Executive Summary

Surface improvement techniques have various methods. Many industries use electroplating technique to deposited thin film onto the surface in aqueous solution which it has some problem about environmental. So, the researchers have developed the new coating technique, which is "vacuum deposition". The new technique has unique property, and also called "clean technology" because it processes were in the vacuum chamber only and it does not use any kind of chemical solutions, so it does not make or produced any problems to the environments and more over it also produces higher quality of thin film than one obtains from the electroplating technique. Nowadays, this technique is widely used in many industries around the world. Many industries in Thailand has import this equipment in widely use but form the survey of research team found that it has a few research and development projects about this technology. So, research team from Burapha University have decided to provided for this technology, mainly to reduce importing this technology from aboard.

ESSOM was founded in 1986 engaging mainly in trading. Technical training equipment manufacturing was later introduced as a supplementary activity. As time passed, training equipment proved to be more viable and challenging. More and more products have been developed and up-graded to include up-to-date technology. A quality management system was subsequently incorporated to ensure that the equipments are of high quality standards. Presently, technical training equipment has become ESSOM's main business. Vacuum deposition, is one of the new technologies which ESSOM has being interesting to make the market. Researcher from ESSOM and research staff has discussed and decided to develop a project together for research about this technology.

From the discussion of researcher staffs, we repurpose the research project "Research and Development Prototype of Vacuum Coating System for Education and Training" to the Thailand Research Fund (TRF) for the main funding. And we have co-funding from the ESSOM Co.Ltd.,. We have contract number RDG4550046 of the project for 18 months in 2,384,600 baths (from the TRF 1,884,600 baths and from the ESSOM 500,000 baths). The main objective of this research was to design and construct the prototype of the vacuum coating for education and training. In this project we will use the raw materials mainly in Thailand.

The results of this research are the prototype of the vacuum coating for education and training and the know-how of the processes to deposited thin films by evaporation technique that can summarize below. The prototype is made from material in Thailand that has 4 main parts are (1) vacuum vessel (2) vacuum pumping system (3) deposition parts and (4) control system unit. The vacuum vessel is made from cylindrical stainless steel that has 310.0 mm in diameter and 370.0 mm in height, and vessel cooling by water. Base plate of vessel has 390.0 mm in diameter and open port to connect to the vacuum system and accessory. The vacuum pumping system is composed of the oil diffusion pump backing by rotary pump. The deposition parts of this prototype composed of heat resistance for evaporated coating materials, electrical feed through, substrate holder, power supply. The control system unit is composed of vacuum control and coating control. The prototype can reduce the pressure within the vacuum vessel from atmosphere to 9.0×10^{-6} mbar in 60 minutes and can be deposited by evaporation technique for all kinds of metal films. In this project we have prepared some documents and computer programme, computer based training programme, to used with this prototype which is, (1) text "vacuum coating", (2) laboratory direction and (3) manual of the vacuum coating system.

าเทคัดย่อ

โครงการวิจัยและพัฒนานี้มีวัตถุประสงค์หลัก เพื่อสร้างต้นแบบเครื่องเคลือบในสุญญากาศ สำหรับใช้ในการศึกษาและฝึกอบรมโดยเน้นที่การใช้วัสดุในประเทศเป็นหลัก ซึ่งจะช่วยทดแทนการ นำเข้าอุปกรณ์และเครื่องมือเหล่านี้จากต่างประเทศ ตลอดจนการเป็นเจ้าของเทคโนโลยีเพื่อพึงพาตนเอง ในอนาคตซึ่งมีผลการศึกษาดังนี้ ต้นแบบเครื่องเคลือบในสุญญากาศที่สร้างในโครงการนี้ใช้เทคนิค การเคลือบด้วยวิธีระเหยสาร มีส่วนประกอบสำคัญ 4 ส่วน คือ (1) ภาชนะสุญญากาศ (2) ระบบเครื่องสูบ สุญญากาศ (3) ส่วนการเคลือบ และ (4) ชุดควบคุมการทำงานของเครื่องเคลือบ โดยภาชนะสุญญากาศ ทำจากสเตนเลสเป็นทรงกระบอก มีเส้นผ่าศูนย์กลางประมาณ 310 mm. ความสูงประมาณ 370 mm. มี หน้าแปลนขนาดต่างๆ สำหรับติดตั้งอุปกรณ์เพิ่ม มีการระบายความร้อนด้วยน้ำรอบภาชนะสุญญากาศ สำหรับแผ่นฐาน (base plate) ของภาชนะสุญญากาศมีขนาด 390 mm มีช่องเปิดสำหรับต่อไปยังเครื่องสูบ แบบแพร่ไอ พร้อมหน้าแปลนสำหรับต่ออุปกรณ์ต่างๆ จำนวน 6 ช่อง แผ่นปิดบน (top plate) ของภาชนะ สุญญากาศมีขนาด 390 mm มีหน้าแปลสำหรับต่ออุปกรณ์ต่างๆ จำนวน 5 ช่อง ระบบเครื่องสบ สญญากาศ ประกอบด้วยเครื่องสบกลแบบโรตารี และเครื่องสบแบบแพร่ใอ ส่วนการเคลือบ ประกอบด้วย ลวดต้านทานสำหรับให้ความร้อนสารเคลือบ ขั้วไฟฟ้า ชุดวางสารเคลือบ ที่วางชิ้นงาน แหล่งจ่ายไฟฟ้า และชุดควบคุมการทำงานของเครื่องเคลือบ เป็นชุดสำหรับควบคุมการทำงานทั้งหมด ของระบบแบ่งเป็น ส่วนควบคุมระบบสุญญากาศ ส่วนควบคุมการเคลือบ และส่วนควบคุมหลัก เครื่อง เคลือบต้นแบบ ที่สร้างขึ้นสามารถลดความคันภายในภาชนะสญญากาศได้ต่ำสด $9.0\mathrm{x}10^{-6}$ mbar ในเวลา 60 นาที และสามารถเครือบฟิล์มบางโลหะได้ตามวัตถุประสงค์ ในโครงการนี้ยังได้จัดทำเอกสารที่ เกี่ยวข้อง ได้แก่ (1) เอกสารเรื่อง "การเคลือบในสุญญากาศ" (2) คู่มือการทดลองการเคลือบในสุญญากาศ (3) รายละเอียดและคู่มือการใช้เครื่องเคลือบ และ (4) บทเรียนโปรแกรมคอมพิวเตอร์ฝึกอบรมระบบ สุญญากาศ

ABSTRACT

The main objective of this research was to design and construct the prototype of the vacuum coating for education and training. In this project we will use the raw materials mainly in Thailand. The results of this research are the prototype of the vacuum coating for education and training and the know-how of the processes to deposited thin films by evaporation technique that can summarize below. The prototype is made from material in Thailand that has 4 main parts are (1) vacuum vessel (2) vacuum pumping system (3) deposition parts and (4) control system unit. The vacuum vessel is made from cylindrical stainless steel that has 310.0 mm in diameter and 370.0 mm in height, and vessel cooling by water. Base plate of vessel has 390.0 mm in diameter and open port to connect to the vacuum system and accessory. The vacuum pumping system is composed of the oil diffusion pump backing by rotary pump. The deposition parts of this prototype composed of heat resistance for evaporated coating materials, electrical feed through, substrate holder, power supply. The control system unit is composed of vacuum control and coating control. The prototype can reduce the pressure within the vacuum vessel from atmosphere to 9.0×10^{-6} mibar in 60 minutes and can be deposited by evaporation technique for all kinds of metal films. In this project we have prepareed some documents and computer programme, computer based training programme, to used with this prototype which is, (1) text "vacuum coating", (2) laboratory direction and (3) manual of the vacuum coating system.