเวลาแช่พลอย

รหัสการเผา	ลักษณะที่สังเกตเห็น
A 500/300/2	สีชมพูอ่อน
A 500/300/10	สีชมพูอ่อนจางลงมาก
N 500/300/2	สีชมพูจางลง
N 500/300/10	สีชมพูอ่อนมาก

ตารางที่ 34 ลักษณะของพลอยทั่วมาลืนสีเขียวเข้มหลังการเผาภายใต้สภาวะบรรยากาศแบบอากาศ

รหัสการเผา	ลักษณะที่สังเกตเห็น					
A 100/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)					
A 200/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)					
A 300/300/2	เนื้อพลอยมีความใสมากขึ้น สีเข้มเกือบคำเหมือนเดิม					
A 400/300/2	เนื้อพลอยมีความใสมากขึ้น สีเข้มเกือบดำเหมือนเดิม					
A 500/300/2	พลอยสีเขียวอ่อนลง ใสมากขึ้น จุคคำในเนื้อพลอยลคลง					
A 600/300/2	พลอยสีเขียวอ่อนลง ใสมากขึ้น จุคคำในเนื้อพลอยลคลง					
	รอยแตกสมานกัน					

ตารางที่ 35 ลักษณะของพลอยทั่วมาลืนสีเขียวเข้มหลังการเผาภายใต้สภาวะบรรยากาศแบบอากาศและ กลบทราย

รหัสการเผา	ลักษณะที่สังเกตเห็น
AS 100/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)
AS 200/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)
AS 300/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)
AS 400/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)
AS 450/300/2	พลอยสีเขียวเข้มเกือบคำ (ไม่เปลี่ยนแปลง)
AS 500/300/2	เม็ดที่ทึบมากก็เหมือนเดิม เม็ดที่ใสมีความใสขึ้นบ้าง
AS 600/300/2	บางเม็ดเกิดใหม้กลายเป็นไม้ บางเม็ดใสขึ้น รอยแตกลดลง

3. การศึกษาสมบัติทางอัญมณี ทางกายภาพและทางเคมี

3.1 สมบัติทางอัญมณีและทางกายภาพของทั่วมาลื่น

ค่าดัชนีหักเหของทั่วมาลืนก่อนเผาอยู่ในช่วง 1.610-1.667 และค่าความถ่วงจำเพาะอยู่ในช่วง 3.0465-3.0644 เมื่อเผาแล้วค่าดัชนีหักเหไม่เปลี่ยนแปลง ค่าความถ่วงจำเพาะอยู่ในช่วง 3.0581-3.0656 ทั่วมาลืนก่อนเผาและหลังเผาไม่เรื่องแสงทั้งในช่วงUVความยาวคลื่นสั้นและคลื่นยาว

3.2 การวิเคราะห์ทางเคมีด้วยเทคนิค X-ray Fluorescence (XRF)

ผลการวิเคราะห์พบว่าทั่วมาลืนมีธาตุ Si และ Al เป็นองค์ประกอบหลักและมีธาตุปริมาณน้อย อื่นๆ (ตาราง 36)

3.3 การวิเคราะห์ทางสเปกโตรสโคปี

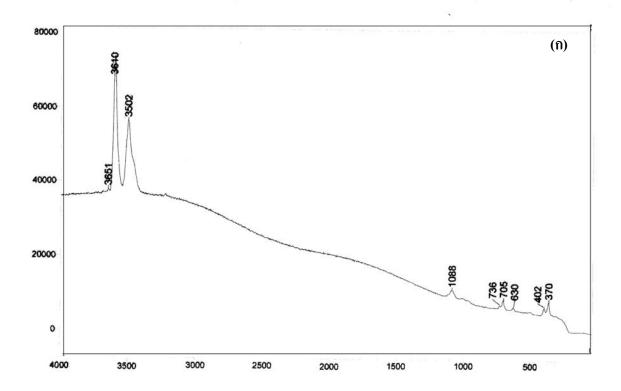
3.3.1 Raman Spectroscopy

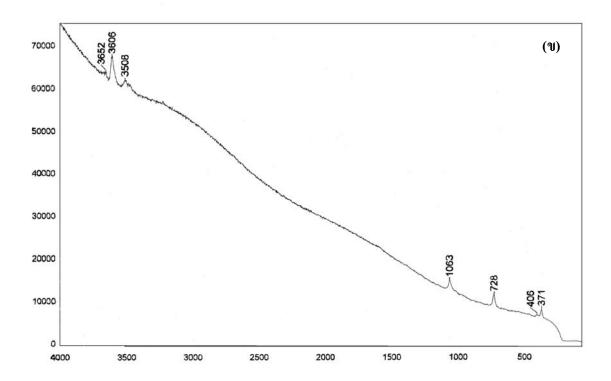
สเปกตรัมรามานของทั่วมาลืนสีชมพูและสีเขียวเข้มมีรูปแบบของพีคเหมือนกัน กล่าวคือมี พีครามานเกิดขึ้น 2 ช่วงคือ ช่วงความถี่สูง 3400-3600 cm⁻¹ ซึ่งเป็นผลจากการสั่นของหมู่ไฮครอกไซด์ และน้ำ และช่วงความถี่ต่ำกว่า 1000 cm⁻¹ ซึ่งเป็นผลจากการสั่นของหมู่ SiO₄ เนื่องจากโครงสร้างของ ทั่วมาลืนเป็นวงซิลิเกต 4 หน่วยต่อกัน จึงทำให้เกิดช่องกลวงตรงกลาง ซึ่งอาจมีไอออนหรือโมเลกุล อื่นๆ แทรกอยู่ภายในเช่น โมเลกุลน้ำ การสั่นของพันธะ O – H ของน้ำทำให้เกิดพีคที่ 3588 cm⁻¹ ส่วน พีคที่ 3470 cm⁻¹ เกิดจากการสั่นของหมู่ไฮครอกไซด์ในทั่วมาลืนเอง กลุ่มพีคในช่วงความยาวคลื่นต่ำ กว่า 1000 cm⁻¹ เป็นผลจากการสั่นของพันธะในหมู่ SiO₄ (รูปที่ 49) สเปกตรัมรามานของทั่วมาลืนได้ รวบรวมไว้ในภาคผนวก ข

3.3.2 Fourier Transform Infrared Spectroscopy

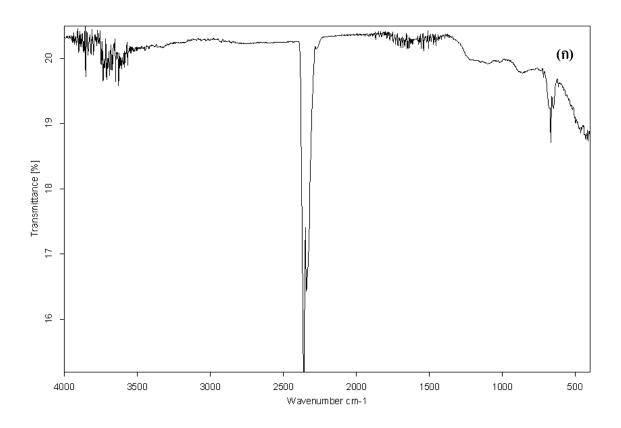
สเปกตรัมอินฟาเรคของทั่วมาถืนก่อนเผาและหลังเผา แสคงผลจากการสั่นของกลุ่ม ${
m SiO_4}$ และหมู่ไฮครอกไซค์ เช่นเคียวกับสเปกตรัมรามาน (รูปที่ 50)

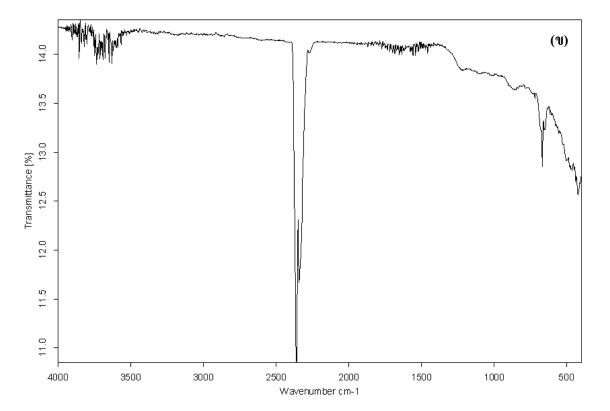
3.3.3 UV/VIS/NIR Spectroscopy

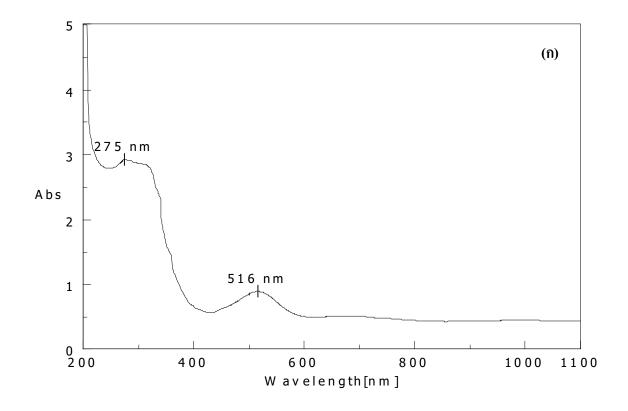

สเปกตรัมคูดกลื่นแสงในช่วงวิซิเบิลของทั่วมาลีนก่อนเผามีแถบที่มีความเข้มสูงเกิดที่ 510 - 516 nm และแถบที่มีความเข้มต่ำเกิดที่ประมาณ 680 nm (รูป 51) หลังจากเผาที่สภาวะบรรยากาศแบบ ต่างๆ ความเข้มของพีคทั้งสองค่อยๆ ลดลงจนหายไปเมื่อเผาถึงอุณหภูมิประมาณ 600° C พลอยที่ถูก เผาถึง 600° C เปลี่ยนจากสีชมพูเป็นไม่มีสี จึงไม่มีการคูดกลื่นแสงในช่วงวิสิเบิล สเปกตรัมทั้งหมดได้ รวบรวมไว้ในภาคผนวก ค

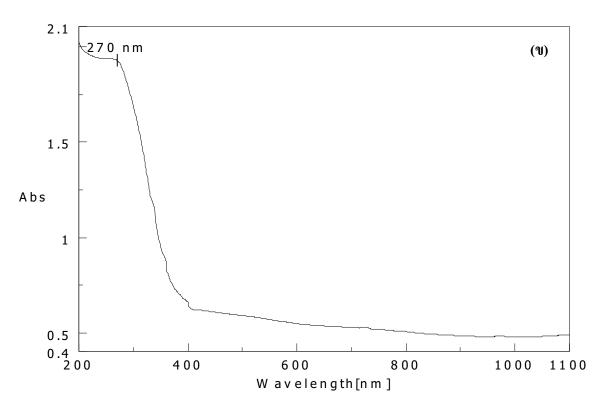

สรุปผลการทดลอง

จากผลการทดลองทั้งหมด สรุปได้ว่าในการเผาทั่วมาลืนสีชมพูควรเผาที่อุณหภูมิต่ำ การเผาที่ อุณหภูมิสูงทำให้ทั่วมาลืนไม่มีสี ส่วนการถอยสีเขียวเข้มของทั่วมาลืนต้องทำในสภาวะออกซิเคชัน อาจ ต้องใช้ระยะเวลาในการเผานานขึ้นและอาจต้องใช้ตัวรีดิวซ์ที่แรงขึ้น


ตารางที่ 36 เปอร์เซนต์สัมพันธ์ของธาตุในทั่วมาถืน


	SiO ₂	$\mathrm{Al_2O_3}$	Na ₂ O	K ₂ O	MgO	CaO	SrO	Bi ₂ O ₃	TiO ₂	MnO2	Fe ₂ O ₃	CuO	ZnO
ทั่วมาถืนถี่ชมพู	48.374	41.798	0.314	0.059	0.206	7.280	0.223	0.987	0.121	0.478	0.139	0.022	-
ทั่วมาถืนถีเขียว	43.162	37.214	1.292		0.363	0.375	-		0.247	1.867	15.210	Trace	0.270
ทัวมาถืนไม่มีถื	50.002	42.674	0.308	0.069	-	6.151	-	-	0.057	0.558	0.089	0.091	




รูปที่ 49 รามานสเปกตรัมของทั่วมาลีนหลังเผาที่สภาวะบรรยากาศ (ก) แบบอากาศ A 800/300/2 (ข) แบบฉื่อย N 500/300/2

รูปที่ 50 อินฟราเรคสเปกตรัมของทั่วมาลืน (ก) ก่อนเผา (ข) หลังเผา

ร**ูปที่ 51** UV/VIS/NIRสเปกตรัมของทัวมาลืน (ก) ก่อนเผา (ข) หลังเผาในสภาวะบรรยากาศ แบบอากาศ A 800/300/2

4. โทปาซ (Topaz)

โทปาซจัดอยู่ในกลุ่มแร่ orthosilicate โครงสร้างประกอบด้วย อะลูมิเนียม เกิดพันธะกับ อะตอมออกซิเจนของหมู่ SiO_4 4 หมู่ และไอออนฟลูออไรด์ และ/หรือไฮดรอกไซด์ โทปาซมีความ แข็งเท่ากับ 8 Mohr Scale มีทั้งขนาดใหญ่และเล็ก มีความวาวแบบแก้ว มีหลายสี เช่นไม่มีสี สีเหลือง สีชมพู เหลืองแบบไวน์ สีน้ำเงิน โทปาซมีสูตรเคมี ดังนี้ $Al_2(SiO_4)$ $(F,OH)_2$

เนื่องจากไม่สามารถหาโทปาซสีอื่น ๆ ได้ ในการทดลองนี้จึงใช้ตัวอย่างเป็นพลอยไมมีสีและทำ การทดลองเผาในสภาวะบรรยากาศแบบอากาศและแบบเฉื่อยเท่านั้น (ตารางที่ 37) ซึ่งเป็นไปตามแนว คิดที่ว่าในโทปาซไม่มีโลหะไอออนที่ทำให้เกิดสีอยู่ในโครงสร้าง การเผาทำให้พลอยแตกเป็นชิ้นเล็กๆ

ตารางที่ 37 รหัสการเผาโทปาซ

รหัสการเผา			
	N 300/300/2		
A 300/300/2	N 400/300/2		
A 400/300/2	N 500/300/2		
A 500/300/2			
A 600/300/2	N 600/300/2		
A 700/300/2	N 700/300/2		
,	N 800/300/2		
A 800/300/2			

สำหรับข้อมูลอื่น ๆ เกี่ยวกับสมบัติทางอัญมณีและทางสเปกโตรสโคปี ได้บันทึกไว้ในภาค ผนวก ข และ ค

ส่วนที่ 2 การเกิดสีของเซอร์คอน

ในส่วนที่ 1 ได้แสดงผลการเผาเซอร์คอนไว้ว่า (1) เซอร์คอนสีน้ำตาลต้องเผาภายใต้สภาวะ บรรยากาศแบบรีดักชัน จึงเปลี่ยนเป็นสีฟ้าได้ (2) สเปกตรัม UV/VIS/NIR ของเซอร์คอนที่เผาใน สภาวะที่มีอากาศหรือออกซิเจนไม่ให้แถบดูดกลืนบริเวณ 635 nm ส่วนสเปกตรัมของเซอร์คอนที่เผาใน สภาวะรีดักชันมีแถบเกิดขึ้นบริเวณ 635 nm และเซอร์คอนกลายเป็นสีฟ้า ดังนั้นแถบที่ 653 nm จึงน่า จะเกี่ยวข้องกับการเกิดสีฟ้าของเซอร์คอน แสดงว่าในขณะที่เผานั้นต้องมีการรีดักชันเกิดขึ้นภายในพลอย จึงทำให้พลอยมีสีฟ้า

ปฏิกิริยารีดักชั้นเป็นปฏิกิริยาการรับอิเล็กตรอนนั่นคือเลขออกซิเคชันของไอออนของธาตเพิ่ม
ขึ้น เมื่อพิจารณาองค์ประกอบในเซอร์คอน (ตารางที่ 17) พบว่าธาตุที่ตรวจพบและมีสมบัติทำให้เกิดสี
ได้มี Fe และ Zr อาจมี Th หรือ U ที่เป็นธาตุทีมีปริมาณน้อยมาก (ในระดับ ppm) เป็นตัวที่ทำให้เกิด
สีก็ได้ ดังนั้นจึงตั้งสมมติฐานได้ว่าน่าจะมีการเปลี่ยนแปลงเลขออกซิเคชันของไอออนในองค์ประกอบ
เมื่อพิจารณาดูแต่ละธาตุจะพบว่าการรีดักชันอาจเกิดจาก

- $(1) \quad Fe^{3+} \quad \longrightarrow \quad Fe^{2+}$
- (2) Zr^{4+} \longrightarrow Zr^{3+} หรือ Zr^{2+}
- $(3) \quad U^{6+} \longrightarrow U^{4+}$

ปฏิกิริยารีคักชันข้อใดน่าจะเกิดได้ ต้องพิจารณาถึงความเป็นไปได้ของแต่ละสมการดังนี้ ใน กรณีที่ (1) ไอออน Fe^{2+} มักให้สีเขียวอ่อน จึงไม่น่าจะเกิดขึ้นได้ ในกรณีที่ (2) ก็เกิดไม่ได้เพราะจาก การศึกษาสเปกตรัม XPS พบพีคของ Zr^{4+} เท่านั้น และพีคในสเปกตรัมดูคกลืนแสงที่เกิดจาก Zr^{4+} เกิดที่ บริเวณ 358-382 และ 742 nm Hf^{4+} เกิดพีคในช่วงใกล้เคียงกับ Zr^{4+} คือที่ 357 - 359 และ 750 nm (Martin et. al. 1993 and Collnan et. al 1997) ในกรณีที่ 3 น่าจะเกิดขึ้นได้เนื่องจาก U^{6+} ในรูปของ UO_2^{2+} ดูคกลืนแสงในช่วง 410 - 430 nm (Meinrath et. al. 2000 and Zanonato et.al. 2004) Mccleskey ได้ศึกษา Photochemical Reduction ของ unanyl (UO_2^{-+}) เพื่อให้เกิด UO_2 โดยไม่มีการเกิด hydrogen reduction แต่ใช้ formate แทน เพราะ formate ทำหน้าที่เป็นตัวรีดิวซ์ที่ให้ CO_2 ผลของปฏิกิริยาได้ U (IV) สเปกตรัม UV/VIS ของ uranyl มีแถบดูคกลืนเกิดที่ 400 – 450 nm และ U (IV) ที่เป็นผลิตภัณฑ์ มีแถบดูคกลืนเกิดเป็นกลุ่มที่มีความเข้มต่ำในช่วง 450 - 700 nm โดยที่มีพีกที่มีความเข้มสูงเกิดขึ้นที่ 620-675 nm (Mccleskey, et. al 2001) ผลการทดลองของ Mccleskey ตรงกับสเปกตรัม UV/VIS ที่ได้

จากงานวิจัยเซอร์คอนนี้ ดังนั้นจึงสรุปได้ว่าการเกิดสีของเซอร์คอนน่าจะเกิดจากการดูดกลืนแสงของ U⁶⁺ ไอออนที่เป็นผลจากการรีดักชัน

สรุปผลการทดลอง

ในงานวิจัยนี้ สามารถสรุปผลการทคลองได้คังนี้

- 1. เซอร์คอนแหล่งรัตนคีรีที่เผาในสภาวะบรรยากาศรีดักชันเท่านั้นที่พลอยสีน้ำตาลเป,ยนเป็น พลอยสีฟ้าที่อุณหภูมิสูง
- 2. เซอร์คอนแหล่งอุบลราชธานีและกาญจนบุรีให้สีฟ้าอ่อนกว่าเซอร์คอนแหล่งรัตนคีรีเมื่อเผาที่ สภาวะบรรยากาศเดียวกัน
- 3. การเกิดสีฟ้าของเซอร์คอน เกิดจากการคูดกลื่นแสงของ $\mathbf{U}^{^{4+}}$ ซึ่งเป็นผลจากการรีดักชั้นของ $\mathbf{U}^{^{6+}}$
- 4. เซอร์คอนที่เผาที่อุณหภูมิ 500 $^{\circ}\mathrm{C}$ ในทุกสภาวะบรรยากาศเกิดเป็นเซอร์คอนไม่มีสี
- 5. เกิดเทคโนโลยีการเผาเซอร์คอน 2 แบบ คือ การเผาให้เกิดสีฟ้า และการเผาให้ไม่มีสี
- 6. ควอทซ์ที่ใช้ในการทดลองมีลักษณะใสไม่มีสี เห็นรอยแตกภายในมาก หลังการเผาในทุก สภาวะบรรยากาศพบว่าที่อุณหภูมิ 600 °C เกิดสีแดงที่ผิวของควอทซ์ ที่อุณหภูมิสูงพลอยมี ลักษณะขุ่นและมีรอยแตกมากขึ้น ไม่เกิดเทคโนโลยีการเผาพลอยชนิดนี้
- 7. ทั่วมารีนสีชมพู การเผาที่อุณหภูมิสูงสีชมพูจางลง ไม่เกิดเทคโนโลยีการเผาให้ทั่วมารีนสีชมพูมี สีเข้มขึ้น
- 8. ทั่วมารีนสีเขียวเข้ม การเผาในสภาวะรีดักชั้นสีเขียวไม่จางลง แต่ในสภาวะออกซิเดชั้นสีเขียว จางลง เกิดเทคโนโลยีการเผาเพื่อลดสีเขียวเข้มของทั่วมารีน
- 9. โทปาสที่ใช้ในการทดลองเป็นโทปาสไม่มีสี ผลการเผาทุกสภาวะบรรยากาศทำให้พลอยขุ่นและ มีรอยแตกมากขึ้น ไม่เกิดเทคโนโลยีการเผา แต่ผลการทดลองสามารถใช้เป็นข้อมูลต่อไปได้

เอกสารอ้างอิง

- 1. P.C. Martin, J. Arnold and D.F. Bociare, 1993, J. Phys. Chem. 97, 1332-1338.
- J. P. Collman, J. L. Kendall, J. L. Chan and T. A. Eberspacher, 1997, Inorg. Chem. 36, 5603-5608.
- 3. G. Meinrath, S. Lis, Z. Stryla and C. Noubactep, 2000, **Journal of Alloys and Compounds.** 300-301, 107-112.
- P. Zanonato, P. D. Bernardo, A. Bismondo, G. Liu, X. Chen and L. Rao, 2004, J. AM.
 CHEM. SOC. 126, 5515-5522.
- 5. T. M. Mccleskey, T. M. Foreman, E. E. Hallman, C. J. Burns and N. N. Sauer, 2001, Environ. Sci. Technol. 35, 547-551.
- 6. M.J. Faulkner and J.E. Shigley, 1989, Gem & Gemmology, 207-215.
- 7. W. P. Griffth, 1969, J. Chem. Soc.(A), 1372-1377.
- 8. H. A. Hanni, L. Kiefert and J. P. Chalain, 1997, **J. Gem.** 25(6), 394-406.
- 9. B. A. Kolesov, C. A. Geiger and T. Armbruster, 2001, Eur. J. Mineral, 13, 939-948.
- M. Phromsurin, 2002, Micro-Raman Spectroscopic Study of Gemstones, M. S. thesis, Kasetsart University.
- W. A. Deer F.R.S., R. A. Howie and J. Zussman. 1966. An Introduction to the Rock Forming Minerals. Richard Clay Ltd., Bumgay, Suffolk.
- E.J.Güblin and J.I.Koivula. 1992 Photoatlas of Inclusions in Gemstones. 2 nd ed. ABC Edition,
 Zurich. Switzweland.

เซอร์คอนสีน้ำตาลก่อนเผา

เซอร์คอนสีฟ้าหลังเผาที่สภาวะบรรยากาศรีดักชัน R 1000/300/2

เซอร์คอนใสไม่มีสีหลังเผาที่สภาวะ O 500/300/2

ทัวร์มาถีนสีชมพู ก่อนเผา (ด้านบนและในกล่องซ้ายสุด) หลังเผา (ในกล่องกลางและกล่องหลัง)