
วัสคุอุปกรณ์และวิธีการทดลอง

ดำเนินการทดลองในช่วงปี 2542-2545 ที่สถานีบำรุงพันธุ์สัตว์อุบลราชธานี (หน่วยบุณฑริก) จ.อุบลราชธานี (15°N. 104°E) ช้อมูลปริมาณน้ำฝนและอุณทภูมิสถานที่ทดลองแสดงในรูปที่ 1 ปริมาณฝนมากกว่า 90% ตกในช่วงเดือนพฤษภาคม - สุงทาคม สำหรับค่าเฉลี่ยอุณหภูมิในเดือนมกราคมและเดือนเมษายนอยู่ในช่วง 24 และ 30°C ตามลำดับ

พื้นที่แปลงหญ้ามีสภาพเป็นที่คอน ดินเป็นดินทราช (sandy low humic gley soil) จัดอยู่ในชุดดิน ร้อยเอ็ต (Mitsuchi et al. 1986) จากการสุ่มดินที่ระดับความลึก 10 ซม. ในเดือนพฤษภาคม ปี 2541 แล้วนำมา ตรวจวิเคราะห์พบว่า ดินค่อนข้างเป็นกรด (pH 5.8; water method) มีธาตุอาหารพืชอยู่ในเกณฑ์ที่ค่ำคือ มีในโครเจน 47 ppm ฟอสฟอรัส 17.5 ppm (Bray II extraction method) โปแตสเซียม 0.041 mmq/100g และอินทรีย์วัตถุ 1.3%

การปลูกตร้างแปลงหญ้า

ทำการไถพื้นที่แปลงหญ้า 60 ไร่ 3 ครั้งในเดือนเมษายนและพฤษภาคม 2541 หว่านเมล็ดหญ้าพาสพาลัม อุบลช่วงกลางเดือนพฤษภาคม ใช้เมล็ดในอัตรา 2 กก/ไร่ พร้อมทั้งใส่บุ๋ย NPK สูตร 15:15:15 จำนวน 25 กก/ไร่ พร้อมกับการหว่านเมล็ด หลังจากเมล็ดงอกและหญ้าตั้งตัวดีแล้ว ซึ่งใช้เวลาประมาณ 70-80 วัน จึงปล่อยโคลงแทะ เล็มบ้างเป็นครั้งคราว จนกระทั่งเริ่มปล่อยโคลงทดลองในวันที่ 1 มิถุนายน 2542

ในปี 2541 ได้ทำการล้อมรั้วลวดหนามพื้นที่แปลงหญิาทดลอง โดยแบ่งเป็นแปลงย่อยแปลงละ 6 ไร่ ทำเพิง คร่อมตรงกลางระหว่างแปลงหญ้า 2 แปลง พร้อมทั้งทำรางแร่ธาตุและอ่างน้ำกินสำหรับโค

สัตว์ทดลองและการจัดการปล่อยโดแทะเล็ม

ใช้โคสาวพันธุ์บราห์มันแท้จำนวน 12 ตัวจากสถานีบำรุงพันธุ์สัตว์อุบลราชธานี และโคสาวพันธุ์พื้นเมือง แท้จำนวน 24 ตัวจากสถานีบำรุงพันธุ์สัตว์อุบลราชธานี (หน่วยบุณฑริก) โดยโคบราห์มันมือายุและน้ำหนักตัวเริ่ม ต้นเท่ากับ 638 ± 34 วัน และ 289 ± 24 กก. สำหรับโคพื้นเมืองมือายุและน้ำหนักตัวเริ่มต้นเท่ากับ 623 ± 47 วัน และ 143 ± 28 กก. ตามลำดับ ทำการฉีควัคชืนป้องกันโรคและถ่ายพยาธิให้แก้โคทั้งหมด และปล่อยเลี้ยงในแปลงหญ้า เพื่อปรับสภาพเป็นเวลา 1 เดือนก่อนการทดลอง และเริ่มเก็บบันทึกซ้อมูลตั้งแต่วันที่ 1 มิถุนายน 2542 เป็นต้นไป

อัตราการปล่อยสัตว์แทะเล็ม (stocking rate) กำหนดไว้ที่ 1 หน่วยปศุสัตว์ (animal unit. 1 AU = น้ำหนัก ตัว 450 กก.) ต่อพื้นที่แปลงหญ้า 2 ไร่ โดยมีสมมติฐานว่าแม่โคบราห์มันมีน้ำหนักเมื่อโตเต็มที่ 450-500 กก ซึ่งเท่ว กับ 1 หน่วยปศุสัตว์ ในขณะที่แม่โคพื้นเมืองมีน้ำหนักเมื่อโตเต็มที่ 220-250 กก. หรือโคพื้นเมือง 2 ตัวเท่ากับ 1 หน่วยปศุสัตว์

โคทั้งสองพันธุ์เลี้ยงแบบแยกฝูงกัน โคแต่ละฝูงปล่อยแทะเล็มแบบหมุนเวียนในแปลงหญ้าขนาดพื้นที่ 6 ไร่ จำนวน 4 แปลง แต่และแปลงปล่อยสัตว์แทะเล็มประมาณ 10 วัน นอกจากนั้นมีแปลงหญ้าขนาด 6 ไร่อีก 2 แปลง จัดไว้เป็นแปลงสำรองเพื่อตัดทำหญ้าหมัก มีการใส่ปุ๋ย NPK สูตร 15:15 จำนวน 25 กก/ไร่ ทุกรอบ 40 วันในช่วง ฤดูฝนที่ปล่อยสัตว์แทะเล็ม แต่ละปีจะใช้เวลาปล่อยสัตว์แทะเล็มประมาณ 180-200 วัน ขึ้นอยู่กับปริมาณหญ้าใน แปลง

ช่วงการแทะเล็มจะปล่อยโคอยู่ในแปลงหญ้าตลอดทั้งกลางวันและกลางคืน จัดเตรียมแร่ธาตุก้อนไว้ใต้เพิง พักให้โคเช้าเลียกินได้ตลอดเวลา ในช่วงฤดูแล้งซึ่งปริมาณหญ้าลดลง ทำการย้ายโคเช้าซังในคอกแบบเปิดโล่งซึ่งอยู่ ใกล้กับแปลงหญ้า การเลี้ยงดูจะให้หญ้าหมักที่ทำจากหญ้าพาสพาสัมอุบล โดยให้กินเต็มที่วันละ 2 ครั้งเช้า-เย็น ใน ระยะตั้งแต่เดือนกุมภาพันธ์ถึงเดือนเมษายนซึ่งโคที่ตั้งท้องจะเป็นช่วงเวลาที่ท้องแก้ใกล้คลอด มีการเสริมอาหารชัน (คำนวณให้มีโปรตีน 12% และพลังงาน TDN 65%) ให้ในอัตรา 1% ของน้ำหนักตัว โดยอาหารชัน 100 กก. ประกอบด้วยวัตถุดิบต่างๆ ได้แก่ มันเส้นบด 36 กก. ช้าวโพดบด 20 กก. รำหยาบ 22 กก., รำละเอียด 19 กก. ยูเรีย 2 กก. เกลือ 1 กก. และกำมะถัน 0.2 กก.

จัดให้มีฤดูผสมพันธุ์ 3 เดือน ในเดือนสิงหาคม-ตุลาคม โดยปล่อยพ่อโคพันธ์บราห์มันและพ่อโคพิ้นเมืองลง คุมฝูงและผสมพันธุ์ในแปลงหญ้า

การเก็บบันทึกข้อมูล

การสุ่มเก็บตัวอย่างหญ้า ก่อนปล่อยโคลงแทะเล็มในแปลงหญ้าจะทำการสุ่มตัดหญ้า โดยสุ่มตัดในกรอบ เหล็กสุ่ม (quadrate) ขนาด 0.25 ตารางเมตร จำนวน 8 จุด ซึ่งน้ำหนักสด นำไปอบเพื่อวิเคราะห์หาน้ำหนักแห้ง นำตัวอย่างหญ้าที่เก็บได้จากแต่ละรอบการแทะเล็มมารวมกัน และวิเคราะห์หา %โปรตีนหยาบ (CP: Kjeldalh N x 6.25)

การเปลี่ยนแปลงน้ำหนักตัวของโค ทำการซึ่งน้ำหนักโคแบบอดอาหารทุก 40 วัน โดยนำโคเข้าขังในคอก งดให้น้ำและอาหารตั้งแต่เวลา 16.00 น. และซั่งน้ำหนักเวลา 08.00 น. ในวันรุ่งขึ้น บันทึกอัตราการคลอดลูก อัตรา การตายของลูก และอัตราการให้ลูกหย่านม

ผลการทดฉอง

การเปลี่ยนแปลงน้ำหนักตัว

โคสาวพันธุ์บราห์มันแบ่งออกได้เป็น 2 กลุ่มๆ ละ 6 ตัวตามน้ำหนักเริ่มต้นคือ กลุ่มที่มีน้ำตัวสูง (HW. 306 ± 22 กก.) และกลุ่มที่มีน้ำหนักตัวต่ำ (LW. 273 ± 13 กก.) (ตารางที่ 1) ในช่วงแทะเล็มปีแรก (GZ1) โคทั้งสองมี น้ำหนักตัวเพิ่มขึ้นระหว่าง 234-332 กรัม/ตัว/วัน และในปีแรกที่ให้โคกินหญ้าหมัก (SL1) พบว่า โคกลุ่มที่มีน้ำหนัก ตัวสูงมีการผสมติดและตั้งท้อง มีอัตราการเพิ่มน้ำหนักเฉลี่ย 460 กรัม/ตัว/วัน (ตารางที่ 1) ในขณะที่โคกลุ่มที่มี น้ำหนักตัวต่ำผสมไม่ติด และมีอัตราการเพิ่มน้ำหนักเฉลี่ยเพียง 99 กรัม/ตัว/วัน ในปีที่ 2 โคกลุ่ม HW มีการสูญเสีย น้ำหนักตัวหลังจากที่คลอดลูกและให้นมเลี้ยงลูก และน้ำหนักตัวจะกลับเพิ่มคืนมาในปีที่ 3 แต่พอถึงช่วงแทะเล็มโร๊ น้ำการสูญเสียน้ำหนักตัวเฉลี่ยวันละเกือบ 400 กรัม

สำหรับโคกลุ่มที่มีน้ำหนักตัวต่ำ (LW) พบว่า น้ำหนักตัวเพิ่มขึ้นในช่วง 2 ปีแรก แต่สูญเสียน้ำหนักตัวใน ช่วงแทะเล็มปีที่ 3 หลังจากที่คลอดลูกและให้นมเลี้ยงลูก และเมื่อถึงช่วงแทะเล็มปีที่ 4 น้ำหนักตัวจะกลับเพิ่มคืนมา โดยมีอัตราการเพิ่มน้ำหนักเอลี่ย 643 กรัม/ตัว/วัน ซึ่งรูปแบบการเพิ่มและการสูญเสียน้ำหนักตัวจะสลับกันแบบปี เว้นปี และตรงข้ามกับโคกลุ่ม HW ดังแสดงในตารางที่ 1

โคสาวพันธุ์พื้นเมืองมีน้ำหนักตัวเริ่มต้นเฉลี่ย 143 ± 27.8 กก. ในช่วงการปล่อยแทะเล็มและให้กินหญ้ว หมักปีแรก โคมีการเพิ่มน้ำหนักตัว แต่ในปีที่ 2 ซึ่งโคส่วนใหญ่ผสมติดและคลอดลูกจะมีการสูญเสียน้ำหนักตัวหลัง จากคลอดและให้นมเลี้ยงลูก ในปีที่ 3 แม้ว่าโคส่วนใหญ่จะคลอดลูก แต่น้ำหนักตัวค่อนข้างคงที่ไม่มีการเปลี่ยนแปลง มาก และโคเจริญเต็บโตจนถึงจุดที่น้ำหนักตัวเมื่อโตเต็มที่ประมาณ 220 กก. (ตารางที่ 1)

Table 1 Body weights change (kg) and average daily gain (ADG, g/d) of Brahman and Thai Indigenous cows

		1 [#] ye	ear	2 nd	year	3 [™] y ₁	ear	4 th year
	Initial wt.	GZ 1	SL 1	GZ 2	\$L 2	GZ 3	SL 3	GZ 4
	1 -Jun -99	14-Dec-99	10 -Apr -00	1 -Dec -00	10 -May -01	18 -Dec - 01	26 -Jun -02	15 -Dec -02
Brahman								
HW gr.	305.5	349.5	404.2	313	290.3	433.8	434.3	366
Std.	22.1	30.2	28.7	19.1	16.3	32.8	40.0	43.9
ADG		224	460	- 388	-142	65	3	- 397
Std.		100	160	80	70	90	140	80
LW gr.	272.8	337.8	349.5	432.8	439.7	382.2	399	509.6
Std.	13.3	11.4	18.1	15.4	21.3	40.6	21.9	25.3
ADG		332	99	355	43	- 25 9	76	643
Std.		40	130	50	60	130	170	210
Thai Indigenous	142.8	184.4	200.5	194	188	217	223.9	220.8
Std.	27.8	29.6	41.5	28.9	34.5	25.6	32	27.1
ADG		214	136	28	38	131	36	- 18
Std.		41	121	119	63	127	143	127

การคลอดลูก

มีแม่โคพันธุ์บราท์มันจำนวนเพียงครึ่งเดียวหรือ 6 ตัวเท่านั้นที่ให้ลูกในแต่ละปี ในขณะที่แม่โคพันธุ์พื้นเมือง ปีแรกให้ลูก 79% และเพิ่มเป็น 92% ในปีที่ 3 (ตารางที่ 2) ลูกโคบราท์มันทั้งเพศผู้และเพศเมียมีน้ำหนักแรกเกิดสูง กว่าลูกโคพันธุ์พื้นเมืองเกือบ 2 เท่า และค่าเฉลี่ยจาก 3 ปีของน้ำหนักหย่านมปรับที่ 200 วันเท่ากับ 143 และ 98 กก. สำหรับลูกโคบราท์มันและลูกโคพื้นเมืองตามลำดับ (ตารางที่ 2)

ระยะทำงชองการให้ลูก (calving intervals) ของแม่โคพันธุ์พื้นเมือง โดยคำนวณจากระยะท่างชองการให้ ลูกท้องที่ 1 และท้องที่ 2 (n=14), ท้องที่ 2 และท้องที่ 3 (n=18) และท้องที่ 1 และท้องที่ 3 (n=4) พบว่ามีค่า เท่ากับ 385 \pm 16, 365 \pm 34 และ 701 \pm 10 ตามลำดับ และเมื่อคำนวณเป็นค่าเฉลี่ยของทั้งฝูงเท่ากับ 410 \pm 107 วัน สำหรับระยะท่างของการให้ลูกของแม่โคพันธุ์บราท์มันไม่ได้นำมาคำนวณ ทั้งนี้เนื่องจากแม่โคแต่ละตัวให้ลูกปี เว้นปี

ผลผลิตของหญ้า

หญ้าพาสพาลัมอุบลให้ผลผลิตน้ำหนักแท้งเฉลี่ย 2.75 ตัน/ไร่ ในช่วงระยะเวลาประมาณ 200 วัน ของการ แทะเล็ม โดยหญ้ามีโปรตีนเฉลี่ย 3 ปีเท่ากับ 7.9% และสูงขึ้นเป็น 9.1% ในปีที่ 4 (ตารางที่ 3) ผลผลิตของหญ้าหมัก จากพื้นที่ 12 ไร่ที่สำรองไว้ โดยตัดหญ้าทำหญ้าหมักในฤดูฝนปีละ 4 ครั้ง แต่ละครั้งท่างกันประมาณ 45 วัน ได้ผล ผลิตหญ้าหมักในรูปน้ำหนักสดปีละกว่า 121 ตัน (10.1 ตัน/ไร่) ซึ่งเพียงพอสำหรับเลี้ยงโคทั้งสองผู่งตลอดช่วงฤดูแล้ง

Table 2 Comparison of calf crop percentage and calves weight between Brahman and Thai Indigenous cattle

			Brahman				3 year	i.	Th	ai Indigen	ous			3 year
	1" year		2" year		3 [™] year		Average	1" year	-	2 [™] year		3 rd year		Average
No. of cows	12		12		12		12	24		24		24	1917	24
No. of calves	6		6		€		6.0	19		20		22		20.3
Call crop. %	500		500		50.0		5 0.0	792		83.3		917		84.7
Total birth weight	1590		191.0		1785		176.2	324.7		359 6		398.6		361.0
Total weaning weight	937.8		782.2		854.1		858.0	.1916.4		20127		2108.1		2.012.4
	- 22	2 0/0						1	1 1	44		-		
No. of male calf	2	Sid	4	Sid	3	Std.	3.0	13	Sid.	9	Std	13	Std	11.7
Total birth weight	61.0		138 0		98.1		99.0	227.5		163.8		2463		213.2
Average birth weight	30 5	2.1	34.5	59	32.7	29	32.6	17.5	2.9	182	18	;¢;	28	18.3
Total weaning weight	328.6		537.6		404.7		423.6	.1326.0		867.6		13143		1.169.3
Average weaning weight/calf	164.3	6.4	134,4	22,5	134.9	13.3	144.5	102.0	130	964	7.8	10111	56	99.8
Average daily gain/calf	0.669		0.500		0511		0.560	0.423		0.391		1410		0.408
Female calves														
No of female call	4		2		3		3.0	6		11		ô		8.7
Total birth weight	980		530		80 4		77.1	97.2		1958		150.3		147.8
Average birth weight	245	2.1	265	0.7	26.8	3.2	25.9	16.2	16	17.8	2.1	16.7	1.5	16.9
Total weaning weight	6092		244.6		449.4		434,4	1590.4		1145.1		793.8		843.1
Average weaning weight/calf	152 3	11.4	122.3	0.9	149.8	185	141.5	98.4	81	104.1	13.5	88.2	12.8	96.9
Average daily gain/calf	0.639		0.479		0.615		0.578	10411		0 432		0.358		0.400

Table 3 Dry matter yield and crude protein content of Ubon paspalum grass

	1" year	2 [™] year	3 rd year	4 th year		
	1999	2000	2001	2002	Average	Std.
DM. (ton/ha)	15.0	20.4	16.1	17.5	17 2	2.3
CP. (%)	7.4	7.1	8.1	9.1	7.9	0.9
Total fresh silage. (ton)	123.8	121.6	116.5		120.6	3.8

วิจารณ์ผล

จากผลการศึกษาในครั้งนี้พบว่า แม่โคพื้นเมืองให้ผลผลิตสูงกว่าแม่โคบราท์มันเกือบ 2 เท่า โดยแม่โคพื้น เมืองมีระยะห่างของการให้ลูก 410 วัน ซึ่งใกล้เคียงกับรายงานของมนต์ชัย และคณะ (2542) สำหรับแม่โคบราห์ มันที่เลี้ยงโดยทั่วไปในประเทศไทย แม้จะมีการเสริมอาหารขันตลอดทั้งปีก็มีอัตราการคลอดลูกเพียง 63-67% และมี ระยะห่างของการให้ลูก 490-530 วัน (ศักดิ์ และคณะ 2533, สมพร และคณะ 2541)

น้ำหนักตัวของแม่โคเป็นปัจจัยที่มีอิทธิพลมากต่อสมรรถภาพทางการสืบพันธุ์ของโคบราห์มัน ในช่วงระยะ ให้นมเลี้ยงลูกน้ำหนักตัวจะลดลงเหลือต่ำกว่า 400 กก. แม่โคไม่สามารถกลับมาเป็นสัดและผสมพันธุ์ใหม่หลังคลอด ได้จนกว่าลูกจะหย่านมแล้ว ซึ่งสอดคล้องกับรายงานของ Thumwasorn et al. (1996a) ที่พบว่าโคพันธุ์บราห์มันที่มี น้ำหนักตัวต่ำกว่า 400 กก. มักมีปัญหาด้านการผสมพันธุ์ Staples et al. (1990) รายงานว่า การเพิ่มการสูญเสีย น้ำหนักตัวช่วงหลังคลอด จะทำให้ความสามารถในการทำงานของรังไช่ลดลง และเพิ่มจำนวนวันของระยะท้องว่าง

สภาพความสมบูรณ์ของร่างกาย (body condition score) ในช่วงฤดูผสมพันธุ์ ช่วงการคลอดลูก และ ช่วงการให้นมเลี้ยงลูก ก็เป็นปัจจัยที่สำคัญอีกอย่างหนึ่งในการกลับมาเริ่มต้นทำงานของรังโซ่และวงรอบการเป็นสัด (Lamb. 1999 and Seik et al. 1988) Rasby and Rush (1996) แนะนำว่า โคสาวที่คลอดลูกตัวแรกโดยไม่คำนึง ถึงความสามารถในการให้นม จะต้องได้รับอาหารเพียงพอสำหรับการเพิ่มน้ำหนักตัวในช่วง 3 เดือนแรกของการให้ นม เพื่อให้สามารถกลับมาผสมพันธุ์หลังคลอดได้ใหม่ ในโคสาวที่ให้ลูกตัวแรกและตัวที่สองมีความต้องการโกซนะ มากกว่าแม่โคที่โตเต็มที่แล้ว ทั้งนี้เนื่องจากร่างกายยังมีการเจริญเติบโตต้านโครงสร้าง (skeleton growth) อยู่ (NRC, 1996) แม้ว่าความต้องการพลังงานเพื่อการพัฒนาของไข่และรังไข่จะน้อยมาก เมื่อเทียบกับความต้องการเพื่อการ ดำรงชีพ การเจริญเติบโต และการให้นม แต่ร่างกายจะให้ความสำคัญในการนำพลังงานมาใช้ประโยชน์เพื่อการ พัฒนาของไข่และรังไข่ในลำดับท้ายๆ (O'Callaghan and Boland, 1999) สำหรับในการทดลองนี้ แม่โดบราห์มันที่ ให้นมเลี้ยงลูกจะมีสภาพความสมบูรณ์ของร่างกายต่ำ ซึ่งน่าจะเป็นสาเหตุสำคัญที่ทำให้กลับมาผสมพันธุ์หลังคลอด ได้ช้า

น้ำหนักแรกเกิดของลูกโคทั้งสองพันธุ์อยู่ในช่วงเดียวกับค่าที่รายงานในประเทศไทย (ศักดิ์ 2533 และ อนันด์ 2544) อย่างไรก็ตามเนื่องจากจำนวนลูกโคพื้นเมืองมีมากกว่าลูกโคบราห์มัน ทำให้น้ำหนักรวมของลูกโคแรกเกิด รวมทั้งน้ำหนักหย่านมด่อปีของลูกโคพื้นเมืองสูงกว่าลูกโคบราห์มันมากกว่า 2 เท่า โดยที่ผลผลิตน้ำหนักหย่านมของ ลูกโคพื้นเมืองเฉลี่ยเท่ากับ 84 กก/ไร่/ปี ซึ่งต่ำกว่าการเลี้ยงโคลูกผสมยุโรป-ซีบู เพศผู้ตอนในแปลงหญัว P. atratum และถั่ว Arachis pintoi ซึ่งสามารถเพิ่มน้ำหนักตัวได้ 100 กก/ไร่/ปี (Barcellos et al. 1997)

ผลผลิตของหญ้าพาสพาลัมอุบลตลอดทั้งปี และอัตราการปล่อยโคแทะเล็มที่น้ำหนักตัว 225 กก/ไร่ เป็น อัตราที่เหมาะสมสำหรับโคพื้นเมือง Kalmbacher et al. (1997) ประสบความสำเร็จในการปล่อยลูกโคหย่านมเพศผู้ ตอนและโคสาวลงแทะเล็มในหญ้าชนิดเดียวกันนี้ ซึ่งใช้อัตราการปล่อยแทะเล็มที่สูงกว่างานทดลองนี้ แต่ใช้เวลา การแทะเล็มเพียง 119-140 วัน อย่างไรก็ตาม ผลผลิตและคุณค่าทางอาหารของหญ้าพาสพาลัมอุบลอาจเป็นข้อ จำกัดสำหรับโคบราท์มันที่มีขนาดใหญ่ ซึ่งอาจต้องใช้อัตราการปล่อยแทะเล็มตลอดทั้งปีในระดับที่ต่ำกว่านี้

Paterson et al. (2001) แนะนำว่าสัดส่วนของโปรตีนต่อพลังงานย่อยได้รวม (CP:TDN ratio) ควรอยู่ ระหว่าง 6-8 ยกตัวอย่าง โคสาวน้ำหนักตัว 360 กก. ไม่ตั้งท้อง และไม่มีการเพิ่มน้ำหนักตัว มีความต้องการโปรตีน 7% และพลังงาน TDN 54% หรือคิดเป็นสัดส่วนของโปรตีนต่อพลังงาน 7.7 และสำหรับแม่โคน้ำหนักตัว 450 กก. ให้นมวันละ 7 ลิตร มีความต้องการโปรตีน 11% และพลังงาน TDN 62% หรือคิดเป็นสัดส่วนของโปรตีนต่อพลังงาน เท่ากับ 5.6 ถ้าอาหารมีโปรตีนด่ำกว่า 7% ทำให้ปริมาณการกินได้ลดลงอย่างมาก ผลที่ตามมาคือทำให้จุลินทรีย์ใน กระเพาะรูเมนขาดในโตรเจน ส่งผลให้กิจกรรมการทำงานของจุลินทรีย์ลดลง ดังนั้นถ้าพืชอาหารสัตว์มีโปรตีนต่ำ กว่า 7% จึงมีความจำเป็นที่ต้องเสริมโปรตีนจากแหล่งอื่น ซึ่งจะช่วยเพิ่มปริมาณการกินอาหารและปรับปรุงประสิทธิภาพ การย่อยได้

เมื่อพิจารณาจากเกณฑ์ความต้องการโภชนะข้างต้นจะเห็นว่า หญ้าพาสพาลัมอุบลในงานทดลองนี้ มีคุณ ค่าทางโภชนะเพียงพอสำหรับการเจริญเติบโตชองโคสาว แต่ไม่เพียงพอกับความต้องการของแม่โคบราห์มันที่ให้นม เลี้ยงลูก โดยเฉพาะพลังงาน TDN ซึ่งในหญ้าเขตร้อนโดยทั่วไปมือยู่ต่ำเพียงประมาณ 50-55% (CSIRO, 1990)

การส่งเสริมให้เกษตรกรในประเทศไทยเลี้ยงโคเนื้อ ควรแนะนำให้พิจารณาถึงผลตอบแทนต่อหน่วยพื้นที่ต่อปี มากกว่าผลผลิตต่อตัวโคเพียงอย่างเดียว จากงานทดลองครั้งนี้แสดงให้เห็นว่า การเลี้ยงโคพื้นเมืองที่มีความสมบูรณ์ เช้นธุ์สูง 2 ตัวจะให้ผลผลิตสูงกว่า 2 เท่า เมื่อเปรียบเทียบกับการเลี้ยงโคบราห์มันที่มีความสมบูรณ์พื้นธุ์ต่ำ 1 ตัว ใน พื้นที่เท่ากัน นอกจากนั้นโคพื้นเมืองยังกินอาหารในปริมาณที่น้อยกว่าและเลี้ยงง่ายกว่าโคบราห์มัน

ผล้ฦ

หญิวพาสพาลัมอุบล สามารถใช้เลี้ยงแม่โคพื้นเมืองไทยแบบปล่อยแทะเล็มในช่วงฤดูฝน และตัดทำเป็นหญิว หมักให้กินในฤดูแล้งได้ผลเป็นอย่างดี ซึ่งให้ผลผลิตสูงกว่าแม่โคพันธุ์บราห์มันมากกว่า 2 เท่า หญิวพาสพาลัมอุบล เป็นหญ้าที่ปลูกง่ายโดยการหว่านเมล็ด และสามารถคงทนอยู่ได้ยาวนานตลอดระยะเวลา 4 ปีที่ทำการศึกษา นอก จากนั้นยังสามารถตัดทำเป็นหญ้าหมักได้ดี อัตราการปล่อยแทะเล็มที่ 0.5 หน่วยปศุสัตว์ต่อพื้นที่แปลงหญ้า 1 ไร่ หรือโคพื้นเมือง 1 ตัวต่อแปลงหญ้า 1 ไร่ มีความเหมาะสมในการแทะเล็มเป็นเวลา 200 วันสำหรับแม่โคพื้นเมือง แต่อัตราดังกล่าวอาจสูงเกินไปสำหรับแม่โคบราห์มัน กล่าวได้ว่าหญ้าพาสพาลัมอุบลเป็นพืชอาหารสัตว์อีกชนิดหนึ่งที่ จะมีความสำคัญในการเลี้ยงโคพื้นเมืองของประเทศไทยต่อไป

กิตติกรรมประกาศ

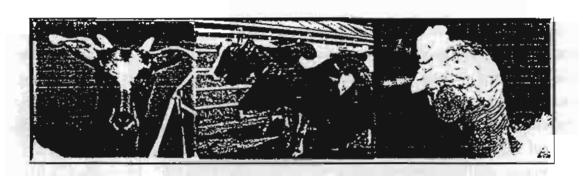
คณะผู้วิจัยขอขอบคุณ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ให้งบประมาณสนับสนุนการปลูกสร้าง แปลงหญ้า ขอขอบคุณคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชฮานี และกรมปศุสัตว์ กระทรวงเกษตรและ สหกรณ์ ที่ให้ความอนุเคราะห์สถานที่ทดลอง สัตว์ทดลอง ตลอดจนเครื่องมือ วัสดุและอุปกรณ์ต่างๆ ในการดำเนิน งาน และขอขอบคุณ รศ.ดร.วรพงษ์ สุริยภัทร ผอ.กิตติ จาตนิลพันธุ์ ที่ให้คำแนะนำที่เป็นประโยชน์ในการศึกษาครั้งนี้

เอกสารอ้างอิง

- ก็ตติ จาดนิลพันธุ์ (2527) ผลการทดสอบสมรรถภาพของโคอเมริกันบราห์มันเพศผู้ รายงานการประชุมวิชาการ ครั้งที่ 3 ด้านการผลิตสัตว์ วันที่ 7-9 สิงหาคม 2527 โรงแรมเวลล์ นครปฐม
- มนต์ชัย ดวงจินดา, ไชยวรรณ ุวัฒนจันทร์ และเวชสิทธิ์ โทบุราณ (2542) รายงานผลการวิจัย การศึกษา สมรรถภาพการผลิตของโคพื้นเมืองภายใต้สภาพการเลี้ยงแบบปล่อยแทะเล็ม ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น
- ไมเคิล แอร์, กิตติ วงส์พีเซษฐ. วรพงษ์ สุริยจันทราทอง, กังวาน ธรรมแสง, สุรชัย สุวรรณลี, ประพนธ์ บุญเจริญ, พวน ทัศน์พงษ์, อารีรัตน์ ลุนผา, กิตติพัฒน์ สายประเสริฐ และวันชัย อินทิแสง (2546) หญ้าพาสพาลัม อุบล: การจัดการและการใช้ประโยชน์, ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี
- ศักดิ์ ทองจันทร์, นิทัศน์ อ่อนหวาน และยอดชาย ทองไทยนันท์ (2533) อิทธิพลช่วงฤดูกาลเกิดที่มีผลต่ออัตรา การเจริญเติบโลก่อนหย่านมของโคลูกผสมอเมริกันบราท์มัน รายงานผลงานค้นคว้าและวิจัยด้านการผลิตและ การปรับปรุงพันธุ์สัตว์ สาขาการผลิตปศุสัตว์ ประจำปี 2533 กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์ กรุงเทพฯ
- สมพร โชคเจริญ, สนุธยา กัณหาบัว และ และมานพ โชคดี (2541) ลักษณะทางเศรษฐกิจของฝูงโคพันธุ์บราห์มัน ขอดเยี่ยมที่ศูนย์วิจัยและบำรุงพันธุ์สัตว์ท่าพระ, รายงานผลงานค้นคว้าและวิจัยการผลิตสัตว์ สาขาการปรับ ปรุงพันธุ์สัตว์และการจัดการฟาร์ม ประจำปี 2541 กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์ กรุงเทพฯ
- อนันต์ สุขลิ่ม. ชำนาญ ดงปาลี และเทิดศักดิ์ ชมชื่นจิตร์ (2544) ปัจจัยที่มีผลต่อสมรรถนะการเจริญเติบโตก่อนหย่า นมของโคขาวลำพูน รายงานผลงานค้นคว้าและวิจัยด้านการผลิตและการปรับปรุงพันธุ์สัตว์ สาขาการปรับปรุง พันธุ์สัตว์และการจัดการฟาร์ม ประจำปี 2544 กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์ กรุงเทพฯ
- BARCELLOS, A.O., PIZARRO, E.A. and COSTA, N.L. (1997) Agronomic evaluation of novel germplasm under grazing: *Arachis pintoi* BRA-031143 and *Paspalum atratum* BRA-009610. Proceeding of the XVIII International Grassland Congress, Canada, 22, 47-48
- CSIRO (1990) Feeding standards for Australian livestock. Ruminants, CSIRO publication, Victoria, Australia.
- HARE, M.D., THUMMASAENG, K., SURIYAJANTRATONG, W., WONGPICHET, K., SAENGKHUM, M., TATSAPONG, P., KAEWKUNYA, C. and BOONCHARERN, P. (1999a) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. *Tropical Grasslands*, 33, 65-74.

KALMBACHER, R.E., MARTIN, F.G. and KRETSCHMER, A.E. (1997) Performance of cattle grazing pastures based on Paspalum atratum cv. Suerte, Tropical Grasslands, 31, 58-66.

THE RESERVE OF THE PARTY OF THE


- MITSUCHI, M., WICHAIDIT, P. and JEUNGNIJNIRUND, S. (1986) Outline of soils of the Northeast Plateau, Thailand. Their characteristics and constraints. Technical Paper No. 1. Agricultural Development Center in Northeast: Khon Kaen, Thailand
- National Research Council (1996) Nutrient requirements of beef cattle. 7th revised edition, National Academic Press, Washington, D.C.
- LAM8, G.D. (1999) Delicate balance exists between nutrition, reproduction. Feedstuff Magazine. October 18, 1999.
- O'CALLGHAN, D.O. and BOLAND, M.P. (1999) Nutritional effects of ovulation, embryo development and the establishment of pregnancy in ruminants. *Journal of Animal Science*, **68**, 299-314.
- PATERSON, J.A., FUNSTUN, R. and CASH, D. (2001) Forage quality influences beef cow performance and reproduction. International Nutrition Conference. Utah State University Agricultural Experimental Station. Publication 183.
- RASBY, R. and RUSH, I.G. (1996) Feeding the beef cow herd: Part I. Factors affecting the cow nutrition program. University of Nebraska NebGuide G-80-489-A.
- SELK, G.E., WETTEMAN, R.P., LUSBY, K.S., OLTGEN, J.W., MOBLEY, S.L., RASBY, R.J. and GARMENDIA, J.C. (1988) Relationship among weight change, body condition and reproductive performance of range beef cows. *Journal of Animal Science*, **66**, 3153-3159.
- STAPLES, C.R., THATCHER, W.W. and CLARK, J.H. (1990) Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows. *Journal of Dairy Science.*, **73**, 938
- TUMWASORN, S., JANTIP, P., MARKVICHITR, K. and THANIDRATARN, B. (1996a) Characteristics of production system of Australian Brahman facing low fertility under Ang Thong small farmer condition. *Kasetsart Journal of. Natural Science* **30**, 131-138.
- TUMWASORN, S., NAKPHUM, W., MARKVICHITR, K. and THANIDRATARN, B. (1996b) Characteristics of production system of Australian Brahman under Uthai Thani small farm conditions. *Thai Journal* of Agricultural. Science., 29, 383-394.

รายงานการประชุมวิชาการสัตวศาสตร์ภาคใต้ ครั้งที่ 3 วันที่ 18-19 สิงหาคม 2547

"ปศุสัตว์ภาคใต้สู่อาหารฮาลาล"

มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา

Proceedings of the 3rd Southern Animal Science Conference
Held at Faculty of Natural Resources,
Prince of Songkla University, Songkhla, THAILAND
August 18-19, 2004

บรรณาธิการ

ไขยวรรณ วัฒนจันทร์
ดวงกมล เจริญกุย
สุชา วัฒนสิทธิ์
วันวิศาซ์ งามต่องใส

ผลการศึกษาการเลี้ยงโคนมที่ปล่อยแทะเล็มในแปลงหญ้าชิกแนลร่วมกับ การปล่อยแทะเล็มแปลงถั่ว และ/หรือการเสริมอาหารข้น A study on dairy cows grazing Signal grass pasture, with or without legume and concentrate feed supplementation

กังวาน ธรรมแลง ไมเคิล แฮร์ และพวน ทัศพงษ์ Kungwan Thummasaeng, Michael D. Hare and Puun Tatsapong

บทคัดย่อ

งานทดลองเลี้ยงโคนมจำนวน 12 ดัว แทะเล็มในแปลงหญัวชิกแนล (Brachiaria decumbens) ร่วม กับการปล่อยแทะเล็มแปลงถั่วสไดโลอบล (Stylosanthes guianensis var. vulgaris x pauciflora) และ/หรือ การเสริมอาหาร ทำการทดลอง 2 ครั้ง การทดลองที่ 1 ทำในช่วงฤดูฝน มีวิธีการให้อาหาร 3 แบบคือ T1) นทะเล็มในแบ่ลงหญ้าตลอดทั้งวันและเสริมอาหารขัน T2) กลางวันปล่อยแทะเล็มแปลงหญ้า กลางคืนแทะเล็ม แปลงถั่ว และ T3) ปล่อยแทะเล็มเหมือน T2 แค่เสริมอาหารขัน และการทดลองที่ 2 ทำในช่วงฤดูแลัง มีวิธี การให้อาหาร 2 แบบคือ T1) แทะเล็มในแปลงหญ้าตลอดทั้งวันและเสริมอาหารขัน และ T2) กลางวันปล่อย แทะเล็มแปลงหญ้า กลางคืนแทะเล็มแปลงถั่ว โดยไม่มีการเสริมอาหารชัน ทั้ง 2 การทดลองใช้อาหารชันใน อัตราการเดียวกันคือ 1 กก. ต่อผลผลิตนม 4 กก. ผลการทดลองพบว่า ในฤดูฝนหญ้าให้ผลผลิตน้ำหนักแห้ง ประมาณ 400 กก/ไร่ และลดลงเกือบครึ่งหนึ่ง ในช่วงฤดูแล้ง ส่วนโปรตีน (coude fiber) และเยื่อใย NDF (Profe) (neutral detergent fiber) ใกล้เคียงกันคือ มีค่าอยู่ในช่วง 10-12 และ 61-63% ตามลำคับ ในขณะที่ถั่วสไตโล-อุบล ผลผลิตในฤดูแลังสูงกว่าในฤดูฝน (403 และ 319 กก/ไร่) แต่โปรดีนจะลดลงจาก 16.6 เป็น 12.8% ซึ่งจะครงกันข้ามกับปริมาณเยื่อใย NDF ที่เพิ่มขึ้นจาก 41.8 เป็น 55.9% การเปลี่ยนแปลงน้ำหนักตัวพบว่า ในช่วงฤดูฝนทั้งโคที่เสริมและไม่เสริมอาหารขันมีน้ำหนักตัวเฉลี่ยต่อวันลดลง 0.14-0.27 กก./วัน ในช่วงฤดู แล้งโคที่ไม่เสริมอาหารขันมีน้ำหนักตัวเพิ่มขึ้น 0.20 กก⊿วัน แต่ทั้งสองการทคลองและไม่มีความแตกค่างกัน ทางสถิติ (P>0.05) สำหรับผลผลิตน้ำนมและองค์ประกอบในน้ำนมพบว่า ในช่วงฤดูผ่นปริมาณน้ำนม ไม่มี ความแตกต่างกันระหว่างวิธีการให้อาหาร โดยมีค่าเฉลี่ยเท่ากับ t6.1 กก/ตัว/วัน แต่โคที่ไม่มีการเสริม อาหารขันจะมี % น้ำตาลแลกโตส และของแข็งไม่รวมมันเนย (solid not fat) ด้ำกว่า (P<0.05) โคที่กิน หญ้าและถั่วรวมทั้งมีการเสริมอาหารขัน ส่วนการทคลองในฤดูแลังพบว่าทั้งผลผลิตน้ำนม และองค์ประกอบ ในน้ำนมไม่มีความแตกต่างกันระหว่างโคที่เสริมอาหารขันกับโคที่แทะเล็มถั่ว โดยมีค่าเฉลี่ยเท่ากับ ๅ๊๕ฺํํํํํํํํํํ กก./ ้ตัว/วัน เมื่อพิจารณาถึงตันทุนคำอาหารค่อการผลิตน้ำนม 1 กก. พบว่า ในช่วงฤดูฝนโคที่กินเฉพาะหญ้าและ ถั่วโดยไม่มีการเสริมอาหารขันจะมีดันทุนดำสุดคือ 1.05 บาท/กก. ส่วนกลุ่มที่เสริมอาหารขันเท่ากับ 2.53 – 2.65 บาท/กก. สำหรับในช่วงฤดูแล้งที่มีการให้น้ำชลประทานแปลงหญ้าพบว่า ดันทุนคำอาหารเพิ่มขึ้นเป็น 4,79 และ 3,47 บาท/กก. ในโกกลุ่มที่เสริมและไม่เสริมอาหารขันตามลำดับ

คำสำคัญ : การเลี้ยงโคนา, ปล่อยแทะเล็ม, ซึกแนล, สไตโลอุบล, อาหารขัน

Abstract

Twelve dairy cows were grazed on Signal grass (Brachiaria decumbens) with or without grazed Ubon Stylo legume (Stylosanthes guianensis var. vulgaris x pauciflora) and concentrated feed supplementation. The experiment was divided into 2 trials. Trial 1 was conducted in the wet seasonwith the following treatments; T1) grazing signal grass day and night and supplementation with concentrate; T2) grazing signal grass during day time and grazing legume during night time and, T3) grazing as same as in T2 but with concentrate supplementation. Trial 2 was conducted in dry season with the following treatments; T1) grazing signal grass day and night supplementation with concentrate, T2) grazing signal grass during day time and grazing Ubon stylo during night time without supplementation of concentrate. The rate of concentrate feed supplementation was 1 kg per 4 kg of milk produced for both trials. Data collection in each trial was for 8 weeks. The results found that grass production in wet season was 2,500 kg/ha DM but was reduced by almost 50% in the dry season. Chemical composition in grass was consistent in both season with crude protein (CP) and neutral detergent fiber (NDF) ranging from 10-12 and 61-63%, respectively. Ubon Stylo produced higher dry matter in the dry season than in the wet season (2518 and 1994 kg/ha DM, respectively). In the wet and dry season, respectively, CP concentration reduced from 16.6 to 12.8% but NDF concentration increased in Ubon stylo (41.8 and 55.9%). Only cows in T2 of the dry season increased their body weight 0.20 kg/h/d and the rest lost between 0.14-0.27 kg/h/d (P>0.05), Milk yields were not significantly different in both trials with an average of 16.1 and 13.1 kg/h/d in wet season and dry season trial, respectively. However, milk lactose and solid-not fat decreased (P<0.05) in cows feeding only pasture (T2) during wet season. Cost over feed per kg milk was lowest in cows grazing grass and legume without concentrate supplementation in wet season (8 1.05/kg milk) while the concentrate supplementation group was \$ 2.53-2.65/kg milk. Because of the necessity of irrigation of the pasture during dry season, the cost of feed increased up to \$ 4.79 and 3.47 /kg milk for the concentrate and non-concentrate supplementation group, respectively.

Key words: dairy cattle raising, grazing, signal, Ubon stylo, concentrate supplement

บทน้ำ

หญ้าชิกแนลนอน (Brachina decumbens) มีถิ่นกำเนิดที่ทวีปอาฟริกาตะวันออก ปัจจุบันได้แพร่
กระจายไปยังเขตร้อนต่างๆ ทั่วโลก (Schootze-Kraft and Teitzet 1992) สายพันธุ์ที่นิยมปลูกกันแพร่หลาย
มากที่สุดในเขตร้อนชื้นของอเมริกาใต้และอเมริกากลางคือสายพันธุ์ Basillisk (Argel and Keller-Grein,
1996) หญ้าชิกแนลเป็นหญ้าในสกุลเดียวกันกับหญ้ารูชี่ (Brachina ruziziensis) แต่มีข้อตีกว่าหญ้ารูซี่คือ
ให้ผลผลิตสูงกว่า มีโปรตีนอยู่ในระดับสูง สัตว์ขอบกินหรือมีความนำกินมาก และทนทานต่อความแห้งแล้ง
ได้ดีกว่า นอกจากนั้นยังทนทานต่อการเหยียบย่าของสัตว์แม้จะปล่อยสัตว์ลงแทะเล็มอย่างหนัก จึงมีคักยภาพสูงที่จะทดแทนหญ้ารูซี่ได้เป็นอย่างดี (ศิติธร และคณะ 2543; Hare et al, 1999; Tinnakom and
Kreetapon, 1993; Topark-Ngarm and Gutteridge, 1986) ในสภาพแวดล้อมที่ฟาร์มคณะเกษตรศาสตร์
มหาวิทษาลัยอุบสราชธานี และในภาคตะวันออกเฉียงเหนือโดยทั่วไป ฤดูฝนจะสิ้นสุดประมาณปลายเดือน
ตุลาคม หญัวชิกแนลที่ไม่ได้ให้น้ำชลประทานยังมีสภาพเขียวสด และสามารถเจริญ่เติบโดต่อไปได้จนถึง

เดือนกุมภาพันธ์ – มีนาคม ในขณะที่หญ้ารูชี่จะเริ่มแห้งตั้งแต่เดือนพฤศจิกายน เป็นตันไป ในประเทศไทย แม้จะมีการนำหญ้าชิกแนลเข้ามาปลูกเป็นเวลานานแล้ว แต่การศึกษาวิจัยส่วนใหญ่จะเป็นการศึกษาทางด้าน วิธีการจัดการแปลงหญ้าและผลผลิตของหญ้าเป็นส่วนใหญ่ ยังไม่พบรายงานการศึกษาถึงคุณค่าทางอาหาร และผลการตอบสนองเมื่อนำไปใช้เลี้ยงสัตว์ โดยเฉพาะการใช้ประโยชน์ในรูปของการปล่อยโดนมเข้าแทะเล็ม

การเลี้ยงโคนมแบบปล่อยแทะเล็มคลอดเวลาทั้งกลางวันและกลางคืนยังไม่เป็นที่นิยมแพร่หลาย สำหรับเกษตรกรผู้เลี้ยงโคนมในประเทศไทย ทั้งที่การเลี้ยงโคนมระบบนี้โคสามารถให้ผลผลิตน้ำนม และมี ความสมบูรณ์พันธุ์ไม่แตกต่างจากการเลี้ยงแบบขังคอกและตัดหญ้ามาให้โคกิน และที่สำคัญคือการเลี้ยงโคนม แบบปล่อยแทะเล็มเป็นวิธีที่ช่วยลดคันทุนการผลิตน้ำนมใต้ ทั้งในแง่ความสะดวก ประหยัดเวลาและแรงงาน ของเกษตรกร ตลอดจนลดบริมาณการใช้อาหารขันลงใต้มาก (กังวาน และคณะ 2546; Hongyantarachai et al. 1989, Prasanpanich et al. 2002 และ Tudsri et al. 2001) การทดลองครั้งนี้มีวัดถุประสงค์เพื่อ ทดสอบสมมุติฐานที่ว่า ระบบการเลี้ยงโคนมแบบปล่อยแทะเล็มในแปลงหญัวและแปลงถั่วคุณภาพดี สามารถ ทดแทนการใช้อาหารขันได้หรือไม่ และให้ผลตอบแทนคุ้มค่าในทางเศรษฐกิจหรือไม่ ซึ่งมีรายละเอียดวิธีการ ทดลองและผลการทดลอง ดังต่อไปนี้

อุปกรณ์วิธีการทดลอง

แบ่งการทดลองออกเป็น 2 ครั้ง (Trial 1 และ 2) ตามฤดูกาลคือ การทดลองที่ 1 ทำในช่วงฤดูผ่น และการทดลองที่ 2 ทำในช่วงฤดูแลัง ซึ่งการทดลองทั้ง 2 ครั้งมีรายละเอียดดังนี้

Triat 1 การปล่อยแทะเล็มในช่วงฤดูฝน มีวิธีการให้อาหาร 3 วิธี (Treatment, T) ได้แก่

T1: แทะเล็มในแปลงหญ้าชิกแนลตลอดทั้งกลางวันและกลางคืน ร่วมกับการเสริมอาหาร ขันในอัตรา 1 กก, ต่อผลผลิตน้ำนม 4 กก.

T2: แทะเล็มในแปลงหญ้าชิกแนลในเวลากลางวัน และแทะเล็มในแปลงถั่วสไดโลอุบลใน เวลากลางคืน โดยไม่มีการเสริมอาหารขัน

T3: แทะเล็มในแปลงหญ้าซิกแนลในเวลากลางวัน และแทะเล็มในแปลงถั่วสไดโลอุบลใน เวลากลางคืน ร่วมกับการเสริมอาหารขันในอัครา 1 กก. ต่อผลผลิตน้ำนม 4 กก.

Trial 2 การปล่อยแทะเล็มในช่วงฤดูแลัง มีวิธีการให้อาหาร 2 วิธี ได้แก่

T1: แทะเล็มในแปลงหญ้าซีกแนลดลอดทั้งกลางวันและกลางคืน ร่วมกับการเสริมอาหาร ขันในอัตรา 1 กก. ต่อผลผลิตน้ำนม 4 กก.

T2: แทะเล็มในแบ่ลงหญ้าชิกแนลในเวลากลางวัน และแทะเล็มในแบ่ลงถั่วอุบลสไคโลใน เวลากลางคืน โดยไม่มีการเสริมอาหารขัน

สัตว์ทดลอง

การทดลองที่ 1 ใช้โลนมพันธุ์ลูกผสมชาว-ตำ เดยให้นมมาแล้ว 2-4 ครั้ง น้ำหนักเฉลี่ยเริ่มดัน ประมาณ 478 กก. (SD ± 32) ให้นมมาแล้วเฉลี่ย 40 วัน (± 17) โลทดลองทั้งหมดจำนวน 12 ตัว แบ่ง ออกเป็น 4 กลุ่มๆ ละ 3 ตัว ตามปริมาณการให้นม สุ่มโดในแต่ละกลุ่มให้ได้รับอาหาร 1 ใน 3 วิธีดังกล่าว ช้างตัน ก่อนเริ่มเก็บข้อมูลทำการปรับสัตว์ทดลองใช้ระยะเวลา 14 วัน (7-20 ส.ค. 46) โดยปล่อยให้โด แทะเล็มและกินอาหารเหมือนในช่วงการทดลอง และระยะเก็บข้อมูลใช้เวลา 8 สัปดาห์ (21 ส.ค.–16 ต.ค. 46) การทดลองที่ 2 ใช้โคนมชุดเดียวกันกับการทดลองที่ 1 นำโกมาจัดกลุ่มและสุ่มใหม่ โดยแบ่งโก ออกเป็น 6 กลุ่มตามบริมาณการให้นม โคแต่ละกลุ่มสุ่มให้ได้รับอาหาร 1 ใน 2 ชนิดดังกล่าวข้างต้น โดยมี การปรับสัตว์ทดลองใช้ระยะเวลา 10 วัน (17-26 ต.ค. 46) และระยะเก็บข้อมูลใช้เวลา 8 สัปดาห์ เหมือนใน ช่วงการทดลองที่ 1 (27 ต.ค. – 22 ธ.ค. 46)

อาหารและการจัดการอาหาร

การจัดการแปลงหญ้าและแปลงถั่ว

แปลงหญ้าชิกแน็ลเป็นแปลงหญ้าเก่าที่ปลูกมาแล้ว 3 ปี มีสภาพที่สมบูรณ์ดีคือ มีความหนาแน่น และมีวัชพืชปะปนน้อย มีพื้นที่ทั้งหมด 12 ไร่ มีรั้วกั้นแบ่งเป็นแปลงย่อยแปลงละ 1 ไร่ แต่ละแปลงมีเพิงพัก ขนาด 20 ตร.ม. พร้อมอ่างน้ำกินทุกแปลง สำหรับแปลงถั่วอุบลสไตโล เป็นแบ่ลงถั่วที่ปลูกมาแล้ว 2 ปี มี สภาพที่ค่อนข้างสมบูรณ์คือมีหญ้าพื้นเมืองและหญ้ารูซึ่ปะปนอยู่ประมาณ 20-30 % (เนื่องจากพื้นที่เดิมเคย ปลูกหญ้ารูซึ่มาก่อน) แปลงถั่วมีพื้นที่ทั้งหมด 6 ไร่

อัดราการปล่อยแทะเล็ม

การทดลองที่ 1 T1 ใช้โคนม 4 ตัว พื้นที่แปลงหญ้าชิกแนล 6 ไร่ หรือคิดเป็น 0.67 คัว ต่อ ไร่ สำหรับ T2 และ T3 ปล่อยแทะเล็มร่วมกัน มีโคนมรวม 8 ตัว โดยมีพื้นที่แปลงหญ้าชิกแนล 6 ไร่ และแปลง ถั่วสไดโลอุบล 6 ไร่ ซึ่งคิดเป็นอัตราการปล่อยสัตว์เท่ากันคือ 0.67 ตัว ต่อ ไร่

การทดลองที่ 2 T1 ใช้โดนม 6 ตัว พื้นที่แปลงหญ้าชิกแนล 8 ไร่ หรือคิดเป็น 0.75 ตัว ต่อ ไร่ สำหรับ T2 ใช้แปลงหญ้าและแปลงถั่วอย่างละ 4 ไร่เท่ากัน ซึ่งมีอัตราการปล่อยสัตว์เท่ากัน

การใส่ปุ๋ยและการให้น้ำแปลงหญ้า

ทั้งสองการทดลองใส่ปุ๋ยเหมือนกันคือ แปลงหญ้าใช้ปุ๋ยยูเรีย (46-0-0) จำนวน 15 กก. และปุ๋ยสูตร 15-15-15 จำนวน 10 กก. ต่อไร่ หว่านทุก 60 วัน สำหรับแปลงถั่ว ใช้ปุ๋ยสูตร 0-45-0 สูตร 0-0-60 และปู่น ยืบชั่ม อย่างละ 10 กก. ต่อไร่ ซึ่งทั้งหญ้าและถั่วแต่ละแปลงได้รับปุ๋ยเพียงครั้งเดียวก่อนเริ่มการทดลอง

ในช่วงฤดูแลัง มีการให้น้ำแปลงหญ้าและแปลงถั่ว โดยใช้หัวฉีดน้ำแบบพ่นฝอย (sprinkler) สัปดาห์ ละ 1 ครั้ง แต่ละแปลงใช้เวลาประมาณ 3 ชั่วโมง

อาหารขัน

การทคลองที่ 1 ใช้อาหารขันสูตรโปรดีน 20% ซึ่งใช้สำหรับโคระยะดันของการให้นม (0-3 เดือน) การทคลองที่ 2 ใช้อาหารขันสูตรโปรตีน 16% ซึ่งใช้สำหรับโคระยะกลางและระยะปลายของการให้นม (ดั้งแต่ 3 เดือนขึ้นไป) อาหารขันจะแบ่งให้ 2 มื้อเท่า ๆ กัน โดยให้ในช่วงเวลารีดนม

การเก็บข้อมูล

ผลผลิตและคุณค่าทางโกชนะของพืชอาหารสัตว์

ทำการสุ่มตัดตั้วอย่างพืชทุกแปลงก่อนปล่อยโคลงแทะเล็ม โดยใช้กรอบเหล็กสุ่ม (quadrate) ขนาด 0.25 ตร.ม. ในพื้นที่ 1 ไร่สุ่มจำนวน 8 จุด แยกวัชพืชออก ซึ่งน้ำหนักสด แยกส่วนใบและลำดัน (เฉพาะหญ้า) นำไปอบหาน้ำหนักแห้ง วิเคราะห์ปริมาณโปรดีนทยาบ (AOAC.,1990) และเยื่อใย NDF (Neutral detergent fiber; Van Soest and Robertson, 1985)

การเปลี่ยนแปลงน้ำหนักตัว ผลผลิตน้ำหมและองค์ประกอบในน้ำหม

ชั่งน้ำหนักโคและเก็บตัวอย่างน้ำนมสัปดาห์ละ 4 ครั้ง โดยชั่งน้ำหนักโคหลังการรีดนมมื้อเข้าและมื้อ บ่าย ทุกวันจันทร์และวันพฤหัสบดี นำตัวอย่างน้ำนมไปวิเคราะห์หาองค์ประกอบในน้ำนม ได้แก่ % ไขมัน, โปรดีน, แลกโดส และของแข็งไม่รวมมันเนย (solid not fat, SNF) ด้วยเครื่อง Near infrared (Fossmatic, Milko Scan 50A)

การวิเคราะห์ข้อมูล

- เปรียบเทียบผลผลิตน้ำหนักแห้งของแปลงหญ้า สัดส่วนใบต่อลำดัน
- เปรียบเทียบการเปลี่ยนแปลงน้ำหนักด้วของโคโดยวิธีรีเกรสชั่น เปรียบเทียบค่าเฉลี่ยผลผลิตน้ำนม โคและองค์ประกอบในน้ำนม ทำการวิเคราะห์ความแปรปรวนของสิ่งทดลอง (ANOVA) โดย โปรแกรมคอมพิวเตอร์สำเร็จรูป (SAS, 1985) โดยเปรียบเทียบแยกกันระหว่างผลการทดลองที่ 1 (ฤดูฝน) และผลการทดลองที่ 2 (ฤดูแลัง)
- เปรียบเทียบคันทุนการผลิตน้ำนม โดยกิดเฉพาะตันทุนค่าอาหารหยาบและอาหารขัน

ผลการทดลองและวิจารณ์ผล

ผลผลิตและคุณค่าทางโภชนะของอาหาร

จากผลการทดลองพบว่า ผลผลิตของพืชอาหารสัตว์ในช่วงฤดูผ่นในส่วนของหญ้าชึกแนลให้ผลผลิต น้ำหนักแท้งประมาณ 400 กก/ไร่ แต่ฤดูแล้งผลผลิตลดลงเกือบครึ่งหนึ่ง (ตารางที่ 1) ซึ่งใกล้เคียงกับราย งานของ Hare et at. (1999) ส่วนผลผลิตของถั่วในช่วงฤดูผ่นให้ผลผลิตเฉลี่ย 319 กก/ไร่ แต่เพิ่มขึ้นเป็น 403 กก. ในฤดูแล้ง เมื่อพิจารณาถึงคุณค่าทางโภชนะพบว่า หญ้ามีสัตส่วนของใบต่อลำดัน และเยื่อใย NDF ค่อนข้างคงที่และใกล้เคียงกันทั้ง 2 ฤดูกาล ส่วนโปรตีนในช่วงฤดูแล้งจะสูงขึ้นเล็กน้อยประมาณ 1% ระดับของโปรตีนในงานทดลองนี้จะต่ำกว่าในรายงานของ ศศิธร และคณะ (2543) ที่ทำการทดลองที่ อ.ปาก ช่อง จ.นครราชสีมา ซึ่งพบว่าหญ้าชึกแนลมีโปรตีนอยู่ในช่วง 13.2-14.0 ทั้งนี้อาจเนื่องมาจากความอุดม สมบูรณ์ของดินที่แดกค่างกัน สำหรับผลผลิตถั่วที่เพิ่มขึ้นในฤดูแล้งจะตรงข้ามกับอุณคำทางโภชนะที่ลดลง ซึ่ง จะสังเกตได้จากถั่วมีโปรตีนลดลง ในขณะที่เยื่อใย NDF เพิ่มขึ้น (Table 1) ทั้งนี้อาจเนื่องมาจากช่วงฤดูแล้ง ถั่วมีการร่วงหล่นของใบมาก มีผลทำให้สัดส่วนของลำดันเพิ่มขึ้นและโปรตีนลดลง

Table 1 Forage yield and nutritive value

	Ralı	ny season (Tr	fal 1)	Dry season (Trial 2)			
	Grass		Legume	Gra	Legume		
	T1	T2 & T3	Т3	T1	T2	T2	
DM yield, kg/rai	376	430	319	222	221	403	
Leaf: Stem ratio, %	46:54	49:51	-	43:57	44:56	-	
CP, %	10.8	10.3	16.6	11.7	11.5	12.8	
NDF, %	61,7	63.3	41.8	61.1	61.7	55.9	

การเปลี่ยนแปลงน้ำหนักตัวของโค

น้ำหนักตัวเมื่อเริ่มต้นของโคทดลองมีความใกล้เคียงกันคือ ประมาณ 470 กก. (Table 2) เมื่อสิ้นสุด การทดลองช่วงฤดูผ่น (Trial 1) พบว่า โคกลุ่มที่เสริมอาหารขัน (T1 และ T3) มีหนักตัวลดลง 8 กก. หรือ เฉลี่ยวันละ 0.14 กก. โคกลุ่มที่ไม่ได้รับการเสริมอาหารขัน (T2) น้ำหนักตัวลดลงมากกว่าเป็น 2 เท่า สำหรับการทดลองในช่วงฤดูแล้ง (Trial 2) พบว่ามีลักษณะตรงกันข้ามคือ โคกลุ่มที่ไม่ได้รับการเสริมอาหารขัน (T2) มีน้ำหนักตัวเพิ่มขึ้นวันละ 0.20 กก. ในขณะที่โคกลุ่มที่ได้รับการเสริมอาหารขัน (T1) กลับมีน้ำหนัก ตัวลดลง แต่การเปลี่ยนแปลงน้ำหนักตัวของโลในทั้ง 2 การทดลองไม่มีความแตกต่างกันทางสถิติ (P>0.05)

อย่างไรก็ตาม การทดลองครั้งนี้เป็นการซั่งน้ำหนักโดโดยไม่ได้อดอาหาร ประกอบกับการทดลองในช่วงเวลา สั้น จึงอาจเกิดความคลาดเคลื่อนจากน้ำหนักของอาหารที่อยู่ในดัวสัตว์ได้ง่าย (Roger, 1983)

Table 2 Body weight change

_	Rai	ny season (Tria	al 1)	Dry season (Trial 2)		
_	T1	T2	Т3	T1	Υ2	
Number of cows	4	4	4	6	6	
Initial weight, kg	484	474	478	474	460	
Final weight, kg	476	459	445	461	471	
Body weight change, kg	-8	-15	-8	-13	11	
Average daily gain, kg	-0.14a	-0.27a	-0.14a	-0.23a	0.20a	

In a row of each trial, means followed by common letter is not significantly different (P>0.050)

ผลผลิตน้ำหมและองค์ประกอบในน้ำหม

ผลผลิตน้ำนมจากการทดลองในช่วงฤดูฝนเฉลี่ยประมาณ 16.1 กก./ตัว/วัน ซึ่งไม่มีความแตกต่าง กันระหว่างวิธีการให้อาหาร (ดารางที่ 3) ในทำนองเดียวกันกับค่าปริมาณนมที่ปรับไขมันมาตรฐานที่ 4% (4% Fat corrected milk, FCM), % ไขมัน และโปรตีนในน้ำนม ก็ไม่มีความแตกต่างกัน แต่สำหรับ % น้ำตาลแลกโดส และของแข็งไม่รวมมันเนย (Solid not fat, SNF) พบว่า โคกลุ่มที่ไม่ได้รับการเสริมอาหาร ชัน (T2) มีองค์ประกอบดังกล่าวลดลง (P<0.05) ในขณะที่การเสริมอาหารขันในช่วงฤดูแลังพบว่า ไม่มีผล ต่อทั้งปริมาณนมที่รีดได้จริง และปริมาณนมในรูป FCM รวมทั้งองค์ประกอบทุกชนิดในน้ำนม (P>0.05) ผลการทดลองนี้มีความโกลัเคียงกันกับรายงานของ กังวาน และคณะ (2546) ที่เปรียบเทียบระหว่างโคนมที่ แทะเล็มหญ้าชิกแนล หญ้าพาสพาลัมอุบล และหญ้าจาร์ราดิจิท ซึ่งเสริมอาหารขันในอัตราเดียวกันคือที่ 1 กก. ต่อผลผลิตน้ำนม 4 กก. ทั้งนี้อาจเนื่องมาจากโคที่ทดลองเป็นโคฝูงเดียวกัน และอยู่ในระยะการให้นมที่ ใกล้เคียงกัน สำหรับองค์ประกอบทุกชนิดในน้ำนมมีค่าอยู่ในช่วงพิสัย (range) จากรายงานของ ประวีร์ และ คณะ (2546) ในล่วนของ %น้ำตาลแลกโดส และของแข็งไม่รวมมันเนยที่ลดลงของโคที่ไม่ได้เสริมอาหารขัน ในฤดูฝน อาจมีสาเหตุเนื่องมาจากโคได้รับพลังงานไม่เพียงพอจากการกินอาหารหยาบอย่างเดียว (ฉลอง, 2546) ประกอบกับโคอยู่ในระยะตันของการให้นมซึ่งโคให้ผลผลิตน้ำนมมาก ซึ่งไม่พบปัญหาดังกล่าวในการ ทดลองที่ 2 เมื่อโดเข้าสู่ระยะกลางและระยะปลายของการให้นม

Table 3 Milk yield and milk composition

			Rainy s	eason	(Trial 1)			Dry season (Trial 2)				
	T1	SD	T2	SD	Т3	SD	%C.V.	T1	SD	T2	\$D	%C.V.
No. of cows	4		4		4			6		6		
Mišk yield,	16.3	2.3	16.2	2.5	15.8	2.3	8.7	13,3	2.5	12.9	1.7	9.4
kg/d												
FCM, kg/d*	17.2	3.6	16.5	2.7	16.4	3.6	15.2	14.7	3.6	14.3	2.5	16.0
Milk fat, %	4.34	0.69	4.15	0.51	4.22	0.97	12.5	4.70	0.79	4.78	0.93	12,7
Milk protein,	2.76	0.15	2.64	0.15	2.81	0.17	5.8	2.96	0.24	2.99	0.29	10.0
%												
Milk lactose,	5.04	0.20	4.83	0.24	5.16	0.19	3.1	4.84	0.19	4.77	0.28	3.0
%			ь		4							
Solid not fat,	8,52 ^{*b}	0.25	8.19	0.28	8.68	0.23	2.8	8.53	0.25	8.51	0.44	4.4
%			ь		•			-				

in a row of each trial, means followed by common letter is not significantly different (P>0.05)

^{*} FCM = 0.4 x milk (kg) + 15 x butterfat (kg), From Roger (1983)

ต้นทุนค่าอาหาร

เนื่องจากการทดลองครั้งนี้ไม่ได้วัดปริมาณการกินได้ของหญ้าและถั่วโดยตรง จึงประมาณการโดย คำนวณจากสมมุติฐานที่ว่า โดนมน้ำหนักตัว 470 กก. มีการกินอาหารในรูปน้ำหนักแห้ง (รวมทั้งอาหาร หยาบและอาหารขัน) ที่ 3% ของน้ำหนักตัว ซึ่งเท่ากับ 14.1 กก/ตัว/วัน ในโคที่กินเฉพาะอาหารหยาบหรือ ไม่มีการเสริมอาหารขัน จะแบ่งปริมาณการกินหญ้าและถั่วเป็นอย่างละครึ่งเท่ากัน สำหรับโคกลุ่มที่กิน อาหารขัน จะนำปริมาณอาหารขันที่กินไปหักออกจากอาหารทั้งหมด ส่วนที่เหลือถือว่าเป็นปริมาณอาหาร หยาบที่กิน

ต้นทุนการผลิตพืชอาหารสัตว์

ประมาณการต้นทุนคงที่ (fixed cost) การผลิตหญ้าและถั่ว ในปีแรกของการปลูกสร้างประกอบด้วย คำไถเครียมดิน คำเมล็คพันธุ์ คำแรงงานในการปลูก คำรั้วลวดหนาม คำเพิงพักสัตว์พร้อมอ่างน้ำกิน คิดเป็น เงินประมาณ 6,000 บาท/ไร่ แปลงหญ้ามีอายุการใช้งานประมาณ 5 ปี ซึ่งเฉลี่ยเท่ากับปีละ 1,200 บาท หรือ เดือนละ 100 บาท การทดลองครั้งนี้ปล่อยโคแทะเล็ม 8 สัปดาห์หรือ 2 เดือน คิดเป็นต้นทุนคงที่เท่ากับ 200 บาท/ไร่

สำหรับคันทุนผันแปรในช่วงฤดูฝนจะมีเฉพาะคำปุ๋ย โดยแปลงหญ้าและแปลงถั่วมีค่าใช้จำยเท่ากับ 203.5 และ 270 บาทต่อไร่ ตามลำดับ ส่วนฤดูแลังจะมีค่าใช้จ่ายเพิ่มขึ้นมาจากการรดน้ำแปลงหญ้า ซึ่งเป็น ค่าแรงงานและค่าไฟฟ้าตัปตาห์ละ 3 ชั่วโมง คิดเป็นเงินประมาณ 60 บาท/ไร่/สัปดาห์ หรือ 480 บาท/ไร่ ตลอดช่วงการทดลอง 8 สัปดาห์ ดังนั้นดันทุนการผลิตหญ้าในฤดูฝนประมาณ 1 บาทต่อหญ้าในภูปน้ำหนัก แห้ง 1 กก. ส่วนฤดูแลังสูงขึ้นเป็นเกือบ 4 บาท/กก. ดังแสดงในดารางที่ 4

Table 4 Cost of forages production

•	Rai	iny season (Trial 1)	Dry season (Trial 2)			
	Grass		Legume	Gr	Legume		
	T1	T2 & T3	Т3	T1	Υ2	T2	
DM yield, kg/rai	376	430	319	222	221	403	
Fixed cost, \$1/2 months	200	200	200	200	200	200	
Fertilizer	203.5	203.5	270	203.5	203.5	270	
Irrigation cost	-	-	-	480	480	480	
Total cost, #/kg	1.07	0.94	1.47	3.98	3.98	2.36	

จากการวิเคราะห์ดันทุนการผลิตน้ำนมดิบของสำนักงานเศรษฐกิจการเกษตร ปี 2541 รายงานว่า ถ่าเฉลี่ยผลผลิตน้ำนมจากทุกขนาดฟาร์มเท่ากับ 10.94 กก/ตัว/วัน ราคาน้ำนมดิบที่เกษตรกรชายได้เท่ากับ 10.97 บาท/กก. โดยมีต้นทุนการผลิตทั้งหมดเท่ากับ 7.90 บาท/น้ำนม 1 กก. (ผลดอบแทนหรือกำไร บระมาณ 28%) ในจำนวนนี้เป็นต้นทุนค่าอาหารประมาณครึ่งหนึ่งคือ 4.05 บาท ซึ่งจำแนกเป็นค่าอาหารขัน 2.93 บาท และอาหารหยาบ 1.12 บาท/กก. จากการทดลองในครั้งนี้จะเห็นได้ว่า ในช่วงฤดูฝนโคกลุ่มที่ไม่ เสริมอาหารขันมีตันทุนค่าอาหารเพียง 1.05 บาท/กก. ส่วนกลุ่มที่เสริมอาหารขันประมาณ 2.60 บาท/กก. (ดารางที่ 5) อย่างไรก็ตาม ต้นทุนค่าอาหารในฤดูแล้งสูงขึ้นเป็น 4.79 และ 3.47 บาท/กก. ในโคกลุ่มที่เสริม และไม่เสริมอาหารขันตามลำดับ โดยดันทุนส่วนที่เพิ่มขึ้นมากถือค่าอาหารหยาบ ทั้งนี้เนื่องจากมีค่าใช้จ่าย ในการรดน้ำแปลงหญ้าซึ่งเป็นคำแรงงานและค่าไฟฟ้า ประกอบกับช่วงอากาศหนาวทำให้หญ้าชะงักการ เจริญเดิบโต จึงให้ผลผลิตดำและตันทุนต่อหน่วยสูงขึ้น

Table 5 Feed intake and feed cost

	Rainy season (Trial 1)			Dry seaso	on (Trial 2)
	T1	T2	Т3	T1	T2
Feed intake, kg DM/h/d					
- Grass	10.0	7.1	5.1	10.8	7.1
- Legume	-	7.0	5.0	-	7.0
- Concentrate	4.1	-	, 4.0	3.3	-
Total feed cost, #/h/d	41,25	16.96	41.94	63.67	44.78
Milk yield, kg/h/d	16.3	16.2	15.8	13.3	12.9
Total milk sell, @ \$ 12/kg	195.60	194.40	189.60	159.60	154.80
Milk sell over feed cost, #/h/d	159,15	177.44	147.66	95.93	110.02
Cost of feed, & per kg milk	2.53	1,05	2.65	4.79	3.47

Price of concentrate feed " = 8 7.45 /kg (20% CP, 72% TDN), fed basis

สรุปผล

จากข้อมูลดังกล่าวแสดงให้เห็นอย่างชัดเจนว่า ระบบการเลี้ยงโคนมแบบปล่อยแทะเล็มในแปลง หญ้าและแปลงถั่วที่มีคุณภาพดี สามารถลดดันทุนการผลิตน้ำดิบหรือเพิ่มกำไรให้แก่เกษตรกรได้ ซึ่ง เกษตรกรสามารถลดบริมาณการใช้อาหารขันลงได้ครึ่งหนึ่งคือ จากคำแนะนำทั่วไปที่ให้ใช้อาหารขัน 1 กก./ ปริมาณนม 2 กก. หรือ 1:2 ไปเป็น 1:4 หรือแม้กระทั่งไม่ใช้อาหารขันเลย แต่อย่างไรก็ตามยังมีความจำเป็น ต้องศึกษาถึงผลกระทบในระยะยาว ที่อาจมีต่อการเปลี่ยนแปลงน้ำหนักตัว สุขภาพ และความสมบูรณ์พันธุ์ ของโคให้ชัดเจนก่อน และนอกจากนั้นควรมีศึกษาถึงวิธีการลดตันทุนการผลิตอาหารหยาบสตให้ได้ค่ำมาก กว่านี้ เช่น รูปแบบหรือวิธีการให้น้ำ ดลอดจนการเก็บถนอมพืชอาหารสัตว์คุณภาพดีในช่วงฤดูผ่นไว้ในรูป ของหญัวหมัก หรือหญัวแห้ง เพื่อทดแทนการใช้อาหารหยาบสตที่มีตันทุนและคำใช้จำยสูง

คำขอบคุณ

คณะผู้วิจัยใคร่ขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ให้การสนับสนุนงบประมาณ ในการคำเนินงานวิจัย และขอบคุณคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ให้ความอนุเคราะห์และ อำนวยความสะควกในด้านวัสดุอุปกรณ์และเจ้าหน้าที่ในการปฏิบัติงาน

เอกสารอ้างอิง

- กังวาน ธรรมแสง, ไมเดิล แฮร์, อารีรัตน์ ลุนผา และ วรพงษ์ สุริยจันทราทอง (2546). ผลผลิตโคนมจาก การเลี้ยงแบบปล่อยแทะเล็มในแปลงหญ้าเขตร้อน 3 ชนิต. วารสารเกษตรบางพระ 39 (3): 58-63.
- ฉลอง วชีราภากร. (2546). การจัดการด้านอาหารโคนมต่อผลผลิตและองค์ประกอบน้ำนม. เอกสาร ประกอบการประชุมวิชาการ: น้ำนมโกคุณภาพสู่ผู้บริโภค. (หน้า 14-32). วันที่ 23-24 มกราคม 2546. ณ โรงแรมเจริญธานีปริ้นเชส จ. ขอนแก่น. หจก. ขอนแก่นการพิมพ์.
- ประวีร์ วิชุลตา, ณิฐิมา เฉลิมแสน และ สุทธิศักดิ์ แก้วนกมจันทร์ (2546). สถานภาพองค์ประกอบน้ำนมดิบ ในประเทศไทย. เอกสารประกอบการประชุมวิชาการโคนม: น้ำนมโคคุณภาพสู่ผู้บริโภค. (หน้า 7-13) วันที่ 23-24 มกราคม 2546. ณ โรงแรมเจริญชานี ปริ๊นเซส จ. ขอนแก่น. หจก. ขอนแก่นการพิมพ์.
- ศคุธร ถิ่นนคร, บุญฤา วิไลพล, ชาญชัย มณีคุลย์ และ วรพงษ์ สุริยจันทราทอง (2543). วารสารแก่น เกษคร 28 (2): 71-78.

^{2&#}x27; = \$ 6.27 /kg (16% CP, 73% TDN)

- สำนักงานเศรษฐกิจการเกษคร (2541) สถิติการเกษตร กระทรวงเกษตรและสหกรณ์ กรุงเทพฯ
- AOAC. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists. (15th ed.). AOAC., Arlington, Virginia.
- Argel, P.J. and Keller-Grein, G. (1996). Regional experience with *Brachiaria*: Tropical America-Humid Lowland. In: Miles, J.W. Maass, B.L. and Valle, C.B.do. (Eds). *Brachiaria*: Biology, Agronomy and Improvement. CIAT Publication No. 259, Cali, Columbia. pp 205-224.
- Hare, M.D., Thummasaeng, K., Suriyajantratong, W., Wongpichet, K., Saengkhum, M., Tatsapong, P., Kaewkunya, C. and Booncharern, P. (1999). Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. Tropical Grasslands, 33: 65-74.
- Hongyantrachai, S., G. Nithichai, N. Wongsuwan, S. Prasanpanich, S. Siwichai, S. Praturnsuwan, T. Tasapanon and B.R. Watkin. (1989) The effects of grazing versus indoor feeding during the day on milk production in Thailand. *Tropical Grasslands*, 23, 8-14.
- Keller-Grien, G., Maass, B.L. and Hanson, J. (1996). Natural variation in Brachiaria and exiting germplasm collection. In: Miles, J.W. Maass, B.L. and Valle, C.B.do. (Eds). *Brachiaria*. Biology, Agronomy and Improvement, CIAT Publication No. 259, Cati, Columbia. pp. 16-42.
- Prasanpanich S., P. Sukpituksakul, S. Tudsri, C. Mikled, C.J. Thwaites and C. Vajrabukka. (2002) Milk production and eating patterns of lactating cows under grazing and indoor feeding conditions in central Thailand. *Tropical Grasslands*, 36, 107-117.
- Roger B.W., (1983). Feeding experiments with dairy cattle. In Ternouth, J.H (ed.). (pp. 70-97). Dairy cattle research Techniques. Queensland Department of Primary Industries Miscellaneous Publication 82017, Brisbane, Australia.
- SAS Institute, (1985), SAS User's Guide: Statistics, SAS Institute, Inc., Cary, North Calorina.
- Schultze-Kraft, R. and Teizel, J.K. (1992). *Brachiaria* decumbens Stapf. In: Mannetje, L. 't. and Jones R.M. (Eds). Plant Resources of South-East Asia. Pudoc-DLO, Wageningen, The Netherlands. pp 58-59.
- Tinnakorn, S. and Kreethapon, I. (1993). Demonstration trial on suitable backyard pasture utilization for small dairy farms in Pak Chong. In: Chen, C.P. Sitjipanon, C. (Eds). Strategies for suitable forage-based livestock production in South-East Asia. Proc. of FAO regional meeting, Khon Kaen, Thailand. FAO Rome. pp 59-62.
- Topark-Ngarm, A. and Gutteridge, R.C. (1986). Forages in Thailand. In: Blaire, G.L., Ivory, D.A. and Evans, T.R. (Eds). Forages in Southeast Asian and South Pacific Agriculture. ACIAR Proc. No. 12. Canberra, Australia. pp 96-103.
- Tudsri S., S. Prasanpanich, S. Sawadipanich, P. Jaripakom and S. Iswilanons. (2001) Effect of pasture production systems on milk production in the central plains of Thailand. *Tropical Grasslands*, 35, 246-253.
- Van Soest, P.J., and J.B. Robertson. (1985). Analysis of Forages and Fibrous Feeds: A laboratory manual for Animal Science 631, 381 pp. Cornell University, University, Logan, Utah USA.

Inter-row planting of legumes to improve the crude protein concentration in *Paspalum atratum* cv. Ubon pastures in north-east Thailand

M.D. HARE¹, I.E. GRUBEN², P. TATSAPONG¹, A. LUNPHA¹, M. SAENGKHAM¹ AND K. WONGPICHET¹

¹ Faculty of Agriculture, Ubon Rachathani University, Ubon Rachathani, Thailand

²Department of Agroecology, University of Rostock, Rostock, Germany

Abstract

Two field trials on an extremely acid, infertile upland soil were conducted in north-east Thailand to find legumes that, when planted in alternate 50 cm rows in Paspalum atratum cv. Ubon swards, would persist and improve the quality of the pasture. In Trial 1, the treatments were P. atratum sown alone or in alternate rows with Lablab purpureus cv. Rongai, Vigna unguiculata (KUC-7), Canavalia ensiformis (common Thailand type), Aeschynomene americana cv. Lee, Macroptilium gracile cv. Maldonado, Stylosanthes guianensis cv. Tha Phra (CIAT 184), Centrosema pascuorum cv. Cavalcade, Calopogonium mucunoides (common Thailand type) and Pueraria phaseoloides (common Thailand type). In Trial 2 in the second year, the inter-rows between the existing rows of P. atratum were cultivated at the beginning of the wet season and the treatments were grass-only and grass interrow planted with S. guianensis var. vulgaris x var. pauciflora (ATF 3308), M. atropurpureum cv. Aztec, M. gracile cv. Maldonado, S. guianensis cv. Tha Phra, C. pascuorum cv. Cavalcade, C. pubescens (common Thailand type), S. hamata cv. Verano, C. mucunoides (common Thailand type) and P. phaseoloides (common Thailand type).

The highest cumulative wet season dry matter (DM) yields in Trial 1 were produced by the

Correspondence: M.D. Hare, Faculty of Agriculture, Ubon Ratchathani University, Warin Chartrab, Ubon Ratchathani 34190, Thailand. E-mail: michael@agri.ubu.ac.th

grass-only swards, 12.2 t/ha DM, which was 35% higher than the average yields produced by the mixed grass-legume swards. Crude protein level of *P. atratum* was 4.5% in grass-only swards. Consequently, the total crude protein yields of the grass-only swards were up to 50% lower than the best grass-legume sward of *C. pascuorum* that produced 808 kg/ha crude protein from 4 cuts.

In Trial 2, highest yielding legumes in the first wet season were ATF 3308 stylo, M. gracile, Tha Phra stylo, Verano stylo and calopo. In the second wet season in Trial 2, all 3 Stylosanthes species produced significantly more DM than other legumes but there were no significant differences in cumulative dry matter production between grass-only and grass-legume swards. Crude protein yield of Tha Phra stylo swards was 80% greater than yields on the grass-only swards. Volunteer seedlings of Verano stylo emerged in the inter-rows in the other grass-legume swards where the twining legumes were either very sparse or had disappeared. Stylosanthes species appear suitable legume species to establish in Ubon paspalum pastures on infertile upland soils in north-east Thailand.

Introduction

The primary pasture production system in Thailand is to grow pure swards of cultivated grasses. The quality of these pastures is usually low as most farmers apply little if any fertiliser (Tudsri et al. 2001), and even where fertiliser has been applied, crude protein concentrations remain low, ranging from 4.4-8.6% on infertile soils (Hare et al. 1999a).

Paspalum atratum cv. Ubon grows well on waterlogged acid soils in Thailand (Hare et al. 1999a; 1999b) but it has low crude protein concentration, frequently falling below 7%. Introducing legumes into P. atratum pasture swards could be a cost-effective method for smallholder farmers to improve pasture quality.

Incorporation of a legume into a grass pasture not only provides a nitrogen source to promote grass growth but also leads to a more balanced diet for the animal. However, the management of tropical grass-legume mixtures to maintain a suitable composition is difficult with the fastergrowing C4 grasses usually dominating the slower-growing C3 legumes (Humphreys 1981). Mixed grass-legume swards usually become grass-dominant within 1-2 years after establishment. The nature of the competition does vary from one field situation to another so that a particular species may be a strong competitor in one site but a weak competitor in another (Grime 1977). However, the general experience in Thailand and many other tropical countries is the failure of legumes to persist in mixed swards for more than 2 years (Hongyantarachai et al. 1989; Wongsawan and Watkin 1990; Ibrahim and Mannetje 1998; Hare et al. 1999b, 2003).

Tropical grass-legume mixtures have been successful where different management strategies led to the legume species competing successfully with the associated grass species (Hernandez et al. 1995; Ibrahim and Mannetje 1998; Tudsri et al. 2001, 2002). It is common practice to increase the legume seeding rate in order to increase the legume percentage in the first year (Jones et al. 1986), particularly on infertile soils (Humphreys 1987). Legumes are generally more compatible with erect bunch grasses than with stoloniferous grasses.

P. atratum is an erect bunch grass which does not spread into vacant areas in pastures. These areas are often invaded by weeds (Kalmbacher et al. 1997), but could be better utilised by legumes. On seasonally wet-seasonally dry soils in Thailand, legumes failed to persist in P. atratum swards (Hare et al. 1999a; 2003), but in these studies the grass seeding rate was higher than the legume rate. If the legume seeding rate was higher than the grass rate and sites were on slightly better drained soils, legumes might persist better (Hare et al. 2003), especially in the open spaces in P. atratum pastures.

The objective of this research was to assess the persistence of a range of legumes planted in alternate rows with *P. atratum* and their ability to improve the quality of *P. atratum* swards in northeast Thailand on soils that are not waterlogged.

Materials and methods

The field experiments were conducted from 2000 to 2002 in Ubon Ratchathani province, north-east Thailand (15°N, 104°E) on the Ubon Ratchathani University farm in a 0.15 ha field. Rainfall at 1 km from the trial site (Figure 1), was above the medium-term average of 1593 mm/annum in all 3 years of the study. In the first establishment year (2000), it was 30% above the medium-term average, with over 400 mm/month in May, July and August. Rainfall in May, the first month of the wet season, in 2001 and 2002 and in June 2002, was more than 50% below the medium-term average but heavy thunderstorms in the second half of the wet season resulted in above average annual rainfall.

This upland site was on a sandy low humic gley soil (Roi-et soil series) (Mitsuchi et al. 1986). Soil samples to 10 cm, taken at sowing in May 2000, showed that the soil was acid (pH 4.7; water method), and low in organic matter (1%). N (0.05%), P (10.7 ppm; Bray II extraction method) and K (19.5 ppm) concentrations. Prior to cultivation, the site had been planted to ruzi grass, mixed with Verano stylo, for 6 years. It was ploughed in March and again in April 2000 and then rotary hoed to produce a fine seedbed before seed sowing in May 2000.

Trial 1 — Simultaneous sowing of Ubon paspalum and forage legumes in alternate rows

This trial was a randomised complete block design with 10 cultivar treatments and 4 replications. The treatments were Ubon paspalum sown alone or in alternate rows with lablab (Lablab purpureus cv. Rongai), Lee American jointvetch (Aeschynomene americana cv. Lee), llanos macro (Macroptilium gracile cv. Maldonado), Tha Phra stylo (Stylosanthes guianensis cv. Tha Phra) (CIAT 184), Cavalcade centurion (Centrosema pascuorum cv. Cavalcade), cowpea (Vigna unguiculata), jackbean (Canavalia ensiformis (common Thailand type), calopo (Calopogonium mucunoides) (common Thailand type) and puero (Pueraria phaseoloides) (common Thailand type) (Table 1).

In April 2000, thousand-seed weights and seed germination were determined for each species, in order to calculate seed sowing rates (Table 2). Lee American jointvetch, Ilanos macro, Tha Phra stylo, calopo and puero seeds were soaked in hot

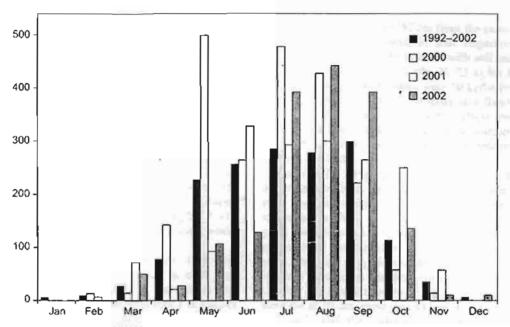


Figure 1. Rainfall (mm) at Ubon Ratchathani University during the study and the medium-term mean (1992-2002).

Table 1. Botanical, cultivar and common names of species used in trials.

Species	Cultivar	Conunon names
Paspalum atronum	Ubon	atra paspalum, Ubon paspalum!
Lablah purpureus	Rongai	lablab
Aeschynomene americana	Lee	American jointvetch
Macroptilium gracile	Maldonado	llanos macro
Stylosanthes guianensis	Tha Phra	Tha Phra stylo1, CIAT 184, stylo 184
Centrosema pascuorum	Cavalcade	centurion
Centrosema pubescens	Common Thailand type	centro
Vigna unguiculata	KUC 7	cowpea
Canavalia ensiformis	Common Thailand type	jackbean
Calopogonium mucunoides	Common Thailand type	calopo
Pueraria phaseoloides	Common Thailand type	puero
Stylosanthes guianensis var, vulgaris x var, pauciflora	ATF 3308	stylo 3308
Macropalium atropurpurcum	Aztec	atro
Stylosanthes hamata	Verano	caribbean stylo, Verano stylo, hamata stylo

Common name in Thailand.

Table 2. Thousand seed weight (TSW), germination %, seed treatment, rhizobium treatment and seed sowing rate of Ubon paspalum and of 9 forage legumes (Trial 1).

Treatment	TSW (g)	Germination (%)	Seed treatment	Rhizobium treatment	Sowing rate (kg/ha)	
Ubon paspalum	2.9	70	None	None	12	
Lablab	253.5	83	None	CB 756 cowpea Group J	250	
Lee American jointvetch	3.4	65	Hot water 70°C, 3 min.	Cowpea jointvetch	20	
Llanos macro	3.4	44	Hot water 70°C, 3 min.	None	20	
Tha Phra stylo	2.9	98	Hot water 70°C, 5 min.	None	10	
Cavaleade centurion	21.9	83	Sandpaper	CB 1923 centrosema	50	
Cowpea	203.8	90	None	Cowpea Group I	200	
Jackbean	1348.7	92	None	None	400	
Calopo	11.5	38	Hot water 60°C, 3 min.	Cowpea Group M	40	
Puero	12.2	46	Bot water 60°C, 3 min.	Cowpea Group M	40	

water and Cavalcade centurion seeds were scarified with sandpaper prior to germination testing and sowing in May. Seeds of lablab, Lee American jointvetch, Cavalcade centurion, cowpea, calopo and puero were also inoculated with the appropriate rhizobium strains (Table 2).

Ubon paspalum and the legumes were sown on May 3, 2000 in plots measuring 6 m × 5 m. Ubon paspalum was sown alone in 50 cm spaced rows in the first treatment, while the legume species and the grasses were sown in alternate rows 50 cm apart in the other treatments. The seed was lightly covered with soil and fertilised with 22 kg/ha N, 22 kg/ha P, 22 kg/ha K and 13 kg/ha S. The plots were hand-weeded 2 weeks after sowing.

Plant counts were made on three 1 m rows of legumes and Ubon paspalum in each plot, 4 weeks after sowing (Table 3). Harvests to estimate DM yield were taken from four 1 m rows of each legume and Ubon paspalum per plot, cut 10 cm from ground level on July 4, and then at approximately 6-week intervals on August 17, September 29 and November 13, 2000. On each occasion, samples were sorted into Ubon paspalum and legume species and weighed. Dry matter yields were calculated from 200 g subsamples of grass and legume which were dried at 70°C for 48 hours. Samples from the dried grass and legumes were analysed for total N (Kjehldal method) in order to calculate crude protein levels $(\%N \times 6.25).$

After each sampling, the plots were cut to 10 cm above ground level and fertilised with N, P, K and S at the same rates applied at sowing.

Trial 2 — Sowing forage legumes in rows between established rows of Ubon paspalum

This study used the same plots as in Trial 1, comprising 10 treatments replicated 4 times. The treatments were Ubon paspalum alone and Ubon paspalum inter-row planted with ATF 3308 stylo (S. guianensis var. vulgaris × var. pauciflora).

seeds were sown in rows, 50 cm from the centre of the existing grass rows, in their respective plots. The seed was lightly covered with soil and all plots fertilised with 23 kg/ha N, 23 kg/ha P and 23 kg/ha K. Seeding rates were 10 kg/ha for the 3 stylo species, 20 kg/ha for Aztec atro, llanos macro and centro and 40 kg/ha for calopo and puero. All legume seeds were sandpaper-scarified but were not treated with rhizobium as rhizoblum was not available.

On June 25, the grass was harvested at 10 cm above ground level from four 1 m rows in all plots and dry weight and crude protein determined as in Trial 1. Following this sampling, grass rows in all plots were cut to 10 cm above ground level and the whole plots fertilised at the same rates used at the time of legume sowing. No legumes were cut at this time. On August 14 and October 17, four 1 m rows of grass and legume were cut at 10 cm above ground level to estimate DM yield and the material was analysed for crude protein concentration as in Trial 1. After each sampling cut, remaining rows were cut and plots fertilised with the same rates of N, P and K as used previously.

Two dry season sampling cuts were taken from each plot on December 26, 2001 and April 26, 2002. On each occasion, only samples of grass were taken from four 1 m rows in each plot as the legumes present were below the 10 cm cutting height. At the April cut, the legume seedlings in the inter-rows were scored for percent ground cover in each plot. After each dry season cut, the same rates of N, P and K were applied again. Pastures were harvested during the wet season on June 17 (grass only), August 21 and October 22, 2002, to estimate DM yield and the material was analysed for crude protein concentration. Fertiliser (same rates as above) was applied only once in the 2002 wet season, on August 21.

Results

jackbean having the lowest and the small-seeded Lee American jointvetch the highest plant density at 4 weeks after sowing. This was a reflection of the number of viable seeds planted, which varied widely from 270 seeds/ha for jackbean to 2900 and 3800 seeds/ha for Ubon paspalum and Lee American jointvetch, respectively.

Table 3. Plant populations (4 weeks after sowing) in Ubon paspalum and mixed grass-legume swards (Trial I).

Treatment	Ubon paspalum	Legume				
((plants/m²)					
Ubon paspalum only	129 a1	-				
Ubon paspalum — lablab	108 ab	120 bc				
Ubon paspalum - Lee American jointvetch	1)5 ab	166 a				
Ubon paspalum — lianos macro	109 ab	107 bcd				
Ubon paspalum Tha Phra stylo	86 b	97 bcd				
Ubon paspalum — Cavalcade contunion	96 ab	130 ab				
Ubon paspalum — cowpea	116 ab	79 cd				
Ubon paspalum — jackbean	97 ab	27 с				
Ubon paspalum — calopo	114 ab	66 de				
Ubon paspalum — puero	126 ab	104 bcd				

¹Within columns, means followed by a common letter are not significantly different at P = 0.05 by Duncan's Multiple Range Test.

The highest total first wet season dry matter yield was produced by the pure grass swards, 12.2 t/ha DM, which was 35% higher than the average yields produced by the mixed grasslegume swards (Figure 2). Yield of Ubon paspalum in pure grass swards was double that when grown in association with legumes.

Annual legumes, jackbean, cowpea and lablab, were dominant at the first cut, producing significantly more dry matter than the associated Ubon paspalum as well as all other legumes except Cavalcade centurion. However, these 3 annual legumes had died in all plots by the third cut. The other biennial and perennial legumes grew more slowly, with Cavalcade centurion and Lee American jointvetch producing the most legume DM at the second and third cuts, respectively. By the fourth cut, there were no significant differences in DM production between the surviving 6 legume species.

Total crude protein yields for the season were highest in the Cavalcade centurion, lablab, jackbean and puero swards (Figure 3). Cavalcade centurion swards produced 50% more crude protein than the pure grass swards and nearly twice

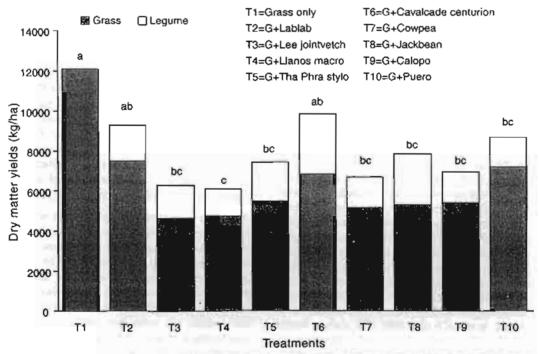


Figure 2. Total wet season dry matter yields of Ubon paspalum and grass + legumes planted in alternate rows in the first year (Trial 1). Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test.

the amount produced by the llanos macro and cowpea swards. Concentrations of crude protein in Ubon paspalum were low, averaging 5% (Figure 3), compared with an average of 14.3% in the legumes, with puero producing the highest and cowpea the lowest levels.

Trial 2 - Sowing forage legumes in rows between established rows of Ubon paspalum

Total wet season DM yields exceeded 10 t/ha in the pure grass and llanos macro swards, which were significantly higher than DM yields produced by the centro and puero swards (Figure 4). Total crude protein yields in the llanos macro swards were significantly higher than yields produced by the Cavalcade, centro, calopo and puero swards (Figure 5). Crude protein concentrations in Ubon paspalum were very low at all cuts, averaging 4.7% (Figure 5), compared with 13.0-18.9% for the legumes.

In the dry season (November-April), DM production of Ubon paspalum averaged 2200 kg/ha, with no significant differences between grasslegume and pure grass plots. Legumes were very small and prostrate at the first dry season cut (December) and as they were below the 10 cm cutting height, no legume dry matter data were collected. In April, many legume seedlings were emerging in the plots, so their presence was scored visually in each treatment. ATF 3308 stylo, Tha Phra stylo and Verano stylo were dense along the inter-rows in all their respective plots; llanos macro, Cavalcade, centro and calopo had 20-30% ground cover in their respective plots; puero covered only 5% in its plots and no Aztec atro seedlings were observed. However, in all twining legume plots, high numbers of small volunteer Verano stylo seedlings were emerging.

In the third wet season, there were no significant differences in cumulative dry matter production between pure grass and grass-legume swards (Figure 6). Volunteer Verano stylo plants were the dominant legume in all twining legume swards and a small amount of volunteer calopo also grew in the Verano stylo swards (Figure 6). Aztec atro and puero disappeared after the second wet season cut. Tha Phra stylo swards produced over 80% more crude protein yield than the pure grass swards (Figure 7).

Discussion

This research has shown that, with management, adapted legumes can successfully establish and grow in Ubon paspalum swards. While Ubon paspalum is not an aggressive, competitive grass, the companion legumes that are introduced must seed freely and be adapted to cutting in order to survive the long dry season. Whenever legumes grow in close proximity with grasses, they must have mechanisms which allow them to survive both the physical and biotic environment (Grime 1977). The best adapted legumes were the stylo species, Tha Phra, Verano and ATF 3308, which all showed good persistence and production on upland sandy soils. By having many low growing points, good drought tolerance and free-seeding habits, they persisted and regenerated in the second year after sowing. These were the only legumes that regenerated well from fallen seed in third-year Ubon paspalum swards. Stylo species flower and produce large amounts of seed under dry conditions in north-east Thailand (Hare and Phaikaew 1999) and a proportion of this seed starts germinating very quickly at the onset of the first rains at the beginning of the wet season.

In the second wet season of Trial 2, volunteer Verano stylo seedlings emerged in all plots where the twining legumes had either died or were very sparse. The trial site was in a former ruzi grass and Verano stylo pasture and the seedlings of volunteer Verano stylo must have come from buried seed. Verano stylo is ubiquitous along roadsides throughout north-east Thailand and it persists year after year due to its ability to set large amounts of seed with over 90% hardseededness (Mott et al. 1981). Under field conditions, this seed softens slowly with approximately 35% of Verano seed softened in one year (McKeon and Mott 1982). Even though after 3 years much of the hardseededness would have been broken, only 10% germination is sufficient to establish a new sward (McKeon and Mott 1982). Tha Phra stylo is also very persistent on upland sandy soils but, with the reported occurrence of anthracnose in CIAT 184 stylo (Tha Phra stylo) in several situations in south-east Asia (Chakraborty et al. 2001), seed production of the anthracnose-resistant hybrid species, ATF 3308 stylo (Grof et al. 2001), is currently being undertaken by Ubon Ratchathani University. In small trials at the university, dry matter production of ATF 3308

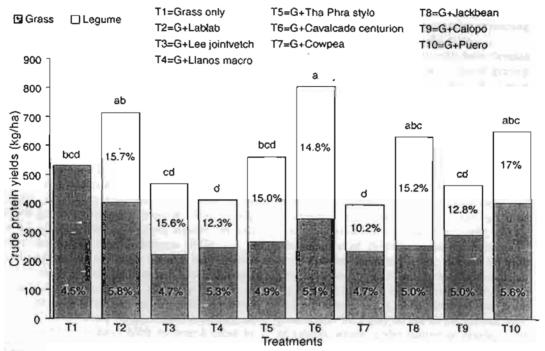


Figure 3. Total wet season crude protein yields of Ubon paspalum and grass + legumes planted in alternate rows in the first year (Trial 1). Crude protein concentrations of the components are shown in the columns. Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test.

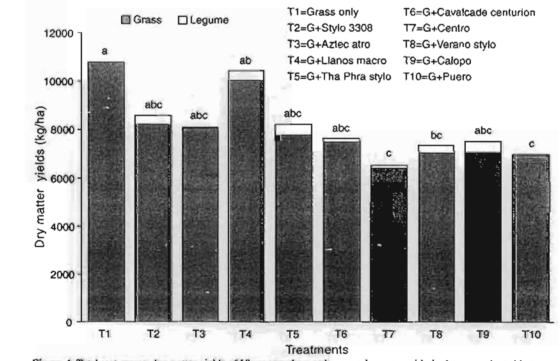


Figure 4. Total wet season dry matter yields of Ubon paspalum and grass + legumes, with the legumes planted between grass rows in second-year grass swards (Trial 2). Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test.

stylo was equal to that of Tha Phra stylo and seed production was superior.

Other twining legumes were productive in the first season but most failed to re-establish adequately in the second season to be of any medium-term benefit. Except for Cavalcade, the contribution of the annual legumes, lablab, jackbean and cowpea, to sward productivity and quality was short-lived and, by the third harvest in the wet season, they had died out. Their demise was most likely a function of their annual growth and the repeated cutting of their elevated growing points. Cavalcade persisted longer because its lower growing points were protected from cutting and it also is more of a trailing legume and can root from trailing stems (Clements 1992).

Lee American jointvetch behaves as an annual rather than a short-lived perennial in north-east Thailand because of the long dry season. It behaved like Calvacade, regrowing after each wet season cut because, under repeated cutting, it changes its more erect habit to branch close to

the ground (Bishop 1992), thereby protecting many growing points from defoliation.

Perennial twining legumes, with their elevated growing points, are vulnerable to heavy grazing or regular cutting. In these trials, the performance of twining legumes varied, with all competing strongly in Trial 1 but many performing weakly in Trial 2. In Trial 1, llanos macro, calopo and puero persisted throughout the first wet season and, at the final wet season harvest in October, there were no significant differences between their yields and those of the remaining legumes. Above average rainfall, which created moist soil conditions under which all 3 legumes thrive (Skerman et al. 1988; Cameron 1992; Halim 1992; Hare et al. 1999a), may have contributed to their competitive performance in this trial. In Trial 2, llanos macro and calopo were both vigorous at the first legume harvest but, at the end of the wet season, only calopo showed good persistence. This may be due to the growth habit of calopo, which, under cutting or grazing, will

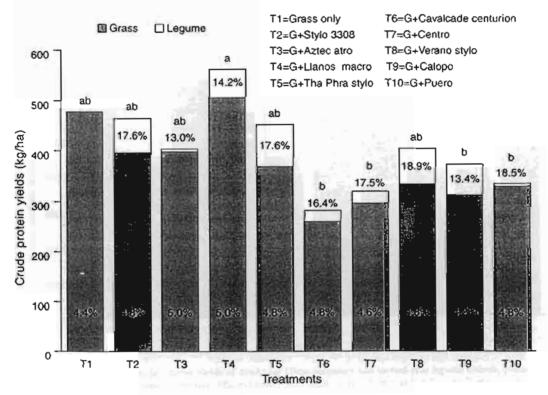


Figure 5. Total wet season crude protein yields of Ubon paspalum and grass + legumes, with the legumes planted between grass rows in second-year grass swards (Trial 2). Crude protein concentrations for the components are shown in the columns. Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test.

grow along the ground and then root at the nodes under moist conditions. Llanos macro does not have this habit of rooting from trailing stems.

In Trial 2 in the second wet season after oversowing into grass swards, the twining legumes produced negligible amounts of dry matter. After the final harvest in October, only 16 mm of rain fell from November to February, the main flowering period of these legumes. We have observed that, unless some dry season rain falls or irrigation is applied, these legumes either fail to flower or produce shrivelled pods and seed. During a long dry season, these perennial twining legumes act as annuals and, without fallen seed, they die out.

The trials were managed to endeavour to favour the legumes. High legume seeding rates were used, the inter-rows were cultivated before oversowing in second-year grass swards, only the grass rows were cut at the beginning of the second and third growing seasons and the amount of fertiliser applied to third-year swards was reduced in order to reduce the competitiveness of Ubon' paspalum. Any species, which did not perform well under these conditions, would not perform well under commercial conditions.

High legume seeding rates and the selective cutting of only grass during the legume establishment phase will assist the survival and production of legumes. Smallholder farmers apply very little fertiliser and, when fertiliser in these trials was reduced, legume production increased. Reducing the amount of fertiliser is a good management strategy for smallholder farmers. Even though dry matter production of Ubon paspalum is reduced, the associated increase in legume proportion in the sward raises the overall crude protein concentration and total protein on offer in grass-legume swards. This should result in improved animal performance.

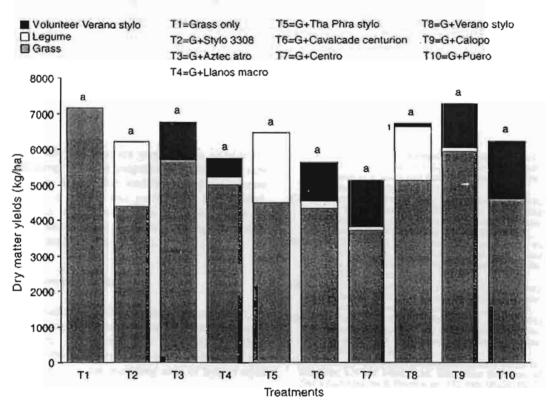


Figure 6. Total wet season dry matter yields of third-year Ubon paspalum and second-year legume swards, planted in alternate rows (Trial 2). Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test.

Volunteer calopo

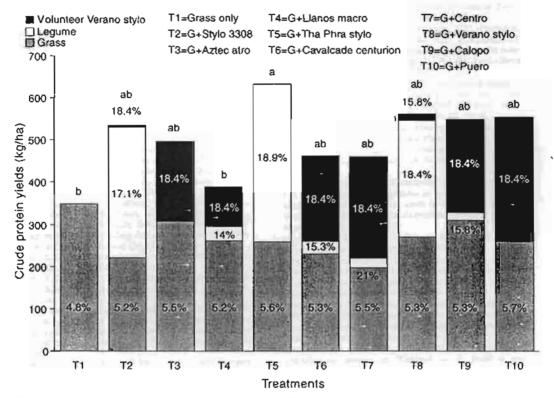


Figure 7. Total wet season crude protein yields of third-year Ubon paspalum and second-year legumes swards, planted in alternate rows (Trial 2). Crude protein concentrations of the components are shown in the columns. Columns carrying different letters are significantly different at P = 0.05 by Duncan's Multiple Range Test. Volunteer calopo.

While stylo species were seen as suitable for planting in Ubon paspalum swards, other new legume species that seed freely and are tolerant of close cutting and grazing are still needed. Further evaluation of an extended range of legumes is needed to identify new legume species for grazed pasture mixtures.

Acknowledgements

We thank the Thailand Research Fund (TRF) for providing financial support for this research project, the Faculty of Agriculture, Ubon Ratchathani University for research facilities and Dr Bert Grof for providing seed of hybrid stylo ATF 3308.

References

BISHOP, H.G. (1992) Aeschynomene americana L. In: Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages, pp. 37-39. (Pudoc-DLO: Wageningen). CAMERON, A.G. (1992) Macroptilium longepedunculatum (Benth.) Urban. In: Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages. pp. 159-160. (Pudoc-DLO: Wageningen).

CHAKRABORTY, S., FERNANDES. MELKANIA. GUODAO, L. and KELEMU, S. (2001) Use of high yielding anthracnose resistant Stylosanthes for agricultural systems. ACIAR Annual Report for the year 1999-2000, pp. 1-5.

CLEMENTS, R.J. (1992) Centrosema pascuorum Martius ex Benth, In; Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages. pp. 84-86. (Pudoc-DLO: Wageningen).

GRIME, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1195.

GROF, B., FERNANDES, C.D. and FERNANDES, A.T.F. (2001) New Stylosanthes guianensis for tropical grasslands. Proceedings of the XIX International Grassland Congress, Brazil, 2001. Session 13, 2-7.

HALIM, R.A. (1992) Pueraria phaseoloides (Roxb.) Benth. In: Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages. pp. 192–195. (Pudoc-DLO: Wageningen).

HARE, M.D. and PHAIKAEW, C. (1999) Forage seed production in Northeast Thailand: A case history. In: Loch, D.S. and Ferguson, J.E. (eds) Forage Seed Production. Volume 2: Tropical and Subtropical Species. pp. 435-443. (CAB International: Oxon, UK).

HARE, M.D., THUMMASAENG, K., SURIYAJANTRATONG, W., WONGPICHET, K., SAENGKHUM, M., TATSAPONG, P.,

- KAEWKUNYA, C. and BOONCHARERN, P. (1999a) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. *Tropical Grasslands*, 33, 65-74.
- HARE, M.D., BOONCHARERN, P., TATSAPONG, P., WONGPI-CHET, K., KAEWKUNYA, C. and THUMMASAENG, K. (1999b) Performance of para grass (Brachiaria mutica) and Ubon paspalum (Paspalum atratum) on seasonally wet soils in Thailand. Tropical Grasslands, 33, 75–81.
 HARE, M.D., KAEWKUNYA, C., TATSAPONG, P. and SAENG-
- HARE, M.D., KAEWKUNYA, C., TATSAPONG, P. and SAENG-KHAM, M. (2003) Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37, 20-32.
- HERNANDEZ, M., ARGEL, P.J., IBRAHIM, M.A. and MANNETJE, L.'t (1995) Pasture production, diet selection and liveweight gains of cattle grazing Brachiaria brizantha with or without Arachis pintoi at two stocking rates in the Atlantic Zone of Costa Rica. Tropical Grasslands, 29, 134-141.
- HONGYANTARACHAI, S., NITHICHAI, G., WONGSUWAN, N., PRASANPANICH, S., SIWICHAI, S., PRATUMSUWAN, S., TASAPANON, T. and WATKIN, B.R. (1989) The effects of grazing versus indoor feeding during the day on milk production in Thailand. Tropical Grasslands, 23, 8-14.
- HUMPHREYS, L.R. (1981) Environmental adaptation of tropical pasture plants. (MacMillan: London).
- HUMPHREYS, L.R. (1987) Tropical pastures and fodder crops. Intermediate Tropical Agriculture Series. 2nd Edn. (Longman: New York).
- IBRAHIM, I. and MANNETJE, L.'t (1998) Compatibility, persistence and productivity of grass-legume mixtures in the humid tropics of Costa Rica. 1. Dry matter yield, nitrogen yield and botanical composition. Tropical Grasslands, 32, 96-104.
- JONES, R.M., TOTHELL, J.C. and JONES, R.J. (1986) Pastures and pasture management in the tropics and sub-tropics. The

- Tropical Grassland Society of Australia. Occasional Publication No. 1.
- KALMBACHER, R.S., BROWN, W.F., COLVEN, D.L., DUNAVIN, L.S., KRETSCHMER, A.E.Jr, MARTIN, F.G., MULLAHEY, J.J. and RECHCIGE, J.E. (1997) 'Suerte' aira paspalum. Its management and utilization. University of Florida, Agricultural Experimental Station. Circular S-397.
- MCKEON, G.M. and MOTT, J.J. (1982) The effect of temperature on the field softening of hard seed of Stylosanthes humilis and S. hamata in a dry monsoonal climate. Australian Journal of Agricultural Research, 33, 75-85.
- MITSUCHI, M., WICHAEDIT, P. and JEUNGNUNIRUND, S. (1986) Outline of soils of the Northeast Plateau, Thailand. Their characteristics and constraints. Technical Paper No. 1. Agricultural Development Center in Northeast: Khon Kaen, Thailand.
- MOTT, J.J., MCKEON, G.M., GARDENER, C.J. and MANNETIE, L.'t (1981) Geographic variation in the reduction of hard seed content of Stylosanthes seeds in the tropics and subtropics of northern Australia. Australian Journal of Agricultural Research, 32, 861-869.
- SKERMAN, P.J., CAMERON, D.G. and RIVEROS, F. (1988) Trapical forage legumes. 2nd Edn. (FAO: Rome).
- TUDSRI, S., PRASANPANICH, S., SAWADIPANICH, S., JARIPA-KORN, P. and ISWILLANONS, S. (2001) Effect of pasture production systems on milk production in the central plains of Thailand. Tropical Grasslands, 35, 246-253.
- TUDSRI, S., ISHII, Y., NUMAQUCHI, H. and PRASANPANICH, S. (2002) The effect of cutting interval on the growth of Leucaena leucocephala and three associated grasses in Thailand. Tropical Grasslands, 36, 90-96.
- WONGSAWAN, N. and Watkin, B.R. (1990) The management of grass/legume pasture in Thailand — A problem and challenge. ACIAR Forage Newsletter, 15, 5-7.

(Received for publication March 7, 2003; accepted December 7, 2003)

Forage Seeds for Promoting Animal Production in Asia

Dr. Michael Hare Professor, Scientist Faculty of Agriculture, Ubon Ratchathani University

Dr. Peter Horne
Agronomist, Team Leader
Lao-CIAT Forages and Livestock Systems Project

Report presented at:

Asian Seed 2004 Seoul, South Korea September 2004

Introduction

The livestock sector in Asia is undergoing a major transformation. Rapidly increasing populations, increases in per capita income and, especially, increases in urbanization (Table I) are driving a so-called "livestock revolution" (Delgado et al. 1999, Vercoe et al. 2000). In China, for example, per capita consumption of meat and milk doubled between 1983 and 1993 at the same time as the country experienced the start of a massive shift of people to the cities. This shift is continuing and the percentage of the population in urban areas in China is expected to increase from 36% to 57% between 2000 and 2025 (Ghirotti, 1999). Urbanization on this scale will inevitably be associated with changes in the patterns of food consumption as diets in rural communities are typically higher in calories and less diversified than urban diets, which are characterized by higher consumption of fivestock products. Consequently, milk and meat consumption in the region is predicted to increase by 2-4% per annum between 1993 and 2020 (Table 2).

Table 1: Regional changes in human populations and urbanisation

Table 1: I	(egional ch	anges in hui	nan popula	tions and ui	rbanisation			
Region		950	-19	K .	20	00	, 2i	25 septiments
	Total population	% orban- 'population			i otal Igani lattoa			// Orban population
Africa	219	13.2	401	24.4	813	37.7	1496	54.0
Asia	1368	16.0	2255	26.4	3636	38.1	4960	54.3
Europe	320	54.8	473	67.1	540	78.7	718	82.9
Latin America	164	40.9	324	60.4	464	74.8	710	84.2
North America	166	64.6	327	76.5	296	86.4	370	85.6
Oceania	13	64.5	21	71.6	33	78.2	41	81.1
Former USSR	180	39.4	255	60.5	315	76.3	308	73.5
World	. 2501	28.6	3967	39.3	6253	49.6	8294	64.1

Source: Ghasani 1999

¹ For the purposes of this paper, Asia is defined as the regions East Asia (China, Hong Kong, Mongolia, North Korea, South Korea), South Asia (India, Afghanistan, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka) and Southeast Asia (Brunei, Cambodia, East Timor, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Viet Nam).

Table 2: Regional trends in livestock production and in consumption

STREET, STREET	STREET, ASSESSMENT	nilk produc	THE PERSON NAMED IN		ENDERHAND !	NORTH	
Projected annual a growth theorat growth theorat		5050 (yr. cm) 2050 (yr. cm) 2050 (yr. cm)		Propertion (%)		Projected annual providi in fisie	
46		viilk		OTHES.	Mont	Mile	01 seried 13 (1993 – 2020)
China	3.0	2.8	85	17	2.9	3.2`	3.4
Other East Asia	2.4	1.7	8	2	2.4	3.9	2.2
India	2.9	4.3	8	160	2.8	1.6	5.0
Other South Asia	3.2	3.4	5	41	2.6	3,1	2.9
Southea st Asia	3.0	2.7	16	11	3.1	2.9	2.7
eveloping World	2.8	3.3	188	391	2.7	3.2	2.8
Developed World	0.6	0.2	115	263	0.7	0.4	0.6
World	1.8	1.7	303	654	1.8	1.6	1.4

weer ance Delgado et al. 1999

To meet the projected increases in demand, the livestock sector in Asia is expanding, with projected growth in production of meat and milk in the range of 2-4% per annum to 2020 (Table 2). The production systems that are emerging to meet this demand are what Steinfeld (1998) describes as "a dualistic mode of development" involving the expansion of two main sectors:

- (i) A modern, demand-driven and capital-intensive sector, producing poultry meat, eggs, pork and sometimes milk and which increasingly uses state-of-the-art technologies.
- (ii) A traditional, resource-driven and labour-intensive livestock sector on small, subsistence or semi-market oriented crop-livestock farms.

As an example of the first sector, over the past decade there has been a 51% increase in dairy cow numbers in Thailand, rising from 237,000 head in 1993 to 358,000 head in 2002. Smallholder dairying has become a good income-earning occupation for crop farmers in mixed farming systems (Chantalakhana, 2000). This expansion is expected to increase as, currently, only 41% of the fresh milk consumed in Thailand is produced locally. Fresh milk consumption is increasing by 19-21% per year but local production is only increasing by 5% per year. As an example of the second sector, in Cambodia, Myanmar and Laos more than 80% of the population is rural, remote and locked into subsistence production of food grains in low-input low output systems. Livestock have played a major role in providing livelihood security in lean years but

increasingly farmers are becoming more market-oriented, selling animals to buy grains rather than growing their total needs.

A key question is "Can these two livestock sectors satisfy the projected increase in demand for livestock products?" In the recent past, increases in ruminant livestock production in the region have come largely from increases in livestock numbers expanding into under-utilised traditional grazing resources and not through increasing productivity per head or per unit of land area. The large numbers, but low productivity, are demonstrated by Table 3 which shows that in 1993, although the Asian region accounted for 36% of the world population of cattle and buffalo, its share of total world production of beef and milk was much lower (14% and 17% respectively). Can this expansion continue? In Asia, the agricultural land only increased by 3% from 1993-2002. Within the agricultural land, the area used for arable and permanent crops increased by 5.7% but the area in pasture only increased by 1.6% (FAOSTATS, 2004). Areas of communal grazing lands have shrunk in nearly all the countries in the region. In other words, more animals are being grazed on a smaller area or being kept in yards and fed cut-and-carry forages. In short, the projected increase in demand for livestock products (Table 2) cannot be met simply by continuing to increase herd numbers. Future increases in production must come from higher productivity per unit of land area and this means increasing efficiency of feed production.

So a second key question is "Where will the extra feed resources come from for this extra livestock production?" One answer is from increasing use of feed grains (Table 2). There is likely to be increased pressure on feed grains, especially in the modern, demand-driven and capital-intensive sector (Table 2). While the supply of these grains is predicted to be elastic, a likely and unwelcome scenario is that large amounts of grain could be used to produce livestock products for an urban population in developing countries where there is actually a net lack of grain food for people. There is an urgent need and an opportunity to increase both the efficiency of animal production and decrease its reliance on food grains which could be used by humans (Gill, 2000). Forage grasses and legumes are the cheapest high-fibre feeds for ruminant livestock. Many well-adapted and productive varieties already exist with the potential to substantially increase livestock productivity per head and per unit area. Enhancing and expanding production systems based on these varieties has great potential to support the predicted explosion in ruminant livestock numbers and reduce the reliance of the livestock sector on feed grains.

An example of the potential to improve livestock productivity through the use of forages has been demonstrated by the smallholder dairy industry in Thailand. National averages of milk yields per cow per day still range between 8-10 kg compared to 20-30 kg for dairy cows in developed countries. The average calving interval can be as long as 500-600 days (Chantalakhana, 2000). The main factor limiting dairy cow productivity in Thailand is lack of good quality feed. Concentrates are increasingly expensive for the smallholder producers who dominate the industry but dairy cattle are not productive if grazing only natural, low-quality pastures. A dairy cow needs 30-40 kg of fresh forage per day, with approximately 12% crude protein, to be productive. Research at Ubon Ratchathani University has been able double average milk production per cow in 10 years (1994-2004) from 7 kg to 14 kg/cow/day without increasing the pasture area. This has been achieved by grazing cows on high quality pasture grasses day and night. Previously cows were yarded, fed cut and carry forage, silage and concentrates. Cows are no longer yarded, concentrates have been reduced to minimal levels and irrigated pastures have replaced silage for dry season feeding. Beef steers grazing on similar good pastures at the university average a very-respectable 0.5 kg/head/day weight gain (Hare et al. 2003).

Table 3: Cattle and buffalo numbers and beef/milk production in Asia in 1983 and 1993

Reaton	Sharen	rio pit Woeh ini fin	Distribution of writte and buildlo (% of world midd)			
	Beet 1983 1996		Milk 1983 1993		1988	1998)
China	1	4	1	1	5	7
Other East Asia	0	1	0	0	0	0
India	4	5	8	12	19	20
Other South Asia	2	2	2	4	5	5
Southea st Asia	2 -	2	0	0	3	4
Developi ng World	34	41	24	32	69	74
Develop ed World	66	59	76	68	31	26
	Total production (Mtx10 ⁶)				Head (x10 ⁶)	
World -	48.8	55.0	477.4	511.8	1378	1457

Source after Delgado et al , 1999

Current sources of ruminant livestock feed in Asia

Natural vegetation comprises a large component of the diet of ruminant animals in village farming systems in Asia. This natural vegetation is found on communal grazing areas, along roadsides, on wasteland around crops and buildings, in plantations and orchards and on fallow land that is idle. The vegetation mainly consists of native grasses, which are usually very fibrous and of low quality, such as *Imperata cylindrica*, *Chrysopogon aciculatus*, *Panicum repens* and *Penniscium polystachion* in the tropical regions.

Crop residues left over from harvesting annual field crops are particularly important sources of dry season forage. The main crop residues are rice straw and stubble, maize stalks, cassava leaves and stalks, sugar cane leaves and residues from vegetables, soybeans and mungbeans. Many of the crop residues are very old and decayed by the time they are used and are usually of a very low quality. All classes of ruminant animals graze crop residues in Asia.

Leaves from forest trees and from planted tree legumes such as Leucuenu spp. are important sources of cattle feed in the dry season in Asia. Most countries in tropical regions have promoted planted Leucuenu spp. as living fences around houses and paddocks.

By-products from crop processing such as rubber seed meal, oil palm meal, pineapple peelings, cassava chips and other agricultural crop wastes from factories are often used to feed dairy cows in Asia. Quality, supply and price of these by-products are typically highly variable.

Many perennial legumes have been sown as traditional cover crops in rubber tree, oil palm and coconut plantations and in orchards. These legumes are commonly grazed by sheep and goats and used as cut-and-carry forage for beef and dairy cattle. The main legumes used as cover crops in tropical regions are Centrosema pubescens, Pueraria phaseoloides and Calopogonium mucumoides.

The main forage grass and legume species used by farmers in Asia are detailed in Table 4. The use of improved forages has steadily increased in the region over the last twenty years but the areas planted are still tiny compared to the areas needed to support an Asian "livestock revolution". Recent work by the International Center for Tropical Agriculture (CIAT), using farmer participatory research methods, has resulted in the adoption of forage technologies by thousands of smallholder farmers who are, consequently, experiencing a range of benefits especially improved livestock productivity and income (Stür et al. 2002; Horne et al. in press). The production of farmer-friendly publications on forage technologies and ways of working effectively with farmers has contributed to this uptake (Horne and Stür, 1999; Stür and Horne, 2001; Horne and Stür, 2003).

Developing forage production systems like this on a larger scale throughout the Asian region will depend on both increasing seed production (within and outside the region) and increasing the use of vegetative propagation (especially within the smallholder sector). The seed trade has an important role to play in increasing forage production to meet the feed requirements of ruminant livestock, but to take advantage of this opportunity the seed trade must position itself to be "in the Right Place at the Right Time with the Right Product".

Table 4. Main improved forage species planted by farmers in Asia

(rasses)	Legumes
Lolium multiflorum	Trifolium pretense
Dactylis glomerata	Trifolium repens
Festuca arundinacea	Medicago sativa
Lolium perenne	Trifolium alexandrinum
Brachiaria ruziziensis	Stylosanthes hamata
Panicum maximum	Macroptilium atropurpureum
Brachiaria humidicola	Centrosema pascuorum
Setaria sphucelata	Stylosanthes guianensis
Digitaria eriantha	Leucaena leucocephala
Paspahan plicatulum	Desmanthus virgatus
Paspalian atratum	Centrosema pubescens
Brachiwia mutica	
Pennisetum purpureum	

Current status of forage seed production in Asia

India. China and Thailand are the only countries in the region with established forage seed production programmes. Other countries produce small quantities of seed that are insufficient for domestic purposes and they must import extra seed.

India has over 200 companies involved in seed production but while the emphasis is on crops, many companies produce hybrid forage sorghums, berseem clover and alfalfa. In the tropical areas there is also a large informal trade in *Cenchrus* and *Stylosanthes* spp. An estimated area of 450-500 ha was under stylo seed production in the 2000-01 season. Stylo seed yields range from 1.6-2 t/ha in dryland conditions to 2.2-2.8 t/ha in rainfed conditions. However, it is estimated that only 5% of farmers use seed sold by private seed companies, with the balance of seed coming from the informal sector, public sector and NGOs (Turton and Baumann, 1998). The majority of forage seeds are uncertified and are produced and distributed in a complex network of farmers, middlemen, merchants and traders throughout India. The whole system functions on a trust basis, using contacts built up over many years. The informal seed sector works very well in India and it is doubted whether the formal seed sector is capable of producing enough forage seeds to reach the millions of farmers who are demanding forage seeds for their hungry animals.

China produces alfalfa seed (50 t/year) in the north and stylo seed (45 t/year) in the south. Alfalfa cultivars are locally bred and adapted to the climate. The cultivars are planted in large seed fields, up to 300 ha in size, and average seed yields are 150 kg/ha. Smaller quantities of T. repens (5 t/year) and L. perenne (20 t/year) are also produced.

Stylo seed production in the south of China is predominantly S. guianensis (CIAT 184) and S. hamata ev. Verano with smaller quantities of S. scrabra ev. Seca. Seed crops are managed as annual crops: seedlings are raised like rice in seedbeds, transplanted into the field (or orchard), weeded regularly, fertilized and left to mature. Details on the seed industry, management practices and production trends have been described by Guodao et al. (1997). Seed yield varies with cultivars: Verano has a mean yield of 390 kg/ha (ranging from 240-1020 kg/ha), followed by CIAT 184 with 290 kg/ha (75-520 kg/ha)and Seca with 280 kg/ha (100-520 kg/ha). (Guodao et al. 1995).

Local seed production can not meet the increasing demand from the expanding ruminant animal population and China therefore is large importer of forage seeds-T. repens, L. perenne, L. multiflorum, D. glomerata, F. arundinacea and a smaller range of tropical forage seeds.

Thailand, for nearly 30 years, has had a successful government supported forage seed production programme producing a wide range of forage seeds on government stations and in villages (Hare, 1993; Hare and Phaikaew, 1999). Tropical forage seed production has evolved through research, pilot projects and long-term government support. Forage seed production has been integrated into the village cropping systems in Northeast Thailand and become the main commercial crop for many smallholder farmers.

Over 3000 farmers harvest and sell seed annually to the Department of Livestock Development (DLD). At its peak in 1995, over 1200 tonnes of forage seeds, all hand harvested, were processed by the DLD. The main seeds produced have been *B. ruziziensis*, *P. maximum* cv. Purple and *S. hamata* cv. Verano (Hare and Phaikaew, 1999). Since 1995 budget cutbacks have reduced the amount of seed purchased by the DLD but the current quantities of over 600 tonnes.

annually, still makes Thailand the largest forage seed producer in South East Asia (Table 5). Ubon Ratchathani University also has a small village seed production programme.

Government support to the large DLD programme and the smaller Ubon Ratchathani University research programme has created a stable market for forage seeds. In recent years, the private sector from off-shore seed companies has started to become involved. Japanese seed companies have small programmes producing seed of selected cultivars of *P. maximum* and *Chloris gavana* for the Japanese forage market. Grupo Papalotla seed company from Mexico has begun a joint venture with the DLD and Ubon Ratchathani University to produce over 100 tonnes of Brachiaria hybrids. Mulato and Mulato 2, in 2004 (Table 5). There is also a large informal forage seed sector in Thailand where farmers produce more seed than the government quotas, and this seed (primarily *B. ruziziensis*, *P. maximum* and *P. atratum*) is traded by the seed growers to other farmers.

Table 5. Expected production of forage seeds in Thailand in 2004

[2] (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Development programme Department of Livertock	A BOX DESTRUCTION OF THE PROPERTY OF THE PROPE
第75年,西班巴斯特的新加州	(lġ)	(kg) :
Brachiaria ruziziensis	260,000	THE RESERVE OF THE PARTY OF THE
P. maximum cv. Purple	100,000	
Paspalum atratum	52,000	2.200
B. ruziziensis x B. brizantha cv. Mulato	100.000*	
B. ruziziensis x B. brizantha x B. decumbens ev. Mulato 2		10.000*
Stylosanthes hamata cv. Verano	24,000	
S. guianensis var. guianensis cv. Tha Phra (CIAT 184)	16,000	
S. guianensis var. vulgaris x panciflora (ATF 3308)		2.000
Centrosema pascuorum cv. Cavalcade	9,000	

^{*}Joint venture with "Grupo Papalotla"

Factors contributing to the success of forage seed production in Thailand

As the Thai forage seed industry is well established and evolving, we present here an analysis of the factors that have contributed to its success and the potential changes in the future, to draw lessons for the potential of a forage seed production industry throughout the region.

Favourable climate Forage seed production in Thailand is concentrated in the northeast region (14-18°N, 1200-1600 mm average annual rainfall, 100-300 m asl). The well-defined wet and dry seasons are conducive for flowering, harvesting and drying (Hare and Phaikaew 1999). The region is at sufficiently high latitude to enable a strong flowering response of tropical forage plants to short days and with some species to long days (Hare et al. 2001). The reliable dry season contributes to successful ground harvesting legume seed of some species (Wickham et al. 1977; Hare and Phaikaew 1999).

Regions at the lower latitudes (less than 12°) have a suboptimal range in daylengths to trigger the strong flowering response leading to high seed yields. These regions include Malaysia, Indonesia and southern parts of Thailand. Cambodia and Vietnam. Nor do they have a reliable dry season of sufficient length to facilitate seed harvesting. There are niches in these low latitude regions, particularly at higher altitudes (Fisher 1999), where tropical forage seeds can be harvested, but only with difficulty. Regions in the higher latitudes (above 20°) generally have low cool season temperatures which can reduce flowering or be damaging if frost occurs, or too much rainfall during the harvesting period, particularly with grass species. These regions include northern parts of Lao PDR. Vietnam and Myanmar.

Suitable soils Sandy soils on flat to gently rolling land in northeast Thailand are easily cultivated for seed-bed preparation. While the soils are acid and low in organic matter, nitrogen, phosphorus and sulphur, most tropical grasses and legumes grow satisfactorily with the addition of fertiliser. The soils are well-drained and while low in water-holding capacity, the sufficient amount of wet season rain (1200-1600 mm) prevents seed crops from suffering water stress.

The soil texture of the sandy soils in northeast Thailand is an important factor in facilitating ground sweeping of fallen legume seeds. Clay and laterite soils leave granules that make seed cleaning difficult.

Extensive research Extensive preparatory research of forage species by the DLD and universities in Thailand before commercial seed production commenced, enabled seed production management packages to be prepared for smallholder seed growers. Applied studies on flowering, seed development, establishment, cutting, fertiliser, harvesting, seed processing and seed quality helps contribute to successful seed production management. On-station research helped to establish average seed yields, so that a realistic price could be worked out for farmers before pilot projects were undertaken in villages. The research is on-going, and new knowledge can be quickly applied to improve both seed yields and seed quality of forage seeds.

Thailand has highly skilled forage agronomists and forage seed production specialists to work in the government-supported seed programme. The agronomists and seed specialists conduct research, manage the seed production programme, and train farmers and other support staff. Pasture and forage seed production courses are offered at the under graduate and post graduate levels in Thai universities. In many other counties in Asia there is a lack of forage seed production specialists. There are many general agronomists and extension officers who have received short-term training in seed production/technology, but they are not people who can conduct in-depth research that will lead to seed production management packages for successful commercial production of forage seeds. In many countries there are no champions of forage seeds, who have a passion for seeds and understand the whole process from establishing seed, growing seed and commercializing seed.

Pilot projects Following on-station research, the feasibility of forage seed production by village farmers is first investigated by a small number of farmers in pilot projects (Table 6). At the completion of the pilot projects, expanded village seed production programmes commenced for Verano stylo, ruzi grass, Purple guinea, Ubon paspalum. The Phra stylo, Cavalcade and Mulato.

Government support Smallholder seed production and research and development onstation would not have been possible without long-term government support from the Thai government for the DLD programme (30 years) and the Thailand Research Fund (TRF) for the programme at Ubon Ratchathani University (10 years). The long-term support included:

- Field research on applied agronomic management and seed technology.
- Pilot project feasibility studies.
- Selection and training of farmers in seed crop management, harvesting and cleaning.
- Providing technical support to seed growers.
- Contracting farmers to buy the seed at a guaranteed price and being the main buyer of seed.
- Processing, storing and marketing the forage seeds.
- Creating markets for forage seeds.

Table 6. Forage species and number of farmers in pilot seed production projects in northeast Thailand.

Species	Year of Pilot project	Number of transport
Stylosouthes humilis	1975	West in D. 7 car several
S. hamata ev. Verano	1977	5
S. scabra cv. Seca	1979	1
S. guiemensis ev. Endeavour.	1979	6
S. guiemensis cv. Schofield	1979	14
S. guiamensis ev. Cook	1980	10
Macroptilium atropurpureum ev. Siratro	1979	2
Macroptyloma uniflorum cv Leichhardt	1979	5
Brachiaria ruziziensis	1986	30
S. guiemensis ev. Graham	1990	. 50
Panicum maximum cv. Purple	1993	50
Paspalum atratum ev. Ubon	1996	1 · · · · · · · · · · · · · · · · · · ·
Macroptilium gracile ev Maldonado	1996	1
S. guiemensis cv. Tha Phra	1997	50
Centrosema pascuorum cv. Cavalcade	1998	50
B. ruziziensis x B. brizantha ev. Mulato	2003	10

Lack of long-term government support has terminated smallholder seed schemes in Indonesia and Lao PDR (Phaikaew, 1997). Often this has been due to a lack of funds to purchase seed and ineffective marketing to sell forage seeds. In many instances, projects have started well under overseas donor project development funds but once the projects are completed, the project does not continue under national government budget funding.

Increased market demand for forage seeds Demand within Thailand for forage seeds has created a strong internal market. This demand has been led by the dairy sector, with dairy cow numbers increasing from 60,000 head in 1984 to 358,000 head in 2003. Dairy farmers see the increased value of improved pastures quickly reflected in improved milk yields and economic returns (Lekchom et al. 1992). In turn, with less communal grazing land available for beef cattle, farmers raising beef cattle are also planting improved pastures, though at a lower rate than dairy farmers. Dairy and beef cattle improvement and expansion has been actively promoted by the Thai government, with subsidization of milk, school milk programmes, cattle loan schemes and access to credit. The lack of a strong dairy sector in many countries in Asia has limited the demand for forage seeds in those countries.

Why only the public sector involvement in forage seeds and not the private sector?

Forage seeds have no major use other than for propagation (Ferguson and Loch, 1999). Their value is determined by the increased amount of forage they can grow, which in turn leads to increased animal production per head or per hectare. It is the demand for forage that drives the demand for seed. One therefore asks the question, "Why has the private sector not become involved in Thailand when there has been such a strong demand for forages for many years?" There are many reasons for this:

(i) In the past, public sector pasture development programmes in Asia have been very charitable in Asia, with large quantities of seed either distributed free or sold at cost price. Even the current seed programme in Thailand subsidizes seed prices and sells seed at prices only a little above wholesale prices paid to seed growers. This has produced a mentality in farmers that pasture seed must be cheap. Many farmers are unwilling to pay higher prices for quality seed that private companies may produce or are not interested in the advantages in forage quality and increased animal production that higher-priced seeds may bring; they only want cheap seed.

However, the dilemma here for seed companies in Asia is that the majority of smallholder livestock farmers are resource rich but cash poor. Many of these farmers raise sheep, goats, buffalo and small native beef cattle, which traditionally did not require more expensive forages of improved species. The farmers are not able to afford high priced seeds from seed companies or imported from overseas.

- (ii) Forage seeds are more difficult to promote and sell than seeds of arable crops. Economic returns from forage seeds take longer to be realized than from arable crops, even though they may be more robust in the long term. Seed companies must have an understanding of the animal processes involved in grazing pastures and have data to present to farmers in order to convince them to grow new species or cultivars. The whole seed marketing operation is more difficult for forage seeds than for arable crops.
- (iii) Perennial forages do not have to be resown every year; many last for over 10 years if management is good. The same buyers therefore do not come back every year to buy forage seeds. Also, once a pasture has been established, smallholder farmers can (and do) renew or expand their areas using rootstock. The seed companies therefore must be actively seeking new clientele every year.

Demand also fluctuates as markets become saturated and the fluctuations are sometimes dramatic and occur without warning. Demand is closely related to the livestock markets and animal products. Many forage seed companies can get caught with thousands of kilogrammes of unsold seed in stock, which they must carry over for 1-3 years. Forage

seeds require good storage as they can deteriorate very quickly in the tropics. Forage seed production is therefore regarded as a risky business that requires a lot of investment.

- (iv) Smallholder farmers within mixed cropping systems will only buy a few kilogrammes of seed at a time. The seed companies must have a big distribution system to reach out to hundreds of smallholder farmers. This requires investment.
- (v) Forage seeds need favourable growing conditions to produce high seed yields and they are not easy to grow. In places where they grow well as forages, they may not produce any seed at all. High quality forage seed production is a specialised operation and not suited to opportunistic seed growers.
- (vi) All tropical forage species and the majority of temperate species currently used by farmers in Asia do not have Plant Breeding Rights (PBR) and are public species. Seed companies are making profits by trading in seed of these varieties but the gains a company may make with a particular variety can be quickly lost to competitors. PBR are able to offer exclusivity to a seed company to control all stages of production and marketing (Ferguson, 1999). PBR transforms pasture seed from a low-profite commodity into a proprietary product and seed companies are able to invest in the development and promotion of new cultivars, without fear that advantages gained will be lost to their competitors.

A problem in the tropics is that there has been a strong tendency to release new forage species selected by the public sector and not covered by PBR rather than new cultivars as in the developed temperate regions, which can attract PBR. It is the continuing flow of new cultivars of a few species (ryegrass, white clover, tall fescue, lucerne) that sustains the seed industry in the temperate regions. Hybridization of apomictic tropical grasses is very difficult but not impossible (Miles and Valle, 1997), as demonstrated by the release of the hybrid brachiarias, Mulato and Mulato 2.

How can the private sector become involved?

Currently, there is no large sophisticated international trade in tropical forage seeds as there is with temperate forage seeds. It is doubtful whether many regional private forage seed companies will be established to buy and sell forage seeds exclusively within Asia, except for agro-industrial uses (such as legume cover crops in plantations). The economics of low-volume forage seed markets within the countries would not justify the investment in establishing forage seed production as a long-term enterprise. There are several steps that need to be taken before the private sector can become committed to tropical forage seed production in the region:

- (i) The exclusivity offered by PBR to seed companies may, in the long term, be the most profitable pathway for private companies. However, because of the long time frame to breed new tropical cultivars, the public and private sector have complementary roles in developing a seed supply industry (Loch and Boyce, 2003). The seed companies can form joint ventures with public sector plant breeders, where, depending on what stage of the breeding they enter, they either own the cultivar or become the head-licensee.
- (ii) Plant breeding programmes should focus on the breeding of new cultivars of major species (Brachiaria, Panicum, Stylosanthes), rather than minor species which have a small market. Grupo Papalotla invested in Brachiaria breeding of new cultivars, because

of the huge market for Brachiaria species in Central and South America (see case study below).

- (iii) The main forage seed market must be identified.
- (iv) The region of seed production must be chosen. For example, in South East Asia, the northeast region of Thailand has developed tropical forage seed production because of suitable climate, soils and thousands of smallholder seed growers who have a long experience in producing high quality forage seeds. For many it is their major occupation.
- (v) Close linkages must be maintained with the public sector to provide technical assistance to the private companies in seed production research, agronomy research, livestock feeding trials and selection and training of seed growers.
- (vi) The seed companies must be champions of the forage seeds they are producing and be passionate about the benefits offered to livestock farmers who use their forage seeds. For the companies to be successful, they should have a network of seed agronomists, forage agronomists and livestock specialists, all interacting to produce the seed and then sell the seed to livestock farmers.
- (vii) The retail prices must be related to the forage value of the cultivars and the amount and value of animal products generated. The concept of cheap seed must change. In the beginning of commercialisation of a new cultivar, there must be a period in which the wholesale prices are sufficient to attract and reward the seed growers. Companies may have to promote the multiple use of forage seed crops in order to attract more seed growers. Many forage seed crops can be grazed or cut for forage 7-8 months per year before being closed for seed.

If the international tropical forage seed trade does develop in Asia, one scenario is that seed of forage varieties is grown in Asia and exported to other parts of the region or the world. One case study where this is already happening is presented below to illustrate the potential for the forage seed market. Grupo Papalotla, a forage seed company from Mexico, has contracted this year over 3000 smallholder seed growers in Northeast Thailand to produce approximately 100,000 kg of *Brachiaria* hybrids cvv. Mulato and Mulato 2. The seed will mainly be exported back to Central and South America, which is the largest tropical forage seed market in the world, with over 80,000 tonnes of seed being sold every year (Santos Filho, 1996).

Grupo Papalotla- a venture between a private forage seed company and the public sector

Grupo Papalotla established a joint venture with the public sector to breed and produce seed of *Brachiaria* hybrids. The venture is a long-term investment that involves the public sector in Colombia and Thailand.

Colombia Several species of the grass genus Brachiaria have high potential as a source of feed for livestock production in the tropics. All of these varieties, however, have significant limitations. For example, B. decumbens cv. Basilisk grows well in the dry season but is not a high quality feed and produces very little seed in most areas of Southeast Asia. Ruzi grass (B. ruziziensis) produces high yields of good quality feed in the wet season but is poorly adapted to the long dry season and soon dies out. In the late 1980's, public sector Brachiaria breeding programmes were initiated in Brazil and Colombia to try to combine the best characteristics of different Brachiaria species into new hybrids. After extensive selection in field trials throughout

the 1990s. Mulato, the first interspecific *Brachiaria* hybrid bred by Dr John Miles, CIAT, was released in 2000 by Grupo Papalotla. Under an agreement with CIAT, Grupo Papalotla has exclusive world rights to produce and sell Mulato seed. CIAT receives funds to support the *Brachiaria* breeding programme and a royalty on seed sales.

CIAT's decision to license Mulato was due to the lack of public sector capacity to distribute *Brachiaria* seed. In keeping with its mandate to fight poverty in the tropics, CIAT saw partnering with a private company as the most direct way to get new germplasm to small-scale livestock producers. Because Mulato has been developed by CIAT research, it is not part of the germplasm collection of unimproved germplasm accessions that CIAT holds in trust as international public goods. CIAT was therefore able to licence Mulato to Grupo Papalotla to apply on its behalf for plant variety protection.

Grupo Papalotla has multipartner arrangements in many countries with buyers and processors of milk, and is able to sell seed to dairy farmers, the main buyers of Mulato. The marketing of Mulato is based on it having the following main attributes:

- Dry matter yields that are on average 25-35% more than similar grasses.
- Milk yields that are 50% higher than those of similar grasses.
- Crude protein content up to 22%, which is very high for a tropical grass.
- Digestibility of 62%.

Thailand In 2003, Grupo Papafotla made the business decision to come to Thailand to produce Mulato seed. The decision to produce seed in Thailand was based on the following:

- Quality Forage seeds are hand harvested in Thailand and are of very high purity (98-99.5%). This is achieve either by daily hand knocking seed from seedheads that have been tied into living sheaves or by collecting seed from nylon bags tied over the seedheads (Kowithayakorn and Phaikaew, 1993; Phaikaew, 1997). Brachiaria seed harvested in South America and Mexico is allowed to fall to the ground and then swept up by large sweeping machines. Consequently the seed is contaminated with impurities and requires a lot of cleaning to achieve a purity above 95%, which increases costs of production.
 - In addition, because of the large seed production of *Brachiaria* species in Brazil there is evidence of increasing contamination of *B. brizantha* seed with morphologically identical seeds of *B. decumbens* (Souza, 1999).
 - Grupo Papalotla has decided that in order to control quality and avoid the risk of seed contamination it was better to produce seed of Mulato in Thailand.
- Professionalism Smallholder seed growers in Thailand are very professional in the
 management of forage seed crops. Areas are small (0.2-0.5 ha). This enables
 transplanting of seedlings from nurseries to fields, hand planting in rows, hand
 weeding and hand harvesting and cleaning to take place. For many growers, forage
 seed is their main cash crop and they intensively manage the crops to produce high
 seed yields.
- Experience The long experience of thousands of smallholder farmers in producing forage seeds was a decisive factor in convincing Grupo Papalotla to start seed production in Thailand.
- Integrity Grupo Papalotla felt that Mulato PBR would be respected in Thailand because of the close-knit ties between the seed growers and the public sector that buys and sells forage seeds.
- Public sector involvement The organisation of thousands of farmers in producing forage seeds of several species by the Department of Livestock Development and the

forage research experience of Ubon Ratchathani University meant that it was relatively easy for Grupo Papalotla to start a joint venture in Thailand. No other country in tropical Asia would be able to mobilise such a large number of smallholder farmers to produce forage seeds. The two public sector organisations were able to conduct pilot seed projects in 2003, and in 2004 have been responsible in selecting sites, villages and farmers to grow Mulato and Mulato 2. They will also supervise the harvesting, cleaning and packaging of the seed to be ready for export. In addition, they are conducting in-depth on-station research in Thailand into forage and seed production of the two cultivars.

Mulato seed production in Thailand by Grupo Papalotla

This joint venture has been very carefully developed through research, a pilot project and careful selection of experienced seed growers.

Public Sector Research The DLD and Ubon Rachathani University have conducted forage, seed production and seed quality research on Mulato for 7 years prior to the joint venture commencing in 2004. Forage production has been excellent, with Mulato producing significantly more dry matter than ruzi in the wet season (31% higher) and in the dry season (131% higher). Seed trials have shown that Mulato produces 34% more seed if it is closed in August rather than earlier, and 86% more seed was harvested by using nylon bags rather than daily knocking.

The research is on-going, with intensive forage production research at several sites, detailed seed production research into flowering, seed set, closing date, planting time and method and harvesting techniques, and seed quality and seed storage studies. Grupo Papalotla will be able to use these results immediately in the promotion of Mulato and Mulato 2 (forage production and quality) and for improved seed yields and seed quality.

Pilot project In 2003, Mulato was planted in a pilot project by 6 farmers supervised by DLD and 4 farmers by Ubon Ratchathani University. The results from the pilot project enabled Grupo Papalotla to work out wholesale prices based on farmer yields and seed quality. It also established the feasibility of smallholder Mulato seed production in Thailand. Seed growing guideline brochures were able to be printed and distributed to all seed growers.

From the results of the pilot project, Mulato seed production in 2004 is being supervised by the DLD who have contracted 3000 farmers to produce up to 100 tonnes of seed. A smaller programme to produce 10,000 kg of Mulato 2 by 105 farmers is being supervised by Ubon Ratchathani University.

If this pilot project lives up to expectations. Grupo Papalotla expects to produce up to 1000 tonnes of *Brachiaria* hybrid seed (Mulato and Mulato 2) annually in Thailand. The major markets will initially be in Mexico and Brazil followed by other countries in Central and South America, but the company also intends to develop a seed market in Asia. A small market will develop in Thailand (perhaps 100 tonnes per year), with Mulato or Mulato 2 replacing ruzi because of its superior dry matter production, particularly in the dry season.

The future for forage seed production to promote animal production in Asia

Even though the demand for fresh forage will increase dramatically in the next few years, the internal market of forage seeds will not increase at the same rate, for several reasons:

- (i) Sheep and goat numbers will increase but most are likely to be raised on native pastures and forages or using cheap forage seed from the public sector and the informal farmer-tofarmer sector. Few producers will want higher-priced, higher quality seed from private seed companies.
- (ii) Many smallholder farmers will plant their forages vegetatively. This is the main method of forage establishment in Lao PDR, Vietnam and Indonesia. They may only buy 1-2 kg in the beginning and after that expand their pastures using rootstock.
- (iii) Dairy production will only expand in Thailand, China, India and maybe Malaysia depending on government policies (subsidization, tariffs, importing quotas and the main buyer of fresh milk). Except for China, adequate seed quantities for dairy forage production are already provided by the public sector and the informal sector. Mulato will probably replace a large percentage of the market for ruzi and *Panicum maximum* "Simuang" (purple guinea) in Thailand and Malaysia.
- (iv) The internal markets for forage seeds will remain too small to interest private companies investing in seed production, given the large public sector involvement.

As illustrated by the case study of Grupo Papalotla, however, opportunities do exist, for private companies to produce seed in parts of Asia for export to other countries in Asia or the world. The ventures will be more successful if the varieties have PBR protection. This will involve a substantial investment by private companies in either breeding their own cultivars or becoming head licensees for public sector bred cultivars. However, ventures with public varieties can be successful if a strong forage market (dairying for example) is targeted. The private companies must also be champions of seed and be passionate about their products. They must regard the seed, not as a commodity to be traded quickly, but as a high value product that requires sensitive and careful long-term marketing.

References

- Chantalakhana, C. 2000 Challenges facing animal production in Asia. In: Stone, G.M. (ed)

 Animal Production for a Consuming World Vol C. pp. 10-20. (A Supplement of the AsianAustralian Journal of Animal Sciences, 13).
- Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courois, C. 1999 Livestock to 2020: the next food revolution. Food, Agriculture and the Environment Paper, No. 28, 72 pages. (IFPRI, Washington, DC, USA).
- FAOSTAT data. 2004 United Nations Food and Agriculture Organization. Statistical database.
- Ferguson, J.E. 1999 Seed supply systems: a lateral viewpoint. In: Loch, D.S., Ferguson, J.E. (eds). Forage Seed Production Volume 2: Tropical and Subtropical Species. pp. 317-324. (CAB International, Oxon., UK).
- Ferguson, J.E. and Loch, D.S. 1999 Tropical and subtropical forage seed production: Looking back and to future horizons. In: Loch, D.S., Ferguson, J.E. (eds). Forage Seed Production Volume 2: Tropical and Subtropical Species. pp. 445-457. (CAB International, Oxon., UK).
- Fisher, M.J. 1999 Crop growth and development: Flowering physiology. In: Loch, D.S., Ferguson, J.E. (eds). Forage Seed Production Volume 2: Tropical and Subtropical Species, pp. 81-92. (CAB International, Oxon., UK).
- Ghirotti, M. 1999 Making better use of animal resources in a rapidly urbanizing world: a professional challenge. World Animal Review, 92:1-14.
- Gill. M. 2000 A global perspective on ruminant nutrition research. In: Stone, G.M. (ed) Animal Production for a Consuming World Vol C. pp. 337-343. (A Supplement of the Asian-Australian Journal of Animal Sciences, 13).
- Guodao, L., Phaikaew, C. and Stür, W. W. 1997 Status of *Stylosanthes* development in other countries 2. *Stylosanthes* development and utilization in China and Southeast Asia. *Tropical Grasslands* 31:460-466.
- Guodao, L., Huaxian, H. and Yixing, Z. 1995 The current status and future needs of forage R&D in tropical China. Forages for Smallholders: Proceedings of the Third Meeting of the South-east Asian Regional Forage Seeds Project, Samarinda, Indonesia. pp. 103-109. (CIAT Working Document No. 143. CIAT: Cali, Colombia).
- Hare. M.D. 1993 Development of tropical pasture seed production in Northeast Thailand two decades of progress. *Journal of Applied Seed Production* 11: 93-96.
- Hare, M.D. and Phaikaew, C. 1999 Forage seed production in Northeast Thailand: A case history. In: Loch, D.S., Ferguson, J.E. (eds). Forage Seed Production Volume 2: Tropical and Subtropical Species pp. 436-443. (CAB International, Oxon., UK).
- Hare, M.D., Wongpichet, K., Suriyajantratong, W., Thummasaeng, K. Suwanlee, S., Booncharern, P., Tasapong, P. Lunpha, A., Saipraset, K. and Intisaeng, W. 2003 Ubon paspalum: Management and Utilization. (Faculty of Agriculture, Ubon Ratchathani University, Thailand).
- Horne, P. and Stür, W.W. 1999 Developing forage technologies with smallholder farmers: How to select the best varieties to offer farmers. ACIAR monograph No. 62. (CIAT, Vientiane, Laos).
- Horne, P. and Stür, W.W. 2003 Developing agricultural solutions with smallholder farmers: How to get started with participatory approaches. *ACIAR monograph No. 99.* (CIAT, Vientiane, Laos).
- Horne, P.M., Stür, W.W., Phengsavanh, P., Gabunada Jr., F. and Roothaert, R. In press. New forages for smallholder livestock systems in Southeast Asia: recent development, impacts and opportunities. Chapter in a forthcoming book "Grasslands: Future Perspectives" to be published by FAO, Rome. 22 pages.

- Kowithayakorn, L. and Phaikaew, C. 1993 Harvesting and processing techniques of tropical grass and legume seeds for smallfarmers. *Proceedings of the XVII International Grassland Congress*, 1809-1813.
- Lekchom, C., Witayanuparpyunyong, K., Sukpituksakul, P. and Watkin, B.R. 1992 The use of improved pastures by grazing dairy cows for economic milk production in Thailand. In: Sukpituksakul, P. (ed). Publications of pasture research and development at the Dairy Farming Promotion Organization of Thailand (D.P.O.) pp. 106-110. (D.P.O., Muaklek, Saraburi, Thailand).
- Loch, D.S. and K.G. Boyce, 2003 Balancing public and private sector roles in an effective seed supply system, *Field Crops Research* 84: 105-22.
- Miles, J.W. and Valle, C.B. do 1997 Advances in breeding apomictic *Brachiaria* in tropical America. *Proceedings of the XVIII International Grassland Congress*, pp. 4-63 to 4-64.
- Phaikaew, C. 1997 Current status of and prospects for tropical forages seed production in Southeast Asia: Experiences and Recommendations from Thailand. In: Stür, W.W.(ed.). Feed Resources for Smallholder Livestock Production in Southeast Asia, Forages for Smallholders Project pp. 576-64. (CIAT Working Document No.156. Los Banos, Philippines).
- Santhos Filho, L.F. 1996 Seed production: Perspective from the Brazilian private sector. In: Miles, J.W., Maass, B.L. and Valle, C.B. do (eds). *Brachiaria: Biology, Agronomy and Improvement*, pp. 205-224, (CIAT: Cali, Colombia).
- Souza, F.H.D. de 1999 Brachiaria spp. in Brazil. In: Loch, D.S. and Ferguson, J.E. (eds) Forage Seed Production Volume 2: Tropical and Subtropical species. pp. 371-379. (CAB International: Oxon., UK).
- Steinfeld, H. 1998 Livestock production in the Asia and Pacific region current status, issues and trends. World Animal Review, 90:14–21.
- Stür. W.W. and Horne, P. 2001 Developing forage technologies with smallholder farmers: How to grow, manage and use forages. ACIAR monograph No. 88. (CIAT, Vientiane, Laos).
- Stür, W.W., Horne, P.M., Gabunada, F.A. Jr., Phengsavanh, P. and Kerridge, P.C. 2002 Forage options for smallholder crop-animal systems in Southeast Asia: working with farmers to find solutions. *Agricultural Systems*, 71, 75-98.
- Turton, C. and Baumann, P. 1998 Beyond the formal sector: fodder and forage seed networks in India, In: Horne, P.M., Phaikaew, C. and Stür, W. (eds) Forage Seed Supply Systems pp. 57-69. (CIAT Working Document No 175, Los Baños, Philippines).
- Vercoe, J.E., Fitzhugh, H.A. and Kaufmann, R. von 2000 Livestock production systems beyond 2000. In: Stone, G.M. (ed) Animal Production for a Consuming World Vol C. pp. 411-419. (A Supplement of the Asian-Australian Journal of Animal Sciences, 13).
- Wickham, B., Shelton, H.M., Hare, M.D. and De Boer, A.J. 1977 Townsville stylo seed production in North-eastern Thailand. *Tropical Grasslands*, 11: 177-187.

Said produetion of Lybrid Mulata- in Thursdad

ารผลิตเมล็ดพื้นธุ์หญาลูกผลมมูลาโต้ในประเทศไทข

ฉายแสง ไผ่แก้ว "กานดา นาคมณี "พิมพาพร พลเสน "Michael Hare"

หญ้าต่าง ๆ ในลกุลบราเคียเรีย (Brachiaria spp.)เป็นหญ้าที่มีศักยภาพสูง ในการใช้เป็นแหล่งพืชอาหารสัตว์สำหรับการผลิต สัตว์ในประเทศเขตร้อนอย่างไรก็ตามก็ยังมีข้อจำกัด บางประการ เช่น หญ้าชิกแนลนอน (B. decumbens) สามารถเจริญเติบโตได้ดีในฤดูแล้ง แต่ผลิตเมล็ดพันธุ์ได้น้อยโดยเฉพาะในแถบ ภูมิภาคเอเชียตะวันออกเฉียงใต้ในขณะที่หญ้ารูชี่ (B. ruziziensis) ให้ผลผลิตสูงในฤดูฝน แต่ในช่วงฤดูแล้งจะปรับตัวขึ้นได้ไม่ดีและอาจ แห้งตายได้หากช่วงแล้งยวงบาบมาก

ในปี พ.ศ. 2531 Dr. John Miles นักวิจัยของ CIAT ได้ทำการปรับปรุงพันธุ์ โดยการพยายามรวมลักษณะที่ดีของหญ้าในสกุล Brachiaria ต่าง ๆ เข้าด้วยกัน ปี 2544
ภายใต้ความร่วมมีอระหว่าง CIAT และบริษัท
ค้าเมล็ดพันธุ์ข้ามชาติ (Papalotta) มีการนำ
พันธุ์หญ้า Brachiaria ลูกผสมออกจำหน่าย
เป็นครั้งแรก มีชื่อเรียกว่า หญ้ามูลาโต้ (Mulato)
หญ้ามูลาโต้ เป็นหญ้าลูกผสมระหว่างหญ้ารูชี่
(B. ruziziensis) และหญ้าซิกแนล (B. brizantha)
โดยมีลักษณะดีเด่น คือ ทนแล้ง และให้ผลผลิต
สูงกว่าหญ้าในสกุล Brachiaria ด้วยกัน โดยเฉพาะ
อย่างยิ่งเป็นพันธุ์ลูกผสมที่มีลักษณะพิเศษในการ
ขยายพันธุ์แบบ apomixes (การสืบพันธุ์แบบ
กึ่งมีเพศ: การสร้างดันอ่อนจากส่วนของดอก
โดยไม่ได้รับการผสมพันธุ์) ดังนั้นเมล็ดพันธุ์ที่เก็บ
รวบรวมจากหญ้าพันธุ์ลูกผสมนี้ในรุ่นต่อไปจะมี

◄ แปลงหญ้ามูลาโตั ของเกษตรกร จ.ขอนแก่น อายุ 2 เดือน

กองอาหารสัตว์ กรมปลุลัตว์ พญาไท กรุะเทพฯ

ศูนย์วิจัยและพัฒนาชาหารสัตว์นครราวสิมา อ.ปากช่อง จ.นครราชสีมา

ศูนย์วิจัยและพัฒนาอาหารสัตว์ขอนแกน ส.ทำพระ อ.เมือง จ.ขอนแก่น

กาลวิราลัตวลาสตร์ คณะเกษตรสาสตร์ น อุบอราชธานี

ลักษณะเหมือนด้นพ่อแม่พันธุ์เดิมทุกประการ ด้วยเหตุนี้จึงเป็นหญ้าพันธุ์หญ้าลูกผสมที่เกษตรกร รายย่อยสามารถขยายพันธุ์ (ผลิตเมล็ดพันธุ์) ด้วยตนเองได้ โดยไม่ต้องชื้อเมล็ดใหม่ทุกปี จากบริษัทเมล็ดพันธุ์อย่างกับพันธุ์พืชลูกผสมอื่น ๆ เช่น ข้าวโพดลูกผสม เป็นต้น

หญ้ามูลาโด้ เหมาะสำหรับปลูก
ในพื้นที่ดินค่อนข้างมีความอุดมสมบูรณ์สูง
มีการจัดการเลี้ยงสัตว์แบบประณีตไม่เหมาะสำหรับ
ปลูกในพื้นที่ดินเลว หรือพื้นที่ที่มีน้ำท่วมขัง
จากการวิจัยในประเทศโคลัมเบีย พบว่า โคนม
ที่ปล่อยแทะเล็มในแปลงหญ้ามูลาโต้ให้ผลผลิต
น้ำนมเพิ่มขึ้น 1 ถึง 2 ลิตรต่อวัน เมื่อเปรียบเทียบ
กับโคนมที่ปล่อยแทะเล็มในแปลงหญ้าชนิดอื่น
ในประเทศฮอนดูรัส พบว่า โคตัวผู้ตอนที่ปล่อย
แทะเล็มในแปลงหญ้ามูลาโต้ มีน้ำหนักเพิ่ม 900
กรัมต่อวัน เมื่อเปรียบเทียบกับที่ปล่อยแทะเล็ม
แปลงหญ้าชิกแนลนอน โคมีน้ำหนักเพิ่ม 600
กรัมต่อวัน

หญ้ามูลาได้ ออกดอกเดือนพฤศจิกายน
 ที่ฟาร์มโคเมะ อ.ปากช่อง

เราน้ำหญ้ามูลาโต้จาก CIAT เข้ามา ปลูกทดสอบเปรียบเทียบกับหญ้าในสกล Brachiaria ชนิดต่าง ๆ ในประเทศไทยครั้งแรก เมื่อปี พ.ศ. 2539 โดยกองอาหารสัตว์ กรมปศลัตว์ ร่วมกับ โครงการพืชอาหารสัตว์เพื่อเกษตรกร รายย่อย (ESP) ได้ทดสอบเพื่อหาพันธ์หญ้า ที่สามารถให้ผลผลิตได้ทั้งในฤดูฝนและฤดูแล้ง ในพื้นที่ดินที่มีความอุดมสมบูรณ์ต่ำภาคตะวันออก-เฉียงเหนือ ปี พ.ศ. 2543 ได้มีการทดลองวิจัย การผลิตเมล็ดพันธุ์ในศูนย์วิจัยและพัฒนา-อาหารสัตว์นครราชสีมา แล้วนำผลที่ได้ไปทดสอบ ในฟาร์มเกษตรกรจังหวัดขอนแก่นจำนวน 7 ราย ในปี พ.ศ. 2546 จากผลของการทดลอบทำให้ปี พ.ศ. 2547 บริษัท Papalotla จากเม็กซิโก รับประกันจ่ายเงินให้เกษตรกร 1,800 ราย (ของชมรมผู้ผลิตเมล็ดพันธุ์พืชอาหารสัตว์แห่ง ประเทศไทย) ปลูกหญ้ามูลาโต้ในพื้นที่ประมาณ 5,000 ไร่ สำหรับผลิตเมล็ดพันธ์ประมาณ 150 ตัน เพื่อสงคอก

ข้อจำกัดของหญ้ามูลาโต้ ประการหนึ่ง
คือ ผลผลิตเมล็ดพันธุ์ด่ำ (น้อยกว่า 30 กก.ต่อไร่)
อย่างไรก็ตาม CIAT ได้มีการพัฒนาพันธุ์
ขึ้นมาใหม่โดยมีชื่อเรียกว่า "มูลาโต้ 2" (Mulato 2)
มีลักษณะทางเกษตรเหมือนกับหญ้ามูลาโต้
แต่ผลผลิตเมล็ดได้มากกว่า 1 เท่าตัว โดยมี พ.ศ.
2547 มหาวิทยาลัยอุบลราชธานี และบริษัท
Papalotta ร่วมกับเกษตรกร 105 ราย ผลิตเมล็ด
พันธุ์หญ้ามูลาโต้ 2 ประมาณ 10 ตัน

Effect of plant spacing, cutting and nitrogen on establishment and production of *Digitaria milanjiana* cv. Jarra in north-east Thailand

M.D. HARE, P. TATSAPONG, A. LUNPHA AND K. WONGPICHET

Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand

Abstract

Three field experiments were conducted in northeast Thailand on Jarra digit (Digitaria milanjiana) to examine the effect of planting stolons at varying row spacings on sward establishment and the effect of cutting frequency and rate and frequency of nitrogen application on growth and forage quality. In Experiment 1, at the first cut 4 months after planting, Jarra digit swards planted in narrow rows (0.5 m) produced more dry matter (DM), were twice as dense and had fewer weeds than swards planted in wide rows (2.0 m). Intermediate row spacings (1-1.5 m inter-rows) were not significantly lower in DM but had a higher proportion of weeds than swards planted in 0.5 m inter-rows. At the second cut 6 months after planting, row spacing had no significant effect on DM yield of Jarra digit.

In Experiment 2, increasing cutting interval and nitrogen rate significantly (P < 0.05) increased both total DM and stem DM yields. The effect of cutting interval on leaf DM was not significant but leaf DM yields significantly (P < 0.05) increased when nitrogen was applied. Cutting every 20 days over a 240-d period reduced total DM yield by 30% compared with cutting every 60 days (13.2 vs 18.8 t/ha) although, at more frequent cutting, crude protein concentrations were 30-50% higher and fibre concentrations (ADF and NDF) 7-10% lower. Twenty kg/ha N applied every 60 days increased total DM yields of Jarra digit by 36% compared with control plots. Applying higher nitrogen rates every 60 days

Correspondence: M.D. Hare, Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrab, Ubon Ratchathani 34190, Thailand. E-mail: michael@agri.ubu.ac.th

increased total DM yields by only 13% (40 kg/ha N vs 20 kg/ha N) and 7% (80 kg/ha N vs 40 kg/ha N). The yield response (kg DM/kg N) from applying nitrogen as urea ranged from 23 (320 kg/ha N) to 52 (80 kg/ha N).

Experiment 3 showed that the total amount of N applied had a greater effect on DM production and CP concentration of forage than the frequency of application.

The results are discussed in terms of their implications for smallholder farmers in the region.

Introduction

Digitaria milanjiana cv. Jarra was released in Australia in 1991 and registered in 1993 (Hall et al. 1993). In Thailand, Jarra digit has been evaluated in a series of forage trials (Hare et al. 1999a; 2003) and for seed production (Gobius et al. 2001), but despite being studied on research stations in Thailand for nearly 10 years (Hare 1995; Hare et al. 1999a; Gobius et al. 2001), Jarra digit has not been accepted as a pasture species for smallholder farmers.

The difficulty of producing good-quality seed of Jarra digit, since flowering occurs over a long period in the middle of the wet season, is considered a barrier to its wider use in Thailand (Gobius et al. 2001). However, lack of seed is not seen as a barrier to successful production of D. milanjiana ev. Mardi for pastures in Malaysia (Hacker and Wong 1992) and the closely related D. eriantha (pangola grass) in Thailand for fresh grass cash cropping (Khemsawat and Phonbumrung 2002). In Malaysia, Mardi digit is vegetatively propagated and, when stolons are planted into moist seed-beds, the spaces rapidly fill in (Hacker and Wong 1992). Similarly in Thailand, pangola grass is vegetatively propagated, with 1500-1800 kg/ha of green stolons broadcast into flooded fields (Anon. 2002). In Australia, planting pangola grass runners 1-2 m apart gives adequate coverage (Jones et al. 1986).

Spreading large quantities of green stolons across fields is labour-intensive and the fields. which are former rice paddies, must be flooded to ensure successful establishment of pangola grass in Thailand (Anon. 2002). Pangola grass is tolerant of flooding (Hacker 1992). While Jarra digit does tolerate some degree of waterlogging (Hare et al. 2004a), it does not tolerate flooding (Hacker and Wong 1992; Hare et al. 2003), and grows better on well drained soils (Hacker and Wong 1992; Hare et al. 1999a). If Jarra digit pastures could be successfully established on upland soils by planting stolons in widely spaced rows to reduce both the time taken for establishment and labour costs, interest in Jarra digit pasture production might increase in Thailand.

In village pasture systems in north-east Thailand, pastures are usually grown on the poorest soils, as more fertile soils are used for growing food and cash crops (Hare et al. 1999b). Since village farmers apply little if any fertiliser (Hare et al. 1999b; Tudsri et al. 2001), most improved pastures are nitrogen-deficient.

The level and frequency of nitrogen application and the frequency of cutting influence the quantity and quality of forage produced by tropical forage grasses. Nitrogen applied at 20 kg/ha every 30 days throughout the wet season in north-east Thailand increased dry matter yields of Paspalum atratum by nearly 90% in one trial and more than 250% in a second trial (Hare et al. 1999b). Cutting P. atratum every 20 days over a 240-day period in north-east Thailand produced only 74% of the total DM yield obtained with cutting every 60 days but crude protein concentration was nearly twice as high (10.0 vs 5.3%) (Hare et al. 2001). In a further study in central Thailand, pangola grass cut every 30 days produced 74% of the total DM yield obtained with cutting every 60 days but crude protein concentrations were 42% higher (Tudsri et al. 1998).

On well drained soils in north-east Thailand, when 40 kg/ha N was applied every 45-50 days after cutting during the wet season, Jarra digit produced more than 27 t/ha DM, with average crude protein levels of 6.6% (Hare et al. 1999a). These crude protein levels are considerably lower than the 8.1-18.7% recorded for Mardi digit in Malaysia (Hacker and Wong 1992). The low crude protein levels in Thailand were probably a result of the 45-50 day cutting interval as swards

of Jarra digit quickly become stemmy and produce seed heads in the wet season, as observed by researchers in the Department of Livestock Development. For this reason, the more leafy non-flowering pangola grass is recommended for fresh grass cash cropping. However, frequent cutting may prevent Jarra digit pastures from becoming stemmy and from flowering and may increase leafiness and quality.

The objectives of this research were to examine: the planting of Jarra digit stolons at varying row spacings in order to determine an optimum stolon planting density for Jarra digit pasture establishment; and the effect of varying cutting intervals and rates and frequencies of nitrogen application on growth and forage quality of Jarra digit pastures, in order to develop recommendations on cutting and nitrogen management for farmers.

Materials and methods

The field experiments were conducted in Ubon Ratchathani province, north-east Thailand (15°N, 104°E) on the Ubon Ratchathani University farm in a 0.3 ha field from 2000 to 2002. Rainfall, recorded 1 km from the trial site during the studies, was above the medium-term mean of 1593 mm/annum in all 3 years (Figure 1). In the first year (2000) it was 30% above the mediumterm mean with over 400 mm/month in May, July and August, making the soil very moist for good stolon establishment. Rainfall at the beginning of the nitrogen experiments in May 2001 and May 2002 was more than 50% below the mean but heavy thunderstorms in the second half of both wet seasons increased the annual rainfall above the mean.

The soil, classified as a sandy low humic gley soil (Roi-et soil series) (Mitsuchi et al. 1986), was on an upland site. Soil samples taken at sowing in May 2000 showed that the soil was acid (pH 4.7), and low in organic matter (1%), N (0.05%), P (10.7 ppm; Bray II extraction method) and K (19.5 ppm) concentrations. Prior to cultivation, the site had been planted for 6 years to ruzi grass (Brachiaria ruziciensis), mixed with Verano stylo (Stylosanthes hamata). The site was ploughed twice in March and April 2000 and rotary hoed to produce a fine seedbed the day before Jarra digit stolons were planted into moist soil in July 2000.

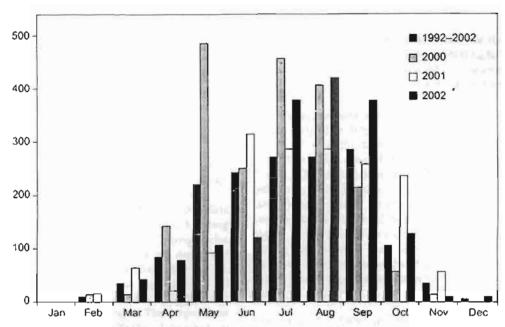


Figure 1. Rainfall (mm) at Uhon Ratchathani University during the study and the medium-term mean (1992-2002).

Experiment 1 - Effect of plant spacing on establishment

Freshly dug green Jarra digit stolons were planted on July 6, 2000 in a randomised block design with 4 plant row spacing treatments (stolons planted in rows 0.5, 1.0, 1.5 and 2.0 m apart and 0.5 m apart within rows) and 5 replications. The stolons were planted in clumps with a handful of stolons placed in holes and soil firmly pressed in around the base of the stolons. Plots measured 10 m × 4 m. Fertiliser (23 kg/ha N, 23 kg/ha K and 23 kg/ha P) was applied on September 25, 2000 and after every sampling cut.

Sampling cuts (October 24 and December 25, 2000; April 25, June 12, July 27, September 5 and October 22, 2001) were taken from eight 0.25 m² quadrats cut 5 cm from ground level in each plot with hand shears. Samples were taken to assess botanical composition (Jarra digit % and weeds % on a fresh weight basis) and Jarra dry matter yield (200 g subsample dried at 70°C for 48 h). After each sampling cut, the remaining herbage was cut to 5 cm above ground level and removed before applying fertiliser.

Experiment 2 — Effect of cutting interval and nitrogen

The research area (2000 m²) was planted with freshly dug Jarra digit stolons on July 6-7, 2000

at $50 \text{ cm} \times 50 \text{ cm}$ grid spacings and allowed to establish throughout the first wet and dry seasons. The area was cut to ground level on October 24, 2000 and on April 19, 2001 and all herbage removed. No fertiliser was applied during this period.

The experiment was a randomised complete block design comprising 4 replications, 4 cutting intervals (20, 30, 40 and 60 days) and 4 rates of nitrogen (0, 20, 40 and 80 kg/ha N) applied as urea every 60 days. All plots received P (20 kg/ha), S (20 kg/ha) and K (50 kg/ha) every 60 days. The experiment commenced on April 19, 2001 and finished on December 15, 2001, a total of 240 days. In total, the N treatments received 0, 80, 160 and 320 kg/ha N. Each plot measured 5 m × 5 m.

There were twelve 20-day, eight 30-day, six 40-day and four 60-day interval sampling cuts. At each cut, material from four 0.25 m² quadrats was cut 5 cm above ground level in each plot with hand shears, separated into leaf and stem components and weighed fresh. A 200 gram subsample of each component was taken and dried at 70°C for 48 h and dry weight recorded. The dried leaf and stem subsamples were analysed for total N to calculate crude protein levels (% N × 6.25). % ADF and % NDF. After each sampling cut, except for the final cut, the remaining herbage in the plots was cut to 5 cm above ground level and removed.

Experiment 3 — Effect of cutting and frequency and amount of nitrogen

This experiment was on the same site as Experiment 2. The field was cut to ground level on December 19, 2001 and on April 19, 2002 and all herbage removed. No fertiliser was applied during this period. From previous field experiments at Ubon Ratchathani University on sandy soils, there has been no carry-over effect from experiments, with the effects of nitrogen disappearing within 2 months (Hare et al. 1999b).

The experiment was a randomised complete block design comprising 4 replications, 3 cutting intervals (20, 40 and 60 days), 2 frequencies of nitrogen application (30 and 60 days) and 2 nitrogen rates (20 and 40 kg/ha). On April 19, 2002, nitrogen as urea was applied and all plots received P (20 kg/ha), S (20 kg/ha) and K (50 kg/ha) every 60 days. The experiment commenced on April 19, 2002 and finished on December 15, 2002, a total of 240 days. Each plot measured 5 m × 5 m. Sampling was the same as in Experiment 2.

Data from all experiments were analysed using the IRRISTAT program from The International Rice Research Institute (IRRI).

Results

Experiment 1 — Effect of plant spacing on establishment

At the first cut (110 days after planting), row spacing had a significant effect on DM productivity (Table 1). Yields of Jarra digit planted at 0.5 m spacing were 2.3 times those at 2.0 m spacing. By the second sampling (172 days after planting), row spacing had no significant (P > 0.05) effect on DM production of Jarra digit. This situation continued until the end of the study.

Dry matter yields were low in all swards at the end of the dry season (3rd cut; about 600 kg/ha) but total production in the second wet season (4th-7th cuts) was high in all swards, averaging 12.8 t/ha DM.

Jarra digit planted in narrow rows (0.5 m) was significantly (P < 0.05) denser and had significantly (P < 0.05) fewer weeds than swards planted in wider rows (1 and 2 m) for the first 2 cuts. The most common weed was pursley (Richardo scabra) with some ruzi grass (B. ruziziensis). At the end of the dry season (3rd cut), all swards, except for the 0.5 m swards, produced a higher proportion of weeds than Jarra digit. During the second wet season, Jarra digit increased in density and at the 6th and 7th cuts, all swards, on average, had less than 5% weeds.

Experiment 2 — Effect of cutting interval and nitrogen

Increasing cutting interval and nitrogen rate significantly (P < 0.05) increased both total DM and stem DM yields (Table 2). Leaf DM yields increased significantly (P < 0.05) when nitrogen was applied but cutting interval had no overall effect (P > 0.05) on leaf DM. There was also a significant cutting interval × nitrogen rate interaction for both total DM and stem DM yields.

Increasing the cutting interval from 20 to 60 days produced, on average, twice as much stem DM (Table 2). From June to September, all plots, except the 20-day cutting interval plots, produced flowering stems. While increasing the cutting interval increased total DM yields at all N levels, the increase (27%) was not significant when no nitrogen was applied. When 40 and 80 kg/ha N were applied, total DM yields were increased by more than 50% when cutting interval was increased from 20 to 60 days.

Table 1. Effect of row spacing on dry matter production of Jarra digit.

Row spacing	l™ cui (24/10/00)	2 nd cut (25/12/00)	3 rd cut (25/4/01)	4th cut (26/6/01)	5 ^{յի} ԵՍԼ (2 <i>7/11</i> 01)	6 th cut (5/9/01)	7th cut (22/10/01)
(m)				(kg/ha DM)			
0.5	2536 a ^t	2313 a	753 a	3795 a	2808 a	3918 a	3406 a
0,0	2150 a	1669 a	602 a	2858 a	2021 a	3077 a	3199 a
1.5	1782 ab	1811 a	572 a	3847 a	3169 a	3647 a	3046 a
2.0	1071 Б	1553 a	555 a	2506 a	2459 a	4047 a	3254 a

¹ Within columns, means followed by a common letter are not significantly different at P = 0.05 by Duncan's Multiple Range Test.

Table 2. Effect of cutting interval and nitrogen application on production of Jarra digit in 2001 (Experiment 2).

Cutting interval (d)			en rate ¹ Da N}	
	0	20	40	80
		Total DM y	ield (kg/ha)	
20	9 962	Total DM y	ield (kg/ha) 13 667	15 132
20 30	9 962 13 448	<u>_</u>		15 132 17 114
		14 311	13 667	

Treatment**, Cutting**; Nitrogen**; Cutting x Nitrogen*

		Leaf DM y	ield (kg/ha)	
20	5 337	8 050	7 223	7 657
30	5 160	6517	7 868	7 301
40	5 524	6 922	7 447	8 248
60	4 727	5 908	6 793	7 577

Trealment**: Culting*; Nitrogen**; Culting × Nitrogen ns

		Stem DM y	ield (kg/ha)	
20	4 625	6 261	6 444	7 475
30	6 288	8 121	10 479	9 813
40	6 053	8 858	9 701	10 954
60	7 895	11 595	14 460	16 408
4,717) (P = 0.05) I		117 400

Treatment**: Cutting**: Nitrogen**; Cutting x Nitrogen**

Applying 20 kg/ha N significantly (P < 0.05) increased DM yields of all components at all cutting intervals compared with 0 kg/ha N (Table 2). Increasing nitrogen rates above 20 kg/ha had variable effects, having no significant effect at shorter cutting intervals (20 and 30 days) and generally increasing yields of all components when cut every 40 or 60 days.

The response in total DM yield per unit of N applied was curvilinear, with DM responses decreasing as the level of N applied increased (Table 3).

Table 3. Yield responses from applying nitrogen to Jarra digit (Experiment 2).

Cutting interval (d)	Nitrogen level (kg/ha N)			
	80	160	320	
	Yield response (kgDM/kgN)			
20	54	23	16	
30	40	4.3	17	
40	52	35	24	
	61	54	36	

Table 4. Effect of cutting interval and mirrogen application on herbage quality of Jarra digit in 2001 (Experiment 2).

Cutting interval (d)	Nitrogen rate ¹ (kg/ha N)			
	0	20	40 .	80
			10,	
20	Leaf on	ide protein c	oncentration	(%DM)
20 30	Leaf on		oncentration	(%DM)
20 30 40	Leaf on	ide protein c	oncentration	

Treatment**; Cutting**: Nitrogen**: Cutting × Nitrogen*

	Stem crude pre	olein concen	tration (%D)	M)
20	8.6	8.3	8,3	10.5
30	6.2	7.3	7.9	8.0
40	5.3	6.7	7.1	8.0
60	5.0	3.7	4.0	5.1
	LŞE	P = 0.05	1.19	

Treatment**; Cutting**; Nitrogen**; Cutting x Nitrogen*

Le	af ADF (%D	M)	
31.5	31.3	30.7	30.4
31.9	31.1	31.3	30.7
33.5	32.3	33.1	32.3
33.8	33 9	33.1	32.2
	31.5 31.9 33.5 33.8	31.5 31.3 31.9 31.1 33.5 32.3 33.8 33.9	31.9 31.1 31.3 33.5 32.3 33.1 33.8 33.9 33.1

LSD (P = 0.05) 0.69
*Treatment**; Cutting**; Nitrogen**; Cutting × Nitrogen*

	Sicm ADF (%DM)					
20	34.8	35.7	34.9	34.8		
30	35.8	35.6	35.6	36.1		
40	36.6	37.7	38.5	38.0		
60	37.9	38.3	39 3	39,9		
	LSI	(80.05)	1.45			

Treatment**; Cutting**; Nitrogen ns; Cutting × Nitrogen ns

	Le	af NDF (%D	M)	
20	52.2	52.8	52.6	53.5
30	53.7	52.6	53.8	52.9
40	55.9	54.5	53.8	55.6
60	56.1	56.6	56.6	55.2
	LSI	O(P = 0.05)	2.75	

Treatment*; Cutting**; Nitrogen ns; Cutting × Nitrogen ns

Stem NDF (%DM)					
62.2	63.5	62.7	62.3		
64.8	63.1	65.1	62.9		
66.3	66.0	66.8	65.8		
66.5	69.1	69.5	69.2		
	62.2 64.8 66.3	62.2 63.5 64.8 63.1 66.3 66.0	62.2 63.5 62.7 64.8 63.1 65.1 66.3 66.0 66.8		

Treatment**; Cutting**; Nitrogen*; Cutting x Nitrogen**

Crude protein concentrations in Jarra digit stems and leaves were significantly (P < 0.01) affected by length of cutting interval and level of nitrogen fertiliser (Table 4). There was also a significant (P < 0.05) cutting interval × nitrogen rate interaction for crude protein concentrations.

Total N applied over trial (0, 80, 160 and 320 kg/ha).

Total N applied over trial (0, 80, 160 and 320 kg/ha).

Increasing the cutting interval from 20 days to 60 days reduced crude protein concentrations in stems and leaves by 49% and 29%, respectively. Nitrogen applied at 80 kg/ha N increased crude protein concentrations in stems and leaves by 24% and 29% over those in unfertilised material. When no nitrogen was applied, mean crude protein concentrations in stems and leaves cut every 20–30 days were around 7% and 11%, respectively.

Leaf ADF concentrations decreased with increasing rates of nitrogen and increased as cutting interval lengthened (Table 4). Stem ADF concentrations increased as the cutting interval lengthened but were not affected by increasing rates of nitrogen. NDF concentrations in both leaves and stems significantly (P < 0.01) increased as cutting interval increased but nitrogen affected only stem NDF concentrations (Table 4). There was a significant (P < 0.01) cutting interval × nitrogen interaction for stem NDF concentrations, with high rates of nitrogen (80 kg/ha) reducing stem NDF at 30-day cutting intervals but increasing stem NDF at 60-day cutting intervals.

Experiment 3 — Effect of cutting and frequency and amount of nitrogen

Increasing the cutting interval significantly (P < 0.01) reduced the amount of leaf DM and increased stem DM (Table 5). Applying nitrogen every 30 days, compared with every 60 days, increased total dry matter yields only at the 60-day cutting interval (Table 5). There was a significant (P < 0.05) interaction between time and rate of nitrogen for stem and total DM yields.

Applying 20 kg/ha N every 30 days, compared with every 60 days, increased dry matter yields of all components by approximately 16% (Table 6). Applying 40 kg/ha N every 30 days, compared with every 60 days, increased leaf DM but not stem and total DM yields. Increasing the rate of nitrogen from 20 to 40 kg/ha increased total DM and leaf DM at both frequencies of application, but the effect on stem DM was significant only when the fertiliser was applied every 60 days (Table 6).

Increases in cutting interval reduced crude protein concentrations in leaf and stem (P < 0.05) while increases in nitrogen rate increased leaf and stem crude protein concentrations (P < 0.05) (Table 7). There was a significant (P < 0.01)

interaction between frequency and rate of nitrogen for leaf and stem crude protein concentrations (Table 8). Leaf crude protein concentrations increased by 21% when nitrogen increased from 20 to 40 kg/ha and was applied every 30 days, but by only 9% when the fertiliser was applied every 60 days (Table 8). Increasing rates of nitrogen increased stem crude protein concentrations by 30% when nitrogen was applied every 30 days but had no effect when nitrogen was applied every 60 days (Table 8).

Table 5. Effect of rate and frequency of nitrogen application and cutting interval on yield of Jarra digit in 2002 (Experiment 3).

Cutting interval (d)	N :	N rate ¹ N fro		quency	
	20 kg/ha	40 kg/ha	30 d	60 d	
		Total DM y	ield (kg/ha)		
20	13 064	14 540	14 202	13 401	
40	13 249	15 760	15 232	13 777	
60	13 926	16 879	16 242	14 563	
LSD (P = 0.05)		15	88		

Treatment**; Cutting*; Rate of N**: Freq. of N**: Cutting × Rate of N ns; Cutting × Freq. of N ns; Freq. of N × Rate of N *

1	eaf DM yi	eld (kg/ha)		
20	7294	8127	7984	7437
40	6037	6939	6819	6156
60	5299	6084	6351	5032
1.50 (8 = 0.05)		6"	19	

Treatment**; Cutting**: Rate of N**, Freq. of N**: Cutting × Rate of N ns; Cutting × Freq. of N ns; Freq. of N x Rate of N

Stem DM yield (kg/ha)						
20	5770	6 413	6218	5964		
40	7212	8 821	8413	7621		
60	8627	10 795	9891	9531		
LSD (P=0.05)		129	09			
T						

Treatment**; Cutting**; Rate of N**; Freq. of N ns; Cutting × Rate of N ns; Cutting × Freq. of N ns; Freq. of N × Rate of N *

¹Total N applied over trial: 20 kg/ha N every 30 days = 160 kg/ha; 20 kg/ha N every 60 days = 80 kg/ha; 40 kg/ha N every 30 days = 320 kg/ha; 40 kg/ha N every 60 days = 160 kg/ha.

Leaf and stem ADF and NDF concentrations significantly (P < 0.01) increased with increases in cutting interval (Table 9) but were not affected by increases in nitrogen rates (Table 10).

Table 6. Effect of frequency and rate of nitrogen application on yield of Jarra digit in 2002 (Experiment 3).

Nitrogen rate! (kg/ha N)	N every 30 days	N every 60 days			
	Total DM y	rield (kg/ha)			
20	14 554	12 273			
40	15 897	15 555			
LSD $(P = 0.05)$	1297				
	Leaf DM y	icld (kg/ha)			
20	6 755	5 664			
40	7 347	6 752			
LSD $(P = 0.05)$	553				
	Stem DM yield (kg				
20	7 799	6 609			
40	8 550	8 803			
LSD $(P = 0.05)$	987				

Total N applied over trial: 20 kg/ha N every 30 days = 160 kg/ha; 20 kg/ha N every 60 days = 80 kg/ha; 40 kg/ha N every 30 days = 320 kg/ha; 40 kg/ha N every 60 days = 160 kg/ha.

Table 7. Effect of rate and frequency of nitrogen application and cutting interval on crude protein concentration of Jarra digit in 2002 (Experiment 3).

Cutting interval (d)	N rate (20 kg/ha N)	N rate (40 kg/ha N)	N every 30 days	N every 60 days
		Leaf crud	le protein	
		(%[OM)	
20	13.9	16.1	16.1	13.9
40	11.9	14.0	14.2	11.7
60	99	111	11.6	9.4
LSD $(P < 0.05)$		1.0	04	
Treatment**: Cu	ilting*; Rate	e of N**; Fr	eq. of N**;	Cutting
Rate of Nins; Cu				

		Stem crue	de protein	
		(%[OM)	
20	9.7	11.1	11.6	9.1
40	8.3	9.3	9.8	7.8
60	5.6	6.8	6.9	5.5
LSD (P < 0.05)		0.	94	
Treatment**; Cutt	ing**; Ra	te of N**; I	req. of N**	: Cutting ×
Raic of N ns; Cutt	ing × Free	. of N ns; F	req. of N × I	Rate of N**

Total N applied over trial: 20 kg/ha N every 30 days = 160 kg/ha; 20 kg/ha N every 60 days = 80 kg/ha; 40 kg/ha N every 30 days = 320 kg/ha; 40 kg/ha N every 60 days = 160 kg/ha.

Table 8. Effect of frequency and rate of nitrogen application on quality of Jarra digit in 2002 (Experiment 3).

Nitrogen rate ¹ (kg/ha N)	N every 30 days	N every 60 days		
,	Leaf crude pi	rolein (%DM)		
20 ,	i2.6	11.2		
40	15.3	12.2		
LSD $(P = 0.05)$	0.85			
	Stem crude p	roleia (%DM)		
20	8 2	7.5		
40	10.7	7.4		
LSD (P = 0.05)	0.77			

¹Total N applied over trial: 20 kg/ha N every 30 days = 160 kg/ha; 20 kg/ha N every 60 days = 80 kg/ha; 40 kg/ha N every 30 days = 320 kg/ha, 40 kg/ha N every 60 days = 160 kg/ha.

Table 9. Effect of cutting interval on ADF and NDF concentrations of Jarra digit in 2002 (Experiment 3).

Cutting interval (d)	ADF		NDF	
	Leaf	Stem	Leaf	Stem
		(%1	DM)	
20 40 60 LSD (P = 0.05)	30.4 31.9 32.7 0.74	34.5 35.6 36.7 0.64	51.9 55.4 56.6 2.18	61.3 63.3 65.4 1.01

Table 10. Effect of frequency and rate of nitrogen application on quality of Jarra digit in 2002 (Experiment 3).

Nitrogen rate ¹ (kg/ha N)	N every 30 days	N every 60 days			
	Leaf AD	F (%DM)			
20	31.5	32.1			
40	31.2	317			
I.SD (P = 0.05)	0.61				
	Stem AD	F (%DM)			
20	35.7	35 2			
40	35.6	35.7			
LSD ($P = 0.05$)	0,52				
	Leaf ND	F (%DM)			
20	54.6	55,2			
40	55.1	53.5			
LSD ($P = 0.05$)	3.	78			
	Stem ND	F (%DM)			
20	63.3	63.8			
40	62.6	63.8			
LSD ($P = 0.05$)	0.	82			

Total N applied over trial: 20 kg/ha N every 30 days = 160 kg/ha: 20 kg/ha N every 60 days = 80 kg/ha; 40 kg/ha N every 30 days = 320 kg/ha; 40 kg/ha N every 60 days = 160 kg/ha.

Discussion

This study has shown that Jarra digit pastures can be established successfully by vegetative propagation by planting freshly dug stolons as soon as possible after collection, so the absence of seed should no longer be seen as a barrier to its wider use in Thailand. Unlike pangola grass, where lowland fields are flooded for successful establishment (Anon. 2002), Jarra digit will establish in upland soils, provided the soils are kept moist during the establishment phase. Many smallholder farmers in other parts of south-east Asia prefer to establish pastures using vegetative material (Stür and Home 2001). For most grasses, they find vegetative planting easy and reliable as establishment is rapid, provided there is plenty of soil moisture, land does not have to be fully cultivated and planting can be done late in the wet season. However, planting material has to be available locally and, with a new species like Jarra digit, nurseries would have to be established on government research stations. This would be similar to the pangola grass program in Thailand, where large fields are managed on government research stations to supply initial planting material to smallholder farmers (Anon. 2002). After swards are established by smallholder farmers, these can provide stolons for planting additional areas.

In our study, the vegetative establishment of Jarra digit swards followed 2 stages. The first stage was the plant-establishment phase in the first wet season during which stolons rooted and spread out slowly to cover the inter-row spaces. The second stage (second wet season) was the consolidation or 'thickening-up' stage in which the inter-row spaces rapidly filled up, weeds declined and the swards became grass-dominant.

Humphreys (1987) recommended planting at spacings of 0.7 m between rows and 0.3 m within rows for most vegetatively propagated grass species in order to provide rapid production in the first season. However, if early season grazing was of little importance, this author suggested that wider spacings on 2 m squares were adequate for running grass species if there was good weed control. In our study, planting Jarra digit on 50 cm squares provided the most forage during the first wet season with the lowest proportion of weeds. Planting at 2 m spacings took 6 months to produce the same amount of dry

matter as narrower inter-row spaced swards and over a year to reduce weed density to below 10%.

Smallholder farm sizes in Thailand are small (2-4 ha) (Hare et al. 1999a) and most farms experience feed shortages. When farmers sow pastures they usually want rapid establishment and aim to harvest within 2-3 months after planting. To achieve this aim, Jarra digit stolons should be planted in 50 cm squares. Wider row spacings could be used if labour and planting material were scarce but first-year DM production would be lower and more time would be required to allow the pastures to 'thicken-up'.

Cutting interval had a significant impact on DM yields of forage components as well as forage quality. While increasing the interval between harvests increased total DM production. this was at the expense of forage quality as all of the increase in DM yield was in the form of stem. Yield of leaf was not affected by an increase in the interval between harvests. As a result, material produced with the longer cutting interval was much lower in protein and higher in fibre than from the 20-day harvest interval. Similar responses to cutting interval in Thailand have been reported by Hare et al. (2001) for Ubon paspalum and Tudsri et al. (1998) for pangola grass. While applications of N fertiliser increased both yield and pasture quality, crude protein concentrations in stems at 60-day cutting intervals were below 6.0%, even when 320 kg/ha N was applied. Milford and Minson (1966) indicated that the critical dietary crude protein concentration below which voluntary intake was depressed was 7.0%.

Cutting every 20 days will produce high quality forage but DM yield is reduced relative to yields with the longer inter-harvest intervals. From our results, a comprise would seem to be to cut Jarra digit every 30–40 days. This will produce high DM yields of good quality forage. Cutting intervals of 30 days for pangola grass (Tudsri et al. 1998) and Ubon paspalum (Hare et al. 2001) have been recommended to produce good yields of high quality forage.

Applying nitrogen to the pastures gave yield responses ranging from 52 kgDM/kgN at 80 kg N/ha/yr to 23 kgDM/kgN at 320 kg N/ha/yr. This curvilinear response was typical of the responses in tropical grasses of 20-50 kgDM/kgN (Humphreys 1987) when N was applied as urea and P, K and S were applied as basal dressing. However, the responses exceeded the

12-29 kgDM/kgN recorded in pangola grass grown on medium fertility soils in one study in Thailand (Tudsri et al. 1999) and 17 kgDM/kgN in another (Tudsri and Sornprasitti 1988). Applications as low as 80 kg N/ha/yr gave good DM yield responses and raised leaf crude protein concentrations if harvesting was done every 40 days or less.

A feature of this study was the very high nutritive value of Jarra digit forage with crude protein concentrations among the highest reported in Thailand in the wet season for a tropical forage grass. Even when little or no nitrogen was applied, crude protein concentrations of Jarra digit grown on very infertile soils were twice as high as those recorded for Ubon paspalum grown in an adjacent trial (Hare et al. 2004b). Smallholder farmers who apply little or no fertiliser can maintain high forage quality by cutting Jarra digit every 20-30 days, though DM production will be compromised. In Thailand, Jarra digit is commonly compared with pangola grass. Crude protein concentrations in leaves of pangola grass reached 9.8% only when 80 kg/ha N was applied (Tudsri et al. 1998) and very high rates of nitrogen (468-930 kg/ha) were needed to increase crude protein concentrations to levels between 12-14% (Tudsri et al. 1999). Furthermore, concentrations of ADF and NDF% in leaves and stems were 3-5 units lower in Jama digit in our study than those reported for pangola grass (Tudsri et al. 1998; 1999).

Conclusion

Jarra digit is a tropical forage of higher-thanaverage nutritive value. It can be established easily by planting stolons in moist soil with 50 cm spacings, producing high DM yields in the first wet season. The frequency with which the pasture should be cut or grazed will depend on the relative importance of quality and quantity of forage produced. If DM yield is the primary objective, a cutting interval of 60 days is appropriate. However, a cutting interval of between 30 and 40 days is recommended as a compromise to produce large amounts of good quality forage. Nitrogen application to Jarra digit pastures growing on infertile soils in north-east Thailand will improve grass production and increase crude protein concentrations. Applying 20 kg/ha N every 60 days during the growing season will give the highest response in dry matter production per unit of nitrogen. Economics are usually the ultimate determinant of the amount of nitrogen to apply (Hare et al. 1999b), and application of amounts above 20 kg/ha N or more frequent nitrogen applications would produce a worse economic outcome than the regimen recommended.

Acknowledgements

We thank the Thailand Research Fund (TRF) for providing financial support to this research program and the Faculty of Agriculture, Ubon Ratchathani University for research facilities.

References

- ANONYMOUS (2002) Pangola grass. (Division of Animal Nutrition, Department of Livestock Development: Bangkok, Thailand).
- GOBSUS, N.R., PHAIKAEW, C., PHOLSEN, P., RODCHOMPOO, O. and SUSENA, W. (2001) Seed yield and its components of *Brachiaria decumbens* cv. Basilisk, *Digitaria milanjiana* cv. Jarra and *Andropogon gavanus* cv. Kept in north-cast Thailand under different rates of mtrogen application. *Tropical Grasslands*, 35, 26–33.
- HACKER, J. B. (1992) Digitaria eriantha Steudel. In: Mannetje. L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No. 4, Forages. pp. 121-123. (Pudoc-DLO: Wageningen).
- HACKER, J.B. and WONG, C.C. (1992) Digitaria milanjiana (Rendle) Stapf. In: Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages, pp. 123-124. (Pudoc-DLO: Wageningen).
- HALL, T.3. WALDUCK, G.D. and WALKER, R.W. (1993) Register of Australian herbage plant cultivors. A. Grasses, 23. Digitaria (b) Digitaria milanjiana (Rendle) Stapf. (finger grass) ev. Jarra. Australian Journal of Experimental Agriculture, 33, 674-676.
- HARE, M.D. (1995) Potential for forage and forage seed production in Northeast Thailand. Proceedings of the Annual Research Conference of the Animal Nutrition Division, Department of Livestock Development, Thailand, pp. 1-15.
- HARE, M.D., THUMMASAENG, K., SURIYAJANTRATONG, W., WONGPICHET, K., SAENGKHAM, M., TATSAPONG, P., KAEWKUNYA, C. and BOONCHARERN, P. (1999a) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in Northeast Thailand, Tropical Grasslands, 33, 65-74.
- HARE, M.D., SURIYAJANTRATONG, W., TATSAPONG, P., KAEWKUNYA, C., WONGPICHET, K. and TRUMMASAENG, K. (1999b) Effect of nitrogen on production of Paspalum airatum on seasonally wet soils in north-east Thailand. Tropical Grasslands, 33, 207–213.
- HARE, M.D., SAENGKHAM, M., KAEWKUNYA, C., TUDSRI, S., SURIYAJANTRATONG, W., THUMMASAENG, K. and WONGPICHET, K. (2001) Effect of cutting on yield and quality of Pospalum atratum in Thailand. Tropical Grasslands, 35, 144-150.
- HARE, M.D., KAEWKUNYA, C., TATSAPONG, P and SAING-KHAM, M. (2003) Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37, 20-32.

226

- HARE, M.D., SAENGKHAM, M., TATSAPONG, P., WONGPICHET, K. and TUDSRI, S. (2004a) Waterlogging tolerance of some tropical pasture grasses, *Tropical Grasslands*, 38, 227–233.
- HARE, M.D., GRUBEN, I.E., TATSAPONG, P., LUNPHA, A., SAENGKHAM, M. and WONGPICHET, K. (2004b) Inter-row planting of legumes to improve the crude protein concentration in Pospalum atratum cv. Ubon in north-east Thailand. Trapical Grasslands, 38, 167-177.
- HUMPHREYS, L.R. (1987) Tropical pastures and fodder crops. Intermediate Tropical Agriculture Series. 2nd Edn. (Longman: New York).
- JONES, R.M., TOTHILL, J.C. and JONES, R.J. (1986) Pastures and pasture management in the tropics and sub-tropics. The Tropical Grassland Society of Australia. Occasional Publication No. 1
- KHEMSAWAT, C. and PHONBUMRUNG, T. (2002) Thai government promotes fodder production and encourages marketing. (Southeast Asia Feed Research and Development Network). Seafrad News, 12, 9.
- MILFORD, R. and MINSON, D.J. (1966) Intake of tropical pasture species. Proceedings of the XI International Grassland Concress Broat 1964, pp. 814-822
- Congress, Brazil, 1964, pp. 814-822.

 MITSUCHI, M., WICHAIDIT, P. and JEUNGNUNIRUND, S. (1986)

 Outline of soils of the Northeast Plateau, Thailand, Their characteristics and constraints. Technical Paper No. 1. Agri-

- cultural Development Center in Northeast: Khon Kuen, Thailand.
- STUR, W.W. and HORNE, P.M. (2001) Developing forage technologies with smallholder farmers how to grow, manage and use forages. ACIAR Monograph No. 88. ACIAR. Canberra.
- TUDSRI, S. and SORNPRASITTI, P. (1988) Response of four tropical pasture grasses to nitrogen application. Kaseisuri Journal (Natural science), 22, 37-44.
- TUDSRI, S., PACHANAWAN, N., SAWADIPANICH, S. BUMRUNG, N. and JENGNAY, Y. (1998) Productivity and quality of CP-Pangola (Digitaria decumbens ev. CP-1) under different management conditions. 1. Effect of frequency and height of cutting. Kasetsori Journal (Natural science), 32, 265-274.
- TUDSRI, S., PACHANAWAN, N., BUMRUNG, N. and JENGNAY, Y. (1999) Productivity and quality of CP-Pangola (Digitaria decumbens cv. CP-1) under different management conditions. 2. Effects of nitrogen application and cutting frequency. Kaseisari Journal (Natural science), 33, 21-32.
- TUDSRI, S., PRASANPANICH, S., SAWADIPANICH, S., JARIPA-KORN, P. and ISWILLANONS, S. (2001) Effect of pasture production systems on milk production in the central plains of Thailand. Tropical Grasslands, 35, 246-253.

(Received for publication April 16, 2003; accepted April 18, 2004)

Waterlogging tolerance of some tropical pasture grasses

M.D. HARE¹, M. SAENGKHAM¹, P. TATSAPONG¹, K. WONGPICHET¹ AND S. TUDSR¹²

¹ Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand

² Faculty of Agriculture, Kasetsart University, Bangkhen, Bangkok, Thailand

Abstract

The waterlogging tolerance of some tropical grasses was studied under controlled conditions in plastic buckets in a greenhouse at Ubon Ratchathani University, Thailand in 1997 and 1998. In Trial 1, the following 6 species were compared: Paspalum atratum cv. Ubon, Brachiaria ruziziensis (common Thailand type), Paspalum plicatulum (common Thailand type), Digitaria milanjiana cv. Jarra, Brachiaria decumbens ev. Basilisk and Panicum maximum cv. Purple. Five waterlogging treatments were imposed (non-waterlogged control plants after 0, 10 and 20 days and plants waterlogged for 10 and 20 days). In Trial 2, effects of waterlogging on Ubon paspalum were examined in detail with 4 waterlogging duration treatments (0, 10, 20 and 30 days waterlogging) and 3 plant ages (30, 60 and 90 days of age) at commencement of

In Trial 1, the species most tolerant of waterlogging were plicatulum followed by Ubon paspalum and Jarra digit. Purple guinea showed medium tolerance and ruzi and signal poor tolerance with >50% plant mortality after 20 days of waterlogging. Ten days of waterlogging reduced plant dry weights of all species compared with control plants. After 20 days of waterlogging, there were no significant differences in plant dry

Correspondence: M.D. Hare, Faculty of Agriculture, Ubon Ratchathani University, Wario Chantrab, Ubon Ratchathani 34190, Thailand, e-mail: michael@agri.ubu.ac.th

weights between waterlogged and control plants of plicatulum, Ubon paspalum and Jarra digit.

In Trial 2, increased duration of waterlogging significantly reduced plant and tiller dry weights of Ubon paspalum plants. 30 and 90 days of age at the commencement of waterlogging, but had no significant effect on 60-day-old plants. In older plants (60 and 90 days of age) following waterlogging, leaf tips shrivelled and turned greenish-red, lower leaves on the plants died and some new leaves developed. Nitrogen levels in Ubon paspalum plants were not significantly affected by waterlogging, while phosphorus levels increased in all plants as the duration of waterlogging increased.

Introduction

In Thailand, many low-lying areas, which formerly grew rice, are being used for pasture development for the expanding dairy and beef industries. These areas are exposed to short-term or prolonged waterlogging or intermittent flooding in the wet season, which often is a major limitation to pasture productivity.

Recent research has shown that Paspalum atratum cv. Ubon was the most productive grass on low-lying seasonally wet areas (Hare et al. 1999a; 1999b). Other species (Setaria spacelata var. splendida cv. Splenda, Paspalum plicatulum and Brachiaria mutica) grew well but were not as productive as Ubon paspalum in the second and third years after establishment. Digitaria milanjiana cv. Jarra and Brachiaria humidicola cv. Tully established slowly and with time became dense and persistent but not as productive as Ubon paspalum (Hare et al. 1999a).

Waterlogging damage to pasture grasses is positively related to the duration of waterlogging and the depth of submergence, and the effects are less severe on dormant plants or plants not recently defoliated (Humphreys 1981). In the field, the depth and duration of waterlogging vary

Data from both trials were analysed using the IRRISTAT program from IRRI.

Results

Trial 1 — Effect of duration of waterlogging on the growth of 6 pasture grass species

The visual symptoms that developed during 10 and 20 days of waterlogging are described in Table 1. Plicatulum was not affected by waterlogging but ruzi and signal were, with death of more than 50% of the plants waterlogged for 20 days. A small proportion (10%) of Ubon paspalum and Jarra digit plants died after 20 days

of waterlogging and the remaining Ubon paspalum plants displayed reddening of leaf tips. Purple guinea plants became stunted and leaves turned yellow during 20 days of waterlogging.

For all species except plicatulum, 10 days of waterlogging reduced (P < 0.05) plant dry weights compared with control plants (Table 2). Waterlogging for 20 days significantly (P < 0.05) reduced plant dry weights of ruzi, signal and Purple guinea but did not significantly affect Ubon paspalum, Jarra digit and plicatulum compared with 20 day control plants. Between 10 and 20 days of waterlogging, plant dry weights of Ubon paspalum, Jarra digit, and plicatulum increased by 83, 82 and 70%, respectively. After

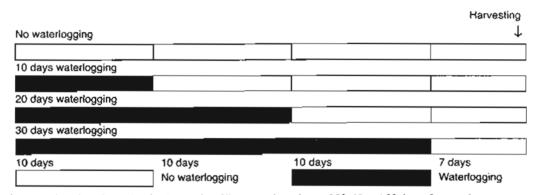


Figure 1. Duration of waterlogging imposed on Ubon paspalum plants of 30, 60 and 90 days of age at the commencement of flooding (Trial 2).

Table 1. Visual symptoms on plants of 6 forage grass species following 10 and 20 days of waterlogging.

Grass species	10 days waterlogging	20 days waterlogging
Ubon paspalum	Leaves dark green with reddening of leaf tips	10% of plants dead; remaining plants green with red leaf tips
Ruzi	Large % of older leaves dead; young leaves twisted	>50% of plants dead; remaining plants very stunted with dead leaves
Jarra digit	Small proportion of older leaves dead	10% of plants dead; remaining plants green and robust
Signal	Older leaves dead; some plants stanted	>50% of plants dead; remaining plants green but stunted
Purple guinea	Leaves light green with some death of older leaves	Plants stanted and all leaves yellow
Plicatulum	Growth normal with no visual symptoms	Growth normal with no visual symptoms

Table 2. Effect of waterlogging for 10 and 20 days on dry weight per plant of 6 tropical grasses.

Treatment	Ubon paspalum	Ruzi	Jarra digit	Signal	Purple guinea	Plicatulum		
	(g/plant)							
Before trial	3.4 b ¹	3.1 c	2.3 ზ	3.0 b	3.3 ხ	2.4 c		
10 d control	8.4 a	6.5 b	7.6 a	6.0 a	10.4 a	6.2 ab		
10 d water ²	4.1 b	2.8 c	4.5 b	3.0 b	4.1 b	4.7 bc		
20 d control	11,8 a	9.7 a	8.7 a	8.1 a	11.2 a	8.3 a		
20 d water ²	7.5 a	3.2 c	8.2 a	4.4 b	6.1 5	8.0 a		

t Within columns, means followed by different letters are significantly different (P < 0.05) by Duncan's Multiple Range Test.

Waterlogging duration.

Table 3, Visual symptoms on leaves of Ubon paspalum of different ages following waterlogging for different periods.

Waterlogging duration (d	Grass age at commencement (d)					
	30	60	90			
10	Leaves dark green	Edges of upper leaves greenish- red; leaf tips shrivefled; 1-5 lower leaves dead	Upper leaves green; leaf tips greenish-red or shrivelled, 1-6 lower leaves dead			
20	Upper leaves dark green; lower leaves light green to yellow	Edges of upper leaves brown and shrivelled; 1-7 lower leaves dead; some new leaves emerged	Upper leaves greenish-red with some dead leaves; 1-9 lower leave dead; some new leaves emerged			
30	1-2 lower leaves dead; remaining leaves light green to yellow		Leaves greenish-red or dead; 1-9			

20 days of waterlogging, plant dry weights of ruzi, signal and Purple guinea had not increased significantly from their respective weights immediately prior to the commencement of the trial.

Trial 2 - Effect of duration of waterlogging on Ubon paspalum plants of varying ages

Visual symptoms on Jeaves of Ubon paspalum plants during waterlogging are described in Table 3. Older plants were more severely affected by waterlogging than younger plants with leaf tips turning greenish-red or drying out and many lower leaves dying. Older plants (60-90 days) had developed some new leaves after being waterlogged with the number increasing with the duration of waterlogging.

Table 4. Effect of duration of waterlogging on dry weight of Ubon paspalum plants of various ages

Waterlogging duration (d) -	Grass ag	e at commence	ment (d)
	30	60	90
		(g/plant)	
0	5.8 a ¹	6.9 a	9.6 a
10	4.4 ab	6.3 a	6.2 bc
20	3.7 Ъ	5.8 a	7.3 b
30	3.0 Ь	5.4 a	4.8 c

¹ Within columns, means followed by different letters are significantly different (P < 0.05) by Duncan's Multiple Range Test.

Duration of waterlogging significantly reduced dry weights of Ubon paspalum plants, 30 and 90 days of age at the commencement of waterlogging, but had no significant effect on dry weight of 60-day-old plants (Table 4). Waterlogging had no significant effect on the number of tillers/plant which averaged 2.4, 4.7 and 4.1 tillers/plant, respectively, for the 30, 60 and 90-day age groups, but tiller weights were significantly reduced following waterlogging in plants 30 and 90 days of age (Table 5).

Table 5. Effect of duration of waterlogging on tiller weight of Ubon paspalum plants of various ages.

Waterlogging duration (d) =	Grass ag	e at commence	nieni (d)
, ,	30	60	90
		(g/tiller)	
0 10 20 30	2.1 a ¹ 1.9 ab 1.4 b 1.7 ab	1.5 a 1.3 a 1.2 a 1.1 a	2.7 a 1.5 b 1.7 b 1.4 b

¹ Within columns, means followed by different letters are sigmificantly different (P < 0.05) by Duncan's Multiple Range Test.

Table 6. Effect of duration of waterlogging on nitrogen and phosphorus levels in Ubon paspatem plants of various ages.

Waterlogging duration (d)			ment (d))		
	3	0	ć	90	9	90
			(%)	DM)		
	Ν	P	N	P	N	Р
0	1.25a1	0.11c	Q.56a	0.105	0.51a	0.09ь
10	J.10a	0,12c	0.77a	0.13ab	0.81a	0.14a
20	1.07a	0.16ხ	0.83a	0.14a	0.77a	0.12ab
30	1.09a	0.23a	0.72a	0.16a	0.74a	0.15a

Within columns, means followed by different letters are significantly different (P < 0.05) by Duncan's Multiple Range Test

Nitrogen levels in Ubon paspalum plants were not significantly affected by waterlogging (Table 6) and averaged 1.13, 0.72 and 0.71% N in the 3 plant age groups, 67, 97 and 127 days of age, respectively, at the completion of the experiment. Phosphorus levels increased in all plants as the duration of waterlogging increased (Table 6).

between areas and seasons, depending on the internal drainage of the soils and the amount of rain. The establishment year is often the most difficult for grass species to grow under waterlogged conditions, with the age of the plants at the time of waterlogging being of major importance to their survival. In some years, some species survive waterlogging but, in other years, they fail to persist (Hare et al. 2003).

Experiments were conducted under controlled waterlogged conditions in plastic buckets to evaluate the response of 6 tropical pasture grasses to waterlogging and to examine in detail the tolerance of Ubon paspalum at various ages to different periods of waterlogging.

Materials and methods

The experiments were conducted at Ubon Ratchathani University, Thailand in a plastic greenhouse in 1997 (Trial 1) and 1998 (Trial 2). In both trials, the grass species were grown in 5 litre plastic buckets potted with sandy, low humic gley soil (Roi-et soil series) collected from the university farm. The soil was acid (pH 4.6-4.9), with low organic matter and very low concentrations of N, P and K (Hare et al. 1999a).

Trial 1 — Effect of duration of waterlogging on the growth of 6 pasture grass species

The experiment was a 2-factor factorial arranged in a randomised complete block design with 4 replications. There were 6 species [Paspalum atratum ev. Ubon, Brachiaria ruziziensis (common Thailand type), Paspalum plicatulum (common Thailand type), Digitaria milanjiana ev. Jarra, Brachiaria decumbens ev. Basilisk and Panicum maximum ev. Purple} and 5 plant waterlogging treatments (control plants after 0, 10 and 20 days and plants waterlogged for 10 and 20 days).

Twenty seeds per bucket per species were sown into plastic buckets (3 buckets per treatment per replication) on June 30, 1997 and thinned to 6 plants/bucket on July 31. There were 360 buckets in total. Fertiliser was applied at sowing, at thinning and at the commencement of waterlogging to provide the equivalent (kg/ha) of 40 N, 50 K, 20 P and 20 S. The buckets were watered to field capacity until August 26, 1997 when the waterlogging experiment commenced; the water-

logged treatment buckets were then flooded to 5 cm above the soil surface and levels were maintained by once-daily applications of water. Control buckets continued to be watered to field capacity.

At the end of each waterlogging treatment (10 & 20 days), visual symptoms were recorded on the stems and leaves of the waterlogged plants and then both the control plants and the waterlogged plants were given a 7-day recovery period before harvest. At each harvest, all 6 plants from each bucket were carefully removed and the roots and tops washed to remove all soil. The whole plants were dried at 70°C for 48 hours and then weighed.

Trial 2 — Effect of duration of waterlogging on Ubon paspalum plants of varying ages

The experiment was a 2-factor factorial arranged in a randomised complete block design with 4 replications. There were 4 waterlogging duration treatments (0, 10, 20 and 30 days waterlogging) and 3 Ubon paspalum plant ages (30, 60 and 90 days of age) at commencement of flooding.

Ten sprouted seeds/bucket of Ubon paspalum were planted into plastic buckets (3 buckets per treatment per replication) on December 25, 1997 and were thinned to 3 plants/bucket 2 weeks later. There were 144 buckets in total. Fertiliser was applied at sowing and every 30 days thereafter to provide the equivalent (kg/ha) of 40 N, 50 K, 20 P and 20 S. The buckets were watered to field capacity until the waterlogging experiment commenced; the waterlogged treatment buckets were then flooded to 5 cm above the soil surface and levels maintained by once-daily applications of water. Control plants continued to be watered to field capacity, as were those plants that had completed their waterlogging treatment (Figure 1).

Three days after the completion of the water-logging phase in each treatment, visual symptoms were recorded on the leaves of the plants in that treatment. Plants were then sampled from all treatments on Day 37 after treatments commenced (Figure 1). The extra 7 days was to allow a recovery period for plants waterlogged for 30 days. At sampling, tillers/plant, tiller dry weight and plant dry weight were recorded from 2 plants/treatment/replication. For dry weight measurement, plants were cut to soil level and dried in an oven at 70°C for 48 hours. The dried plants were analysed for total N and P.

Discussion

Adaptation of pasture grasses to former rice land on low-lying areas subject to waterlogging or on soils with impeded drainage is of special interest in Thailand. These areas are increasingly being developed as pasture land for the expanding dairy and beef industries, but the rate of development is limited by the availability of suitable grass species adapted to these seasonally wet sites.

In the current studies, the ability of plants to survive and at least maintain their dry weight was used as the major indicator of their tolerance of waterlogging under controlled conditions in plastic buckets. Of the species tested, plicatulum appeared most tolerant of waterlogging; during 20 days of waterlogging all plants survived and increased their dry weight by 230% (Table 2), displaying no visual adverse symptoms. This supports the findings of Anderson (1970), who classified plicatulum as one of the most tolerant grasses of waterlogging. For many years in Thailand, plicatulum has been the most important pasture species sown on seasonally waterlogged soils with seed available from the Department of Livestock Development (Phaikaew 1997).

Jarra digit grass displayed good tolerance to waterlogging with only 10% of the plants dying after 20 days of waterlogging; the remaining plants were robust and green and more than tripled their dry weight during this period as did the control plants (Table 2). From field experience in Thailand, the waterlogging tolerance of Jarra digit grass has varied from good persistence on the Ubon Ratchathani University farm (Hare et al. 1999a), where it still grows well after 8 years in pasture, to poor persistence in trials on heavily waterlogged sites (Hare et al. 2003). Mardi digit grass has also been reported as intolerant of waterlogging (Hacker and Wong 1992).

Pangola grass is recommended for poorly drained soils in Malaysia and the Philippines and is tolerant of flooding (Hacker 1982). In Thailand, pangola grass is being promoted as a high quality fresh grass cash crop for growing on former rice land (Khemsawat and Phonbumrung 2002). It can only be propagated vegetatively, which limits its expansion but the ability to produce seed in Thailand makes Jarra digit grass (Gobius et al. 2001) a more easily propagated species. More research on the tolerance of Jarra digit grass to waterlogging seems warranted.

Purple guinea displayed moderate tolerance to waterlogging, as plants survived and virtually doubled their dry weight during 20 days of waterlogging, despite becoming stunted and their leaves turning yellow. Anderson (1970) and Whiteman (1980) also reported that guinea grass had moderate tolerance to waterlogging and in a series of trials in Thailand on waterlogged sites, Purple guinea grew well on moderately waterlogged sites but poorly on heavily waterlogged sites (Hare et al. 2003). Purple guinea is the second most popular pasture species sown in Thailand after ruzi grass, with seed produced by village farmers on contract to the Department of Livestock Development (Phaikaew 1997).

Ruzi grass is the most important pasture grass produced in Thailand and seed is readily available (Phaikaew 1997; Hare and Phaikaew 1999). It is often planted on waterlogged sites, where it fails to persist. This is despite the fact that its poor tolerance to waterlogging is well known (Anderson 1970; Whiteman 1980). It was therefore included in this study as a control species to compare its performance against more waterlogging-tolerant species. As was expected, both ruzi and signal grasses showed poor tolerance to waterlogging with fewer than 50% of the plants surviving after 20 days of waterlogging and not increasing their dry weight significantly during this period.

The surviving signal grass plants, even though stunted, remained green. Field observations in Thailand suggest that signal grass survives short-term waterlogging of 5-10 days indicating moderate tolerance (Whiteman 1980). In Costa Rica, 7 months after planting in a site of high water saturation, two signal grass cultivars, CIAT 16497 and cv. Basilisk, had lost vigour but all plants survived (Argel and Keller-Grein 1996). Signal grass is not commonly planted for pastures in Thailand due to the difficulties of seed production but research is currently being undertaken at Ubon Ratchathani University to solve the problems of seed production.

The response of Ubon paspalum to waterlogging was moderate-good with 10% plant mortality in Trial 1 and decreased plant dry weight and tiller dry weight in Trial 2. Visual symptoms were apparent in both trials following waterlogging with leaf tips turning red and many lower leaves dying.

In both trials, the Ubon paspalum plants that were not significantly affected by waterlogging

after 20-30 days of inundation were approximately the same age, 56 days (Trial 1) and 60 days (Trial 2), at the commencement of waterlogging. The waterlogging effects were more severe on the younger plants' (30 days of age) probably because the normal respiratory pathway in their small root systems was more effectively blocked by waterlogging (Whiteman 1980) than in the 60-day-old plants. The more severe effects on older plants (90 days of age) may have been a combination of being stressed by becoming root-bound in the plastic buckets and then being inundated with water. In the field, established plants will tolerate saturated soil for several months (Kalmbacher et al. 1997; Hare et al. 2002) and flooding up to 5 cm depth for 3-4 weeks (Kalmbacher et al. 1997).

It was observed that the water in the buckets in the glasshouse tended to heat up. This heating may have made the effects of waterlogging more severe, particularly plants waterlogged for 20 and 30 days duration, than what happens in the field in Thailand, where heating has not been observed.

In a study on waterlogging tolerance of subtropical legumes, Shiferaw et al. (1992) found that N levels in legume shoots after 14 days of waterlogging were reduced by 41% due to reduced N fixation compared with control legumes. In the current study, N levels in Ubon paspalum were not significantly reduced by waterlogging and tended to increase with duration of waterlogging which was probably due to the regular 30-day applications of the equivalent of 40 kg/ha N, which could not be leached out of the watertight plastic buckets. In the field, nitrogen fertiliser did not significantly increase nitrogen levels in waterlogged Ubon paspalum plants (Hare et al. 1999c).

Phosphorus concentrations in Ubon paspalum plants increased following waterlogging, due probably to the emergence of new leaves high in P and the retention of fertiliser P (20 kg/ha P every 30 days) in the watertight plastic buckets.

This study has shown that plicatulum remains one of the most tolerant forage species of water-logging and for this reason continues to be widely grown in southern parts of Thailand regularly inundated with seasonal flooding. Due to superior dry matter yields and quality compared with plicatulum and its moderate—good waterlogging tolerance, Ubon paspalum is rapidly becoming the most popular species to grow on wet soils in other parts of Thailand. However, it will not establish if the soil is waterlogged or flooded within 1 month of sowing (Kalmbacher et al.

1998), but 2- to 3-week-old seedlings will survive standing water for several days (Kalmbacher et al. 1997). Jarra digit grass displayed moderate-good waterlogging tolerance and if seed becomes regularly available, this high quality forage species could be grown more in Thailand, Purple guinea will survive short periods of waterlogging but with significantly reduced vigour, Both ruzi and signal grasses displayed low waterlogging tolerance though the latter will survive on wet soils waterlogged for short periods.

Acknowledgements

We thank the Thailand Research Fund (TRF) for providing financial support to this research program and the Faculty of Agriculture, Ubon Ratchathani University for research facilities.

References

- ANDERSON, E.R. (1970) Effect of flooding on tropical grasses. Proceedings of the XI International Grassland Congress, Surfers Paradise, 1969. pp. 591–592.
- ARGEL, P.J. and KELLER-GREIN, G. (1996) Regional experience with *Brachioria*: Tropical America-Humid lowlands. In: Miles, J.W., Mass, B.L. and Valle, C.B. do (eds) Brachiaria: *Biology, Agronomy and Improvement*, pp. 205–224. (CIAF: Cali, Colombia).
- GOBBUS, N.R., PHAIKAEW, C., PHOLSEN, P. RODCHOMPOO, O and SUSENA, W. (2001) Seed yield and its components of Brachlaria decumbens cv. Basilisk, Digitaria milanjiana cv. Jacra and Andropogon gayanus cv. Kent in north-east Thailand under different rates of nitrogen application. Tropical Grasslands, 35, 26–33.
- HACKER, J.B. (1992) Digitaria eriantha Steudel, In: Mannetje,
 L.'t and Jones, R.M. (eds) Plant Resources of South-East
 Asia, No. 4, Forages. pp. 121-123 (Pudoc-DLO: Wageningen).
- HACKER, J.B. and WONG, C.C. (1992) Digitaria milanjiana (Rendle) Stapf. In: Mannetje, L.'t and Jones, R.M. (eds) Plant Resources of South-East Asia, No 4, Forages, pp. 123-124, (Pudoc-DLO: Wageningen).
- HARE, M.D. and PHAIKAEW, C. (1999) Forage seed production in Northeast Thailand: A case history. In: Loch, D.S. and Ferguson, J.E. (eds) Forage Seed Production, Volume 2, Tropical and Subtropical Species. pp. 435–443. (CAB International: Oxford).
- HARE, M.D., THUMMASAENG, K., SURLYAJANTRATONG, W., WONGPICHET, K., SAENGKHAM, M., TATSAPONG, P., KAEWKUNYA, C. and BOONCHARERN, P. (1999a) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. Tropical Grasslands, 33, 65-74.
- HARE, M.D., BOONCHARERN, P., TATSAPONG, P., WONGPICHET, K., KAEWKUNYA, C. and THUMMASAENG, K. (1999b) Performance of para grass (Brachiaria mutica) and Ubon paspalum (Paspalum atratum) on seasonally wer soils in Thailand. Tropical Grasslands, 33, 75-81.
- HARE, M.D., SURIYAJANTRATONG, W., TATSAPONG, P., KAEWKUNYA, C., WONGPICHET, K. and THUMMASAENG, K. (1999c) Effect of nitrogen on production of *Paspalum atratum* on seasonally wet soils in north-east Thailand. *Tropical Grasslands*, 33, 207-213.

- HARE, M.D., KAEWKUNYA, C., TATSAPONG, P. and SAENG-KITAM, M. (2003) Evaluation of forage legumes and grasses on scasonally waterlogged sites in nonh-cast Thailand. Tropical Grasslands, 37, 20-32.
- HUMPHREYS, L.R. (1981) Environmental adaptation of tropical
- HUMPHREYS, C.R. (1981) Environmental adaptation of tropical pasture plants. (MacMillan: London).
 KALMBACHER, R.S., BROWN, W.F., COLVIN, D.L., DUNAVIN,
 L.S., KRETSCHMER, A.E.Jr, MARTIN, F.G., MULLAHEY, J.J.
 and RECHCIGL, J.E. (1997) 'Suerie' aira paspalum, Its management and utilization. University of Florida, Agricultural Experimental Station. Circular S-397.
- KALMBACHER, R.S., RECHCIGL, J.E., MARTIN, F.G. and KRET-SCHMER, A.E.Jr. (1998) Effect of dolomite and sowing rate on plant density, yield and nutritive value of Paspalum arratum. Tropical Grasslands, 32, 89-95.
- KREMSAWAT, C. and PHONBUMRUNG, T. (2002) Thai government promotes fodder production and encourages marketing. (Southeast Asia Feed Research and Development Network) Seafrad News, 12, 9.
- PHAIKAEW, C. (1997) Current status of and prospects for tropical forage seed production in Southeast Asia: Experiences and recommendations from Thailand. In: Stut, W.W. (ed.) Feed resources for smallholder livestock production in Southeast Asia. CIAT Working Document No. 156. pp. 57-63. (CIAT: Los Banos).
- SHIFERAW, W., SHELTON, H.M. and SO, H B. (1992) Tolerance of some subtropical pasture legumes to waterlogging. Tropical Grasslands, 26, 187-195.
- WHITEMAN, P.C. (1980) Tropical Pasture Science. (Oxford University Press; Oxford).

(Received for publication October 14, 2002; accepted January 9, 2004)

Brachiaria species in north-east Thailand: dry matter yields and seed production

M.D. HARE, P. TATSAPONG, A. LUNPHA AND K. WONGPICHET Faculty of Agriculture, Ubon Ratchathani

University, Ubon Ratchathani, Thailand

Abstract

Two field experiments were conducted during 2000-2002 in north-east Thailand to compare dry matter yields and seed production of *Brachiaria ruziziensis* (ruzi grass; common Thailand type). *B. decumbens* (common, signal grass) cv. Basilisk, *B. decumbens* (CIAT 26297), *B. brizantha* cv. Marandu (CIAT 6780) and *B. brizantha* (CIAT 6387).

Marandu, Basilisk and CIAT 6387 produced 50%, 46% and 43%, respectively, more dry matter than ruzi grass over 3 dry seasons. In addition, during the research period, Marandu and CIAT 6387 produced in excess of 30% more leaf dry matter than ruzi grass. CIAT 26297 produced similar dry matter yields to ruzi grass but produced the highest leaf crude protein concentrations of all the trial cultivars.

Basilisk produced the greatest number of inflorescences in 2001 followed by CIAT 6387 and ruzi grass, while in 2002, ruzi grass produced 76% and 150% more inflorescences, respectively, than Basilisk and CIAT 6387. Both Marandu and CIAT 26297 produced very few inflorescences in either year. Ruzi grass produced 30 and 80 kg/ha seed in the two years, while the other species produced negligible amounts of seed.

The failure of Basilisk in particular to produce adequate quantities of good seed was attributed primarily to failure of either or both seed set and caryopsis maturation. The implications of this and other factors are discussed in relation to the importance of site selection for more successful seed production of Basilisk and other accessions of B. decumbens and B. brizantha in Thailand.

Correspondence, M.D. Hare, Faculty of Agriculture, Uron Ratchathani University, Warin Chamrab, Ubon Ratchathani 34190, Thailand, E-mail: michael@agri.ubu.ac.th

Introduction

Ruzi grass (Brachiaria ruziziensis) was introduced into Thailand from Australia in 1968 and planted on the Thai-Danish Dairy farm and the Pakehong Animal Nutrition research station in central Thailand (Anon. 1995). It is widely grown only in Thailand and in the central Kerala State in India (Stür et al. 1996). It is promoted in Thailand because it produces good seed yields. its time of seed harvest fits in easily with the farm management program followed by village farmers, it is easy to establish and the forage is readily accepted by livestock (Hare and Phaikaew 1999). However, research in Thailand has shown that signal grass (B. decumbens ev. Basilisk) produces higher dry season forage yields than ruzi grass (Thinnakorn and Kreethapon 1993; Hare et al. 1999, 2003).

Despite superior dry season production, broader adaptability and persistence of signal grass compared with ruzi grass, signal grass has not been promoted in Thailand because of the difficulty of producing seed. Signal grass produces seed over 2-3 months in the wet season, during a period of very heavy rain, whereas ruzi grass produces seed in a 1-month period, with very little rain, at the beginning of the dry season. B. brizantha cultivars have not been previously intensively studied in Thailand.

The objective of this research was to compare dry matter yield and seed production of ruzi grass with those of cultivars and other accessions of B. decumbens and B. brizantha.

Materials and methods

Two field experiments were conducted in Ubon Ratchathani province, north-east Thailand (15°N, 104°E: 130 m asl; AAR 1593 mm) on the Ubon Ratchathani University farm in a 0.15 ha field from 2000 to 2003. The sites were on an upland sandy low humic gley soil (Roi-et soil series)

(Mitsuchi et al. 1986). Soil samples to 10 cm. taken at sowing in May 2000, showed that the soil was acid (pH 4.7: water method), and low in organic matter (1%). N (0.05%), P (10.7 ppm; Bray II extraction method) and K (19.5 ppm). Prior to cultivation, the site had been planted to ruzi grass, mixed with Verano stylo (Stylosanthes hamata), for 6 years. It was ploughed in March and again in April 2000 and then rotary hoed to produce a fine seed bed the day before planting in June 2000.

Trial 1 - Dry matter yields

This trial measured dry matter yields of 5 Brachiaria species [Brachiaria ruziziensis (ruzi grass; common Thailand type), B. decumbens cv. Basilisk (common signal grass), B. decumbens (CIAT 26297), B. brizantha cv. Marandu (CIAT 6780) and B. hrizantha (CIAT 6387)]. The layout was a randomised complete block design with 5 replicates. The trial was planted in June 2000 with freshly dug rooted tillers, spaced at 50×50 cm, into 5×5 m plots. After a general ground level cut on October 25, 2000, fertiliser was applied (156 kg/ha NPK 15:15:15). Dry matter sampling cuts (8 \times 0.25 m²) were taken 2 or 3 times each dry season for 3 dry seasons (November-April 2000-2001; 2001-2002; 2002-2003) and 3 or 4 times each wet season for 2 wet seasons (May-October 2001; 2002).

At each cut, samples were weighed fresh and hand-sorted into leaves and stems. Dry matter yields were calculated from 300 g subsamples of leaves and stems dried at 70°C for 48 h. Samples from the dried samples were analysed for total N (Kjehldal method) in order to calculate crude protein levels (%N × 6.25) and for acid detergent fibre (ADF) and neutral detergent fibre (NDF) concentrations. ADF was not measured in the first dry season.

After each sampling, the plots were cut to 5 cm above ground level and fertilised with 156 kg/ha NPK (15:15:15), except in 2002, when fertiliser was applied after every second cut.

Trial 2 - Seed yields

The same 5 accessions as for Trial 1 were planted in June 2000 using the same planting technique, trial design and layout.

First season seed harvest. Swards were cut to ground level on October 25, 2000 and

February 28, April 26 and June 11, 2001. On August 6, 2001, after the harvest of the first flush of seed, Basilisk plots were cut to 10 cm above ground level and closed for the second flowering flush. Fertiliser (156 kg/ha NPK 15:15:15) was applied to all plots after each cut.

A fixed quadrat of 2 m2 was marked in each plot and fully emerged inflorescences were counted weekly to establish the flowering patterns of each species. At peak anthesis, 20 inflorescences per plot from just outside the fixed quadrats were collected for reproductive analysis. All racemes were counted on each inflorescence and spikelets per raceme were counted from 3 racemes per inflorescence, taken from the top, middle and bottom of each inflorescence. Seed was harvested from the fixed quadrats by tying the inflorescences into 'living sheaves' (Kowithayakorn and Phaikaew 1993) and gently knocking the seed into bags each day. The seed was dried slowly on top of tables inside a shed and then cleaned through hand screens and a South Dakota seed blower. Following cleaning, seed yields were corrected to 12% seed moisture content.

Second season seed harvest. After the first season seed harvest was completed for all species, the plots were cut close to ground level on December 14, 2001 and again on April 25 and June 10, 2002. On August 24, 2002, after the harvest of the first flush of seed, Basilisk plots were cut close to ground level and closed for the second flowering flush. Fertiliser (156 kg/ha NPK 15:15:15) was applied to all plots on June 10 and again to the Basilisk plots on August 24, 2002.

Flowering patterns, reproductive analysis and seed yields were collected as for the first harvest season.

Data from both trials were analysed using conventional analyses of randomised complete block experiments.

Results

Rainfall

Rainfall at 1 km from the trial site (Figure 1), was above the medium-term mean of 1593 mm/annum in all years of the study. In the first establishment year, 2000, it was 30% above the medium-term average, with over 400 mm/month falling in May, July and August.

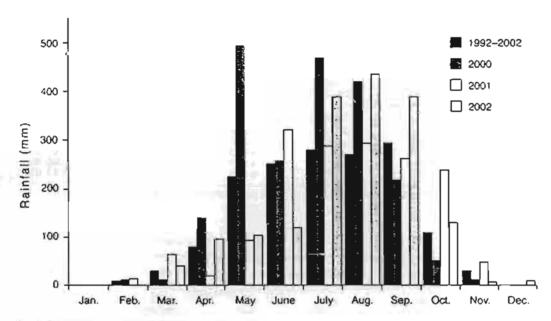


Figure 1. Rainfall (mm) at Ubon Ratchathani University during the study and the medium-term mean (1992-2002).

Trial I - Dry matter yields

Basilisk, Marandu and CIAT 6387 consistently produced more total dry matter than ruzi grass and CIAT 26297, particularly in the dry season (Table 1). Over 3 dry seasons, Basilisk produced 46% and 36% more dry matter than ruzi grass and CIAT 26297, respectively. Marandu and CIAT 6387 produced significantly (P < 0.05) more dry matter than ruzi grass and CIAT 26297 in 2 out of 3 dry seasons.

The two B. brizantha accessions, Marandu and CIAT 6387, on average, produced more leaf dry matter than ruzi grass and CIAT 26297 (Table 2).

Basilisk generally produced more leaf (P < 0.05) than ruzi grass and CIAT 26297 in the dry season, but not in the wet season. Basilisk produced more stem (P < 0.05) than ruzi grass (except in the second wet season) (Table 3).

CIAT 26297 had the highest leaf crude protein concentrations of all the accessions, being significantly higher than Marandu (all seasons) and CIAT 6387 (4 out of 5 seasons) (Table 4). There were no significant differences in leaf crude protein concentrations between ruzi grass and Basilisk, which were either equal to or slightly lower than for CIAT 26297. Except for the first

Table 1. Total dry matter production of 5 Brachiaria accessions.

Accession			Total dry matter		
	Dry 2000–2001	Wet 2001	Dry 2001~2002	Wet 2002	Dry 2002–2003
			(kg/ha)		
Ruzi grass	5448 b	13883 bc	2749 b	9295 ab	3346 b
Basilisk	8126 a	14725 ah	4467 a	9844 a	4277 a
CIAT 26297	6580 b	13350 c	2624 b	7776 b	3134 b
Marandu	8968 a	15:205 ab	4407 a	9918 a	3911 ab
CIAT 6387	8542 a	16011 2	3807 ab	9870 s	4162 a

¹ In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

102 M.D. Hare, P. Tatsapong, A. Lunpha and K. Wongpichet

Table 2. Leaf dry matter production of 5 Brachiaria accessions.

Accession			Leaf dry matter		_
	Dry 2000-2001	Wc1 2001	Dry 20012002	Wet 2002	Dry 2002-2003
			(kg/ha)	_	
Ruzi grass Basilisk CIAT 26297 Marandu	3520 c ¹ 4864 b 3839 c 6027 a	7850 c 7884 c 8299 bc 9538 a	1951 b 2796 a 1777 b 3303 a	4920 b 5382 b 4929 b 6570 a	2407 bc 2693 ab 2177 c 3095 a
C3AT 6387	5402 ab	8946 ab	2901 a	5383 ზ	2948 a

I in a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 3. Stem dry matter production of 5 Brachiaria accessions.

Accession			Stem dry matter		
	Dry 2000–2001	Wet 2001	Dry 2001–2002	Wei 2002	Dry 2002–2003
	•		(kg/ha)	_	
Ruzi grass	1928 c ¹	6033 b	798 b	4375 a	939 bc
Basilisk	3262 a	6841 a	1671 a	4462 a	1584 a
CIAT 26297	2741 b	5037 c	847 ъ	2847 Ե	957 bc
Marandu	2941 ab	5667 bc	1104 ხ	3348 ხ	816 c
CIAT 6387	3140 ab	7065 a	906 b	4487 a	1214 b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 4. Crude protein levels in leaf (L) and stem (S) of 5 Brachiaria accessions.

Accession					Crade	protein				
	Dr 2000-		W 20	'a 01		ry -2002		Vet XX2		ry -2003
	ı	s	I.	s	L	·s	ι	s	L	s
					(%)					
Ruzi grass Basilisk CIAT 26297 Marandu CIAT 6387	10.3 ab ¹ 9.9 bc 10.9 a 9.2 c 9.2 c	5.9 a 5.5 ab 5.1 bc 4.6 cd -4.4 d	9.4 sb 8.9 ab 9.9 a 8.3 b 8.6 b	5.9 2 5.8 2 6.2 x 5.5 a 5.2 a	13.4 b 12.9 b 15.2 a 10.4 c 13.2 b	8.6 b 8.4 b 9.7 a 6.3 c 8.7 b	7.4 b 7.4 b 8.4 a 6.6 b 7.1 b	5.5 ab 5.8 a 5.6 ab 5.9 a 4.6 b	12.4 2 11.5 ab 13.1 a 9.9 b 12.4 a	6.8 bc 7.7 b 9.0 a 6.2 c 7.7 b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test,

dry season, stem crude protein concentrations of CIAT 26297 were either equal to or significantly higher than those for many of the other accessions, in particular CIAT 6387. Stem crude protein concentrations of ruzi grass and Basilisk were similar in all seasons.

Ruzi grass, on average, had significantly lower ADF and NDF leaf concentrations and occasionally lower ADF and NDF stem concentrations than Marandu (Tables 5 and 6). Ruzi grass also had generally lower ADF and NDF concentrations than Basilisk.

Table 5. Acid detergent fibre concentrations in leaf (L) and stem (S) of 5 Brachiaria accessions.

Accession	W. 200		Dry 2001~2002				Dry 2002-2003	
•	L	\$	L	s	Ĺ	S	L	s
				(%)				
Ruzi grass Basilisk CIAT 26297 Marandu CIAT 6387	30.7 abl 28.9 b 31.5 a 32.1 a 30.4 ab	36.8 b 45.7 a 39.3 ab 37.0 b 39.6 ab	23.4 c 25.0 bc 26.3 ab 27.4 a 25.2 bc	28.9 c 34.4 a 34.4 a 32.6 ab 29.9 bc	29.5 c 29.7 c 31.7 ab 32.5 a 31.3 b	36,6 ab 37,6 ab 37,8 s 35,7 b 38,3 a	25.8 c 27.3 b 28.2 b 30.0 a 28.2 b	30.9 b 34.7 a 34.9 a 34.2 a 33.7 a

¹ In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 6. Neutral detergent fibre concentrations in leaf (L) and stem (S) of 5 Brachiaria accessions.

Accession	Dr 2000-		W. 200		Dr 2001-		\ 200		D 2002-	ry -2003
	Ĺ	s	Ļ	s	Ł	s	L	s	L	s
					(%)					
Ruzi grass Basilisk CIAT 26297 Marandu CIAT 6387	60.5 c ¹ 65.2 b 68.2 a 64.9 b 65.2 b	68.2 d 74.1 a 73.2 ab 70.7 c 71.4 bc	57.1 c 59.8 b 61.6 ab 63.0 a 62.1 ab	65.0 b 68.7 a 68.1 a 66.8 ab 68.6 a	46.0 c 49.6 b 52.1 ab 54.0 a 49.6 b	56.4 c 62.5 a 61.4 ab 63.4 a 59.5 b	58.1 c 60.5 bc 60.8 bc 63.8 a 61.1 b	66.1 b 69.0 a 67.5 ab 66.3 b 67.3 ab	51.8 c 54.2 b 55.5 b 59.0 a 54.8 b	58.4 b 63.8 a 62.3 a 63.6 a 61.5 a

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Trial 2 - Seed yields

Basilisk was first to reach peak flowering each year, followed, respectively, by CIAT 6387, CIAT 26297, Marandu and ruzi grass (Table 7). Peak flowering was 1-2 months later in 2002 than in 2001 because the plots in 2002 were cut and closed for seeding in June but in 2001 the plots were cut and closed in April.

Basilisk produced the greatest number of inflorescences in 2001 followed by CIAT 6387

Table 7. Date of peak flowering of 5 Brachiaria accessions.

Accession	2001	2002
Ruzi grass	Oct 10	Nov 11
Basilisk	Jul 30	Sep 10
CIAT 36297	Aug 27	Oct 4
Marando	Sep 17	Oct 12
CLAT 6387	Aug 8	Sep 24

and ruzi grass (Table 8). However, in 2002, ruzi grass produced more inflorescences than all other accessions. Both Marandu and CIAT 26297 produced very few inflorescences in either year. Ruzi grass produced significantly more racemes per inflorescence than the other accessions and significantly fewer spikelets per raceme than Basilisk and Marandu, Marandu produced the most spikelets per raceme in 2001 as did Basilisk in 2002 (Table 8). CIAT 26297 produced significantly fewer racemes and spikelets than the other 4 accessions.

In 2001, Basilisk produced 123 inflorescences per m² in October, in addition to the main flush in July. However, spikelets produced by this second flush were light and empty. In 2002, signal grass did not produce a second flowering flush.

Seed yields of ruzi grass (30 and 80 kg/ha) were significantly higher than those of the other accessions, which produced negligible amounts of seed (Table 9).

Table 8. Reproductive components of 5 Brachiana accessions.

Accession	Infloresc	ences/m²	• Racemes/ir	ifiorescence	Spikelet 	s/гасетье
	2001	2002	2001	2002	2001	2002
Ruzi grass	224 b ¹	266 а	4.0 a	4.1 a	34.2 c	30.8 c
Basilisk	33 t a	151 b	2.9 cd	2.3 c	40.0 b	43.3 a
ClaT 26297	37 c	23 d	2.7 d	1.5 d	28.0 d	24.8 d
Marandu	34 c	11 d	3.4 b	3.1 Ъ	48.8 a	39.6 b
CLAT 6387	257 b	106 c	3.2 bc	2.3 c	34.3 c	32.0 c

³ In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 9. Seed yields of 5 Brachiaria accessions.

Accession	2001	2002
	(kg	/ha)
Ruzi grass	29.6 al	80.3 a
Basilisk	5.3 Ь	5.1 b
CIAT 26297	0.4 b	1.0 b
Marandu	2.7 b	2.9 b
CIAT 6387	3.8 6	3.2 b

¹ In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test,

Discussion

Pasture grasses that have superior dry season production, broader adaptability and better persistence than ruzi grass are of special interest to farmers in Thailand. This research has shown that 3 Brachiaria accessions (Marandu, Basilisk and CIAT 6387) generally have higher dry matter production than ruzi grass, particularly in the dry season. Marandu, Basilisk and CIAT 6387 produced 50%, 46% and 43%, respectively, more dry matter than ruzi grass over the 3 dry seasons. In addition, Marandu and CIAT 6387 produced over 30% more leaf dry matter than ruzi grass. However, ruzi grass generally has higher crude protein levels than Marandu and lower fibre levels than Marandu and Basilisk.

Even though Marandu, Basilisk and CIAT 6387 produced more dry matter than ruzi grass in our trial, only ruzi grass produced useful seed yields, which is the main reason why ruzi grass continues to be the dominant tropical pasture species used in Thailand. Seed yields of ruzi grass were, however, below those produced by smallholder farmers in Thailand, who average 300-500 kg/ha (Phaikaew et al. 1993). The relatively low seed yields of ruzi grass in our trial

could be a function of soil type and the harvesting technique. The soil at the experimental site was not waterlogged but drainage was impeded. Free-draining soils are essential for successful ruzi grass seed production in Thailand. Farmers also achieve high yields by knocking seed from seedheads daily, often starting early in the morning before seed sheds or is eaten by birds. Many farmers sleep close to their crops in order to chase birds away at daybreak. In our trial, the seed was collected daily by knocking seedheads but during government working hours. Birds were observed foraging on the seed plots and quite a lot of seed shed on to the ground before collection.

However, our primary interest was in inflorescence density as an indicator of whether species could flower profusely, overcoming the first hurdle for seed production. Both Marandu and CIAT 26297 remained predominantly vegetative and produced very few inflorescences. Basilisk and CIAT 6387 produced at least as many inflorescences as ruzi grass in the first year. Ruzi grass flowered well in both years.

The sparse flowering behaviour of Marandu and CIAT 26297 may be because B. brizantha and B. decumbens are considered quantitative long-day plants (Hopkinson et al. 1996). They flower during the longer days of the year and usually flower vigorously only at higher tropical latitudes and at high elevations (Ferguson et al. 1983).

The key to the success of the cultivars Basilisk and Marandu in Brazil and Basilisk in Australia has been the ability of both cultivars to produce good seed yields in these countries. Previously, it was difficult to produce seed of these two species as they flowered and set seed over an extended period in the wet season.

Problems of Basilisk seed production in Australia were overcome following research by Grof (1968) that showed that Basilisk could set good seed yields and the selection of seed-producing sites in drier upland, higher tropical latitude regions (Loch et al. 1999). In Australia, successful Basilisk seed production is predominantly on the Atherton Tablelands at lower latitudes (17°S) but at elevations of 600-900 m asl.

In Brazil, site selection was also important in getting Basilisk and Marandu to produce high seed yields (Loch et al. 1999), in addition to the ground sweeping of fallen seed, either by hand or machine (Souza 1999). In Brazil, successful seed production of Marandu and Basilisk is in the higher tropical latitudes (20 and 22°S) and at elevations of 700–1000 m asl.

The Ubon Ratchathani University site at 15°N may not have had a sufficient number of long days to encourage reproductive development and at 130 m asl, elevation was not able to compensate for insufficient latitude (Ferguson et al. 1983). Ferguson et al. (1983) showed that, at similar latitudes in South America, 15–19°S, the site with the highest elevation (1000 m asl) produced the highest yields of Basilisk, even though that site had the lowest latitude (15°S). Further research is needed to verify the quantitative long-day requirement of cultivars of B. decumbens and B. brizantha, and the influence of elevation on flowering.

Despite the trial site being marginal in terms of soil, latitude and elevation, Basilisk and CIAT 6387 both produced sufficient inflorescences and spikelets to indicate a potential for useful seed yields. It also suggested that the long-day requirement was perhaps not so critical for these 2 accessions. However, by seed harvest, there was a massive failure of either or both seed set and caryopsis maturation, with the cleaned seed containing less than 1% of the spikelets formed by the crops. The subsequent failure of seed set, despite abundant moisture, may be due to the prolonged periods of overcast weather during periods of heavy rainfall at the time of peak flowening and seed maturation. These conditions are also considered deleterious for seed maturation. with abscission preceding maturation in a high proportion of spikelets (Hopkinson et al. 1996). This results in abnormally high proportions of light immature seed that occurred in both Basilisk and CIAT 6387. This seed was removed during seed cleaning, leaving negligible yields of good seed. In contrast, ruzi grass in Thailand flowers during the season of bright sunshine and no rain, and produces low proportions of light seed.

In 1999, we initiated village farmer seed production of Basilisk with 12 experienced ruzi grass seed producers in a village 10 km from the university. We considered that, under intensive farmer production, problems of seed shedding would be overcome and good seed yields would be recovered. Even though Basilisk produced 2 prolific flowering flushes (early August and 6 weeks later in late September), the bulk of the seed was immature. Only 19 kg/ha of useful seed (thousand-seed weight TSW 2.8 g) was harvested. In 2000, all of the Basilisk seed crops in the above village were waterlogged and failed to flower.

At that stage we considered that planting on more fertile soils might reduce the incidence of immature seed. In 2000, we contracted 1 farmer, 50 km from the university with red-brown organic soil, who harvested 56 kg/ha of good seed (TSW 5.6 g), despite having no previous grass-production experience. In the second year, the yield dropped to 30 kg/ha and in the third year no seed was harvested due to farmer health problems at the time of seed harvest. In 2002, we contracted 4 more farmers, 70 km from the university, with good soils but they harvested only 11 kg/ha seed (TSW 5.6 g). Selecting sites on good soils had not solved the problem of immature seed, as flowering and seed set still coincided with periods of heavy rainfall and overcast conditions.

Research into seed production of Basilisk has also been undertaken at other sites in north-east Thailand with more success. At Chiang Yeun (16°N; 170 m asl), Gobius et al. (2001) harvested 81–123 kg/ha of acceptable seed (TSW 4.6 g) on light sandy soils. They concluded that these yields were unsatisfactory and that heavier soils at higher elevations may improve seed production. At Khon Kaen, (16°N; 180 m asl), in small plots on slightly heavier soils, Malipan (2001) harvested 480–536 kg/ha seed (TSW 5.6 g). At Chaiyaphum (16.5°N; 720 m asl) on heavier soils, Kaewrahun (2003) harvested 826–870 kg/ha seed (TSW 6.5 g).

In Queensland, the seed yields of Basilisk usually range from 300-800 kg/ba, with a TSW of >5.0 g indicating a high level of maturity (Hopkinson et al. 1996). The seed yields and

seed weights produced at Khon Kaen and Chaiyaphum were equal to those in Queensland, particularly those in Chaiyaphum. It appears that Basilisk has the potential to produce good seed yields in Thailand if seed crops are on heavier soils at elevated sites. Marandu may also produce good seed at the same sites in Thailand because of its ability to produce good seed yields in Brazil on good soils at high altitudes (Souza 1999). Priority should be given to larger-scale commercial seed production of Basilisk and Marandu at the Chaiyaphum site or similar elevated sites in Thailand.

Ruzi grass will continue to be the dominant grass planted on upland soils in Thailand because of the availability of large quantities of relatively cheap seed (US\$2-3/kg). Demand for Basilisk and Marandu will increase only once commercial seed producers in Thailand can produce seed at similar retail prices to ruzi grass.

Acknowledgements

We thank the Thailand Research Fund (TRF) for providing financial support to this research program and the Faculty of Agriculture, Ubon Ratchathani University for research facilities.

References

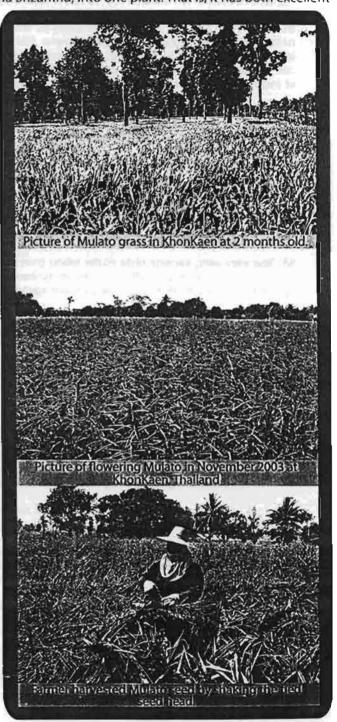
- ANONYMOUS (1995) Ruzi grass. (Division of Animal Nutrition. Department of Livestock Development: Bangkok, Thailand).
- PERGUSON, I.E., THOMAS, D., ANDRADE, R.P. de, COSTA, N.S. AND JUTZI, S. (1983) Seed production potentials of eight tropical species in regions of Latin America. Proceedings of the XIV International Grassland Congress. Lexington, Kentucky, 1983. pp. 275–278.
- GOBRIS, N.R., PHAIKAEW, C., PHOLSEN, P., RODCHOMPOO, O. and SUSENA, W. (2001) Seed yield and its components of Brachiaria decumbens ev. Basilisk, Digitaria milanjiana ev. Jaira and Andropogon gayanus ev. Kent in north-east Thailand under different rates of nitrogen application. Tropical Grasslands, 35, 26-33.
- GROF, B. (1968) Visibility of seed of Brachiaria decumbens. Queensland Journal of Agricultural Science, 25, 149–152.
- HARE, M.D. and PHAIKAEW, C. (1999) Forage seed production in Northeast Thailand: A case history. In: Loch, D.S. and Ferguson, J.E. (eds) Forage Seed Production Volume 2: Tropical and Subtropical Species, pp. 435–443. (CAB International: Oxon. UK).

- HARE, M.D., THUMMASAENG, K., SURLYAIANTRATONG, W., WONGPICHET, K., SAENGKRUM, M., TATSAPONG, P., KAEWKUNYA, C. and BOONCHARERN, P. (1999) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. Tropical Grasstunds, 33, 65-74.
- HARE, M.D., KAEWKUNYA, C., TATSAPONG, P. and SAENG-KHAM, M. (2003) Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37, 20-32.
- HOPKINSON, J.M., SOUZA, F.H.D. de, DIULGHEROFF, S., ORTIZ, A. and SÁNCHEZ, M. (1996) Reproductive physiology, seed production, and seed quality of Brachiaria. In: Miles, J.W., Maass, B.L. and Valle, C.B. do (eds) Brachiaria: Biology, Agronomy and Improvement, pp. 124-140. (CIAT: Cali, Colombia).
- KAEWRAHUN, S. (2003) Effect of cutting times and rates of nitrogen fertilizer on flowering and seed setting of signal grass (Brachian'a decumbens) at high elevation of Chaiyaphum province. M.Sc. Thesis. Khon Kaen University, Thailand.
- KOWITHAYAKORN, L. and PHARAEW, C. (1993) Harvesting and processing techniques of tropical grass and legume seeds for small farmers. Proceedings of the XVII International Grassland Congress, Palmerston North and Rockhampton, 1993. pp. 1809–1813.
- LOCH, D.S., COOK, B.G. and HARVEY, G.L. (1999) Location of seed crops: Grasses. In: Loch, D.S. and Ferguson, I.E. (eds) Forage Seed Production Volume 2: Trapical and Subtrapical species. pp. 113-128. (CAB International: Oxon, UK).
- MALIPAN, A. (2001) Flowering and seed set of signal grass (Brachiaria decumbens) as influenced by cutting times and nirrogen fertilization in Khon Kaen province. M.Sc. Thesis. Khon Kaen University. Thailand.
- MITSUCHI, M., WICHAIDH, P. and JEUNGNUNTRUND, S. (1986) Outline of soils of the Northeast Plateau, Thailand. Their characteristics and constraints. Technical Paper No. 1. Agricultural Development Center in Northeast: Khon Koen. Thailand.
- PHAIKAEW, C., MANIDOOL, C. and DEVAHUTI, P. (1993) Ruzi grass (Brachiaria ruziriensis) seed production in north-east Thailand. Proceedings of the XVII International Grassland Congress, Palmerston North and Rockhampton, 1993. pp. 1766–1767.
- Souza, F.H.D. de (1999) Brachiaria spp. in Brazil. In: Loch, D.S. and Ferguson, J.E. (eds) Forage Seed Production Volume 2: Tropical and Subtropical Species. pp. 371–379. (CAB International: Oxon, UK).
- STOR, W.W., HOPKINSON, J.M. and CHEN, C.P. (1996) Regional experience with Brachiaria: Asia, the south Pacific and Australia. In: Mites, J.W., Maass, B.L. and Valle, C.B. do (eds) Brachiaria: Biology: Agronomy and Improvement. pp. 258–271. (CIAT: Cali, Colombia).
- THINNAKORN, S. and KREETHAPON, I. (1993) Demonstration trial on suitable backyard pasture utilization for small dairy farm in Pak Chong. In: Chen, C. P. and Satjipanon, C. (eds) Strategies for suitable forage-based livestock production in Southeast Asia. Proceedings of the third meeting of the regional working group on grazing and feed resources of Southeast Asia. pp. 59-62. (Department of Livestock Development: Thailand).

Seed Production of new hybrid Brachiarias in Thailand

Chaisang Phaikaew, Ganda Nakamanee and Michael Hare

Several species of the grass genus Brachiaria have high potential as a source of feed for livestock production in the tropics. All of these species, however, have significant limitations. One of the most common varieties, Brachiaria desumbens "Basilisk", grows well in the dry season, but produces very little seed in most areas of Southeast Asia. Brachiaria ruziziensis "Ruzi" produces high yields of good quality feed in the wet season, but is poorly adapted to the long dry season and soon dies out.


In the mid 1980s, CIAT scientists started a breeding program to try to combine the best characteristics of different *Brachiaria* species into new hybrids. The first of these was released in 2001 in a public-private partnership between CIAT and the international seed company, Papalotla. This hybrid, known as *Mulato*, combines the best qualities of its parents, *Brachiaria ruziziensis* and *Brachiaria brizantha*, into one plant. That is, it has both excellent

dry season tolerance and produces higher quality feed than most Brachiaria varieties. Most significantly, whilst it is a hybrid, a peculiarity of the reproductive biology of the Brachiaria genus ('apomixis') means that the seed collected from this hybrid remains true to the parent. Thus, it is a hybrid that does not lock smallholder farmers into regularly buying seed from large companies, as is the case with most hybrid crops, such as hybrid corn.

Mulato is ideally suited to moderately fertile to fertile soils, in intensive livestock systems or in crop/pasture rotations. It does not grow well in very infertile soils or waterlogged areas. Recent research in Colombia has shown that cows grazing Mulato can produce an extra 1 to 2 litres of milk per day compared with cows grazing other grass varieties. In Honduras, steers grazing Mulato gained 900 g/day compared with 600 g/day on B. decumbers cv. Basilisk.

The Mulato hybrid was first introduced by CIAT to Southeast Asia in 1996 as part of a large Brachiaria variety trial in Thailand. The Thai Department of Livestock Development (DLD) identified Mulato as the most promising variety for livestock production in the seasonally wet-dry climates and poor soils of the northeast. They commenced seed production trials on-station in 2000 and, because of the promising results, commenced on-farm trials in 2003 with 7 smallholder farmers near Khon Kaen. On the strength of the results, Papalotla provided a guaranteed market in 2004 that will allow 1800 farmers to plant 1500 hectares for seed production, primarily for export.

One limiting characteristic of *Mulato* is its low seed yields (<180kg/hectare). A new hybrid ("Mulato 2"), which is agronomically very similar to *Mulato* except that it produces double the seed yields, has been developed by CIAT. Ubon Ratchatani University and Papalotla are working with 105 farmers in 2004 to produce seed of Mulato 2.

Stylo Adoption in Thailand: three decades of progress

C. Phaikaew¹ and M.D. Hare²

Division of Animal Nutrition, Department of Livestock Development, Bangkok 10400, Thailand

² Faculty of Agriculture, Ubon Retchathani University, Ubon Retchathani 34190, Thailand

Keywords: Stylosanthes guianensis, S. hamata, stylo, Thailand

Background: Stylosanthes has been the most popular forage legume used in Thailand over the past 30 years. From 1976-1984, the Department of Livestock Development (DLD) launched a project to improve 32,000 ha of communal grazing land by oversowing large quantities of *S. hamata* cv. Verano seed (approximately 250 tyear). This project generated the initial interest in stylo forage which has sustained over the years and up to the present time. Stylo is now mainly used for private grazing and cut and carry feeding for beef and dairy cattle. However, farmers generally have greater interest in planting grass because of higher forage yields.

Townsville stylo (S. humilis) in the late 1960s, was the first stylo species to receive prominence in Thailand. It grew extremely well on free-draining upland soils, along roadsides and was tolerant of heavy grazing in communal grazing areas (Wickham et al. 1977). After Townsville stylo was severely destroyed by anthrachose in 1976, it was rapidly replaced by the more resistant Verano stylo. Verano stylo became the backbone of large-scale pasture development in Thailand.

Perennial stylo (*S. guianensis*) has been used for over 20 years for high quality, cut and carry backyard forage. Graham stylo was the main cultivar produced until 1996, when it was hit by anthracnose and production ceased. The Phra stylo (CIAT 184) immediately replaced Graham stylo because of its good resistant to anthracnose and its high dry matter production. Hybrid stylo (*Stylosanthes guianensis* var. *vulgaris* x var. *pauciflora* ATF 3308) seed is currently being produced for export to South America, because of its resistant to anthracnose and grazing tolerance.

Seed Production: The Division of Animal Nutrition, DLD, has been responsible for the successful implementation of a government-supported seed enterprise for nearly 30 years (Phaikaew and Hare, 1998; Hare and Phaikaew, 1999). Since 1975, over 4,500 t of Verano stylo, Graham stylo and Tha Phra stylo seed have been produced in Thailand by village farmers and DLD stations.

Area planted: Over 300,000 ha of grazing land (private grazing land, communal grazing areas and roadside land) have been sown with stylo species in upland area since 1975. Verano stylo is now indigenous in many parts of Thailand, particularly along roadsides in the northeast region. Some areas were oversown several times if establishment was not successful and many farmers have regularly resown stylo on private land after 3-4 years. The existing stylo area has decreased in size due to the decrease in communal grazing areas and the lack of persistence of perennial stylo to heavy grazing and frequent cutting.

Major reasons for adoption:

- 1 Sandy, acid soils and medium seasonal rainfall (1250 mm) under which stylo species grow very well. All species survive over the 6-7 month dry season and prolific seeding contributes to their survival.
- Easy establishment, high germination and palatable forage makes stylo species the most popular forage legumes used by farmers in Thailand.
- 3. Multiple uses of stylo as forage in cut & carry system, grazing, hay, silage, cover crops, and as leaf meal protein in concentrate feeds for dairy, beef cattle, swine and poultry. Soil fertility is improved after stylo planting.
- 4. Availability of cheap stylo seed produced by village farmers under the DLD programme.
- 5. Farmer acceptance of stylo as a good quality forage legume that can increase milk yield and reduce the cost of concentrate feed. Stylo is used in TMR (Total Mixed Ration) for feeding dairy cows and beef fattening.
- Regular extensive preparatory research, colorful brochures, publications and technical advice from DLD staff.

Future progress

Farmers in Thailand need to develop better skills in managing perennial stylos (Tha Phra and Hybrid stylo 3308) as legume protein banks for the dry season. Thailand's reputation in producing very high quality stylo seed must be promoted to develop a seed export market. Widespread use of perennial stylo has been limited due to lack of persistence and poor regrowth when it is cut at a mature stage. Hybrid stylo 3308 may be the ideal replacement, as it has displayed good regrowth after cutting, no anthracnose disease and good grazing persistence.

References:

- HARE, M.D. and PHAIKAEW, C. (1999) Forage seed production in Northeast Thailand: A case history. In: Loch, D.S., Ferguson, J.E. (eds). Forage Seed Production Volume 2: Tropical and Subtropical Species pp. 435-443. (CAB International, Oxon., UK).
- Phalkaew, C. and Hare, M.D. (1998) Thailand's experiences with forage seed supply. In: Horne, P.M., Phalkaew, C. and Stur, W.W. (eds) Forage Seed Supply Systems Proceedings of a workshop held at Tha Pra, Thailand on 31 October and 1 November 1996. pp. 7-14. (CIAT Working Document No. 175, Los Banos, Philippines).
- Wickham, B., Shelton, H.M., Hare, M.D. and de Boer, A.J. (1977) Townsville stylo seed production in North-eastern Thailand. *Tropical Grasslands*, 11:177-187.

การศึกษาปัจจัยที่มีผลต่อคุณภาพของพืชหมักในถังพลาสติก

อารีรัดน์ ลุนผา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเกษตรศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

พ.ศ. 2548

ISBN 974-523-047-2 ลิชสิทธิ์เป็นของมหาวิทยาลัยอุบลราชธานี

THE EFFECT OF SILAGE QUALITY AFTER ENSILING IN SMALL CONTAINERS

AREERAT LUNPHA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE MAJOR IN AGRICULTURE FACULTY OF AGRICULTURE UBON RAJATHANEE UNIVERSITY YEAR 2005

COPYRIGHT OF UBON RAJATHANEE UNIVERSITY

ISBN 974-523-047-2

ใบรับรองวิทยานิพนธ์ มหาวิทยาลัยอุบลราชธานี วิทยาศาสตรมหาบัณฑิต สาขาวิชาเกษตรศาสตร์ คณะเกษดรคาสตร์

เรื่อง	การศึกษาปัจจัยที่มีผลต่อคุณภาพพืชหมักในดังพลาสติก	
ผู้วิจัย	นางสาวอารีรัตน์ ลุนผา	
ได้พิจารณาเห็น	ขอบโดยคณะกรรมการสอบวิทยานิพนธ์	
	ounder	ประธานกรรมการ
	(รองศาสตราจารย์ คร. วรพงษ์ สุริยภัทร) ก. กา~ ~ ศ	กรรมการ
	(คร. กังวาน ธรรมแสง)	
	122/are	กรรมการ
	(คร. ไมเคิล แฮร์)	
		กรรมการ
	(รองศาสตราจารย์ คร. วิศิษฐิพร สุขสมบัติ)	
	CAE	คณบคี
	(ผู้ช่วยศาสตราจารย์ คร. วัชรพงษ์ วัฒนกูล)	
	มหาวิทยาลัยอุบลราชธานี รับรองแล้ว 2	
	(ศาสคราจารย์ คร. ประกอบ วิโรจนกูฏ)	
	อธิการบดี มหาวิทยาลัยอบลราชธานี	

ปีการศึกษา 2548

บทกัดย์อ

ชื่อเรื่อง : การศึกษาปัจจัยที่มีผลต่อคุณภาพของพืชหมักในถังพลาสติก

โดย : บางสาวอารีรัตน์ ถุนผา

ชื่อปริญญา : วิทยาศาสครมหาบัณฑิต (เกษตรศาสตร์)

สาขาวิชา : สัตวศาสตร์ [ISBN 974-523-047-2] ประธานกรรมการที่ปรึกษา: รศ. คร. วรพงษ์ สุริยภัทร

คำสำคัญ : พืชหมัก คุณภาพ ความขึ้น ระยะเวลาหมัก สารเสริม ขนาคชิ้นพืช ถังพลาสติก

การศึกษาในครั้งนี้มีวัตถุประสงค์เพื่อศึกษาวิธีการทำพืชหมักในถังพลาสติก โดยศึกษา ปัจจัยต่างๆ ที่สำคัญในการทำพืชหมัก แบ่งงานทดลองออกเป็น 5 งานทดลองดังนี้ งานทดลองที่ 1 ศึกษาระคับความชื้นก่อนหมักในถังพลาสติก โดยใช้หญ้าพาสพาลัมอุบลที่ระดับความชื้นค่างๆ คือ 36, 45, 60 และ 80% วางแผนการทดลองแบบ CRD จำนวน 4 ซ้ำ บรรจุถังละประมาณ 60 กิโลกรัม หลังจากหมักได้ 4 สัปดาห์ เก็บคัวอย่างเพื่อวิเคราะห์ทางห้องปฏิบัติการพบว่าหญ้าที่มีความขึ้นก่อน หมัก 60% มีกุณภาพดีที่สุด กล่าวคือมีค่า pH ค่ำที่สุด และมีปริมาณกรคบิวทีริคต่ำกว่ามาตรฐานของ พืชหมักคุณภาพดี อย่างไรก็ตามหญ้าหมักทุกระดับกวามชื้นจัดเป็นหญ้าหมักกุณภาพดี เมื่อพิจารณา ถึงปริมาณกรดอะซิคิก และบิวทีริก และเมื่อนำหญ้าหมักไปวัดการข่อยสลายได้โดยใช้ถุงในล่อน พบว่า การย่อยสลายได้สูงสุด (A+B) ของวัตถุแห้งไม่แลกค่างกันในทุกระดับความชื้น ส่วนโปรดีน หยาบที่ระดับความชื้น 36 และ 45% มีค่าสูงกว่าที่ระดับความชื้นอื่นๆ และเมื่อนำค่า A, B และ c ไป ทำนายปริมาณวัตถุแห้งที่กินได้ และอัตราการเจริญเติบโด โดยใช้สมการของ Sheme et al. (1995) พบว่าทุกระดับความชื้นมีค่าที่ไม่ต่างกัน

งานทดลองที่ 2 ศึกษาระยะเวลาการหมักในลังพลาสติก โดยใช้หญ้าพาสพาลัมอุบลที่ ระยะเวลาหมักต่างๆ ดังนี้ คือ 1, 2, 3, 4 สัปดาห์, 3 และ 6 เดือน วางแผนการทดลองแบบ CRD จำนวน 4 ซ้ำ บรรจุลังละประมาณ 60 กิโลกรัม เก็บตัวอย่างหลังหมักตามทรีทเมนต์พบว่า ที่ ระยะเวลาการหมัก 2 สัปดาห์ ค่า pH เริ่มคงที่ และมีคำไม่แตกต่างกันจนลึงระยะเวลาการหมัก 6 เดือน และมีปริมาณกรดอะซิติดและบิวทีริกต่ำจัดว่าเป็นพืชหมักอุณภาพดี แต่การหมักนานกว่า 3 เดือน มีแนวโน้มทำให้ปริมาณวัตถุแห้งและโปรดีนหยาบลดลง เมื่อนำไปวัดการย่อยสลายได้โดยใช้ ฉุงในส่อนพบว่า การย่อยสลายได้สูงสุด (A+B) ของวัตถุแห้งไม่แตกต่างกันในทุกระยะเวลาการหมัก ส่วนโปรตีนหยาบที่ระยะเวลาการหมัก 6 เดือน มีค่าสูงกว่าที่ระยะเวลาการหมักอื่นๆ และเมื่อ

นำค่า A, B และ c ไปทำนายปริมาณวัตถุแห้งที่กินได้ และอัตราการเจริญเติบ โด โดยใช้สมการของ Sheme et al. (1995) พบว่าทุกระยะเวลาการหมักมีค่าไม่แตกต่างกัน

งานทคลองที่ 3 ศึกษาชนิดและปริมาณของสารเสริมที่เคิมในหญ้าและถั่วหมักในลัง พลาสติก โดยใช้หญ้าพาสพาลัมถุบล และถั่วสไตโลถุบลผสมกับถั่วกาวาลเคด และใช้สารเสริม 2 ชนิด ถือ กากน้ำตาล และ มันสำปะหลังบด ที่ระดับต่างๆ ได้แก่ 3, 6, 9% ของน้ำหนักสด และไม่มี การเติมสารเสริม วางแผนการทคลองแบบ CRD จำนวน 4 ซ้ำ บรรจุถังละประมาณ 60 กิโลกรัม จาก การเก็บตัวอย่างหลังหมัก 4 สัปคาห์พบว่า การใช้สารเสริมทั้ง 2 ชนิค ทำให้พืชหมักมีคุณภาพคีกว่าที่ ไม่มีการใช้ทั้งในหญ้าและถั่ว และการเคิมกากน้ำคาลทั้ง 3 ระคับ คีกว่าการเติมด้วยมันสำปะหลัง เนื่องจากมีค่า pH ต่ำกว่า แต่ทั้ง 3 ระดับของการเดิมกากน้ำตาลมีค่า ไม่แตกต่างกัน ส่วนปริมาณ วัคถูแห้งนี้แนวโน้มเพิ่มขึ้นเมื่อใช้สารเสริมในระคับที่สูงขึ้น อย่างไรก็ตามเมื่อลูจากค่า pH และ ปริบาณกรคอินทรีย์แล้ว การใช้สารเสริมทั้ง 2 ชนิค ในทุกระคับทั้งในหญ้าและถั่ว พืชหมักที่ได้ จัดเป็นพืชหมักคุณภาพดี และเมื่อนำไปวัดการย่อยสลายได้โดยใช้ถุงในล่อนพบว่า การย่อยสลายได้ สูงสุด (A+B) ของวัตถุแห้งในหญ้าหมักไม่แคกต่างกันในทุกทรีทเมนต์ ส่วนโปรตีนหยาบที่มีการ เสริมกากน้ำตาล 6 และ 9% มีค่าสูงกว่าทรีทเมนค์อื่นๆ ในส่วนของถั่วหมักพบว่า การย่อยสลายได้ สูงสุดของวัตถุแห้งที่มีการเสริมมันสำปะหลัง 6% มีค่าสูงกว่าทรีทเมนต์อื่นๆ ส่วนโปรดีนหยาบมีค่า ไม่แคกค่างกันทุกทรีทเมนต์ และเมื่อนำค่า A, B และ c ไปทำนายปริมาณวัตถูแห้งที่กินได้ และอัตรา การเจริญเติบโต โดยใช้สมการของ Sheme et al. (1995) พบว่าหญ้าหมักทุกทรีทเมนต์มีค่าที่ไม่ แคกต่างกัน ส่วนถั่วหมักพบว่า ที่ไม่มีการใช้สารเสริมจะมีค่าสูงกว่าที่มีการใช้สารเสริมในทุกระดับ

งานทคลองที่ 4 ศึกษาการสับหญ้า และการคูคอากาสออกจากภาชนะหมัก ซึ่งแบ่งเป็น 2 งานทคลองช่อย ลือการหมักในถังพลาสคิก และในถุงพลาสคิก โคยใช้หญ้าพาสพาลัมอุบล วาง แผนการทคลองแบบ CRD จำนวน 4 ซ้ำ หมักเป็นระชะเวลา 4 สัปคาห์ ในถังพลาสคิกพบว่า การสับ หญ้าก่อนหมักมีแนวโน้มศึกว่าการไม่สับ เนื่องจากมีปริมาณวัตถุแห้ง และโปรคินหยาบสูงกว่า และ มีปริมาณกรคบิวทีริคน้อยกว่าที่ไม่มีการสับ แต่มีลำ pH ไม่แคกค่างกัน และเมื่อนำหญ้าหมักไปวัด การช่อยสลายไค้ โดยใช้ถุงในล่อนพบว่า การช่อยสลายไค้ สูงสุด (A+B) ของวัตถุแห้งที่ไม่มีการสับ หญ้าจะมีค่าสูงกว่าที่มีการสับหญ้า ส่วนโปรตินหยาบมีค่าไม่แคกค่างกัน ส่วนงานทคลองใน ถุงพลาสคิกที่เปรียบเทียบการสับหรือไม่สับหญ้าร่วมกับการคูคหรือไม่คูคอากาสออกจากถุงหมัก พบว่า การสับมีแนวโน้มทำให้วัตถุแห้งสูงกว่าที่ไม่สับซึ่งสอคลอ้องกับงานทคลองที่ทำในถัง พลาสคิก และเมื่อมีการคูคอากาสออกจากถุงร่วมด้วย มีแนวโน้มศึกว่าที่ไม่มีการคูคอากาส อย่างไรก็ ตามเมื่อพิจารณาถึงปริมาณกรคบิวทีริลแล้ว อาจกล่าวได้ว่าพืชหมักทุกทรีทเมนต์จัดเป็นพืชหมัก ถุณภาพคี และเมื่อนำไปวัคการช่อยสลายได้โดยใช้ถุงในล้อนพบว่า การช่อยสลายได้สูงสุด (A+B)

ของวัตถุแห้งและโปรตีนหยาบบีค่าไม่แตกต่างกันในทุกทรีทเมนต์ และเมื่อน้ำค่า A, B และ c ไป ทำนายปริมาณวัตถุแห้งที่กินได้ และอัตราการเจริญเติบโต โดยใช้สมการของ Sheme et al. (1995) พบว่าทุกทรีทเมนต์มีค่าที่ไม่แตกต่างกันทั้งที่ทำในถังพลาสติกและถุงพลาสติก

งานทคลองที่ 5 ศึกษาอัตราส่วนของหญ้าต่อถั่วที่หมักในถังพลาสคิก โดยใช้หญ้าพาสพาลัม อุบล และถั่วสไตโลอุบล ในอัตราส่วนที่ต่างกันคังนี้ คือ 100: 0, 75: 25, 50: 50, 25: 75 และ 0: 100 โดยมีการเสริมกากน้ำตาลที่ระคับ 3% ของน้ำหนักสด วางแผนการทคลองแบบ CRD จำนวน 4 ซ้ำ บรรจุถังละประมาณ 60 กิโลกรัม จากการเก็บตัวอย่างหลังหมัก 4 สัปดาห์พบว่า อัตราส่วนของถั่วที่ 50% ขึ้นไปคืกว่าอัตราที่ต่ำกว่า เนื่องจากมีปริมาณวัตถุแห้งและโปรตีนหยาบสูงกว่า และเพิ่มขึ้นตาม อัตราส่วนของถั่วที่เพิ่มขึ้น แต่มีค่า pH ไม่แตกต่างกัน อย่างไรก็ตามพืชหมักในทุกทรีทเมนต์จัดว่ามี คุณภาพดี เนื่องจากมีปริมาณกรดบิวทีริกต่ำกว่า 0.5% ของวัตถุแห้ง และเมื่อนำไปวัดค่าการย่อย สลายได้โดยใช้ถุงในล่อนพบว่า การย่อยสลายได้สูงสุด (A+B) มีค่าสูงสุดทั้งของวัตถุแห้งและโปรดีนหยาบที่อัตราส่วนหญ้าต่อถั่ว 100: 0 และเมื่อนำค่า A, B และ c ไปทำนายปริมาณวัตถุแห้งที่ กินได้ และอัตราการเจริญเติบโต โดยใช้สมการของ Sheme et al. (1995) พบว่า มีค่าสูงขึ้นตาม อัตราส่วนของถั่วที่เพิ่มขึ้น

ABSTRACT

TITLE: THE EFFECT OF SILAGE QUALITY AFTER ENSILING IN SMALL

CONTAINERS

BY : AREERAT LUNPHA

DEGREE : MASTER OF SCIENCE (AGRICULTURE)

MAJOR: ANIMAL SCIENCE [ISBN 974-523-047-2]

CHAIR : ASSOC. PROF, DR. WORAPONG SURIYAPAT

KEYWORDS : SILAGE / QUALITY / MOISTURE / TIME OF ENSILING / ADDITIVE /

CHOPPING / PLASTIC DRUMS

The objective of this research was to examine the effects of making silage in plastic drum silos, by studing important factors of making silage in five experiments. Experiment 1: This experiment examined the effects of different Ubon paspalum moisture levels before ensiling in plastic drums on silage quality. The experiment was a complete randomized design with 4 replications and 4 grass moisture levels, 36%, 45%, 60% and 80%. Ubon paspalum was filled into plastic drums, each containing about 60 kgs, and kept for 4 weeks. Ubon paspalum at 60% moisture produced good quality silage because of the low pH and low butyric acid levels were lower than standard quality silage. However, based on acetic and butyric acid levels all treatments produced good quality silage. The evaluation of silage degradation in the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter was not significantly different in all treatments and crude protein at 36% and 45% moisture levels were higher than other treatments. When A, B and c values from the nylon bag technique were used to predict dry matter intake (DMI) and growth rate according to multiple regression proposed by Shem et al. (1995), the values were not different in all treatments.

Experiment 2: This experiment examined the effects of time of ensiling Ubon paspalum on silage quality. The experiment was a complete randomized design with 4 replications and 6 times of ensiling, 1, 2, 3, 4 weeks, 3 and 6 months. The grass was filled into the plastic drums, each containing about 60 kgs. It was found that pH was stable for all treatments, and acetic

and butyric acid levels were similar in all treatments and lower than levels in standard quality silage. Six months ensiling produced the lowest dry matter. Crude protein decreased with time of ensiling. The evaluation of silage degradation in the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter was not different in all treatments and crude protein at 6 months ensiling was higher than other treatments. When A, B and c values from the nylon bag technique were used to predict dry matter intake (DMI) and growth rate according to multiple regression proposed by Shem et al. (1995), the values were not different in all treatments.

Experiment 3: This experiment examined the effects of additives on Ubon paspalum and Ubon stylo silage quality. The experiment was a complete randomized design with 4 replications with two species, Ubon paspalum and Ubon stylo, two additives, cassava and molasses, three levels of additive, 3, 6 and 9% and a control treatment with no additives. The forage was filled into plastic drums, each containing about 60 kgs, and kept for 4 weeks. It was found that additives produced silage better in quality than silage with no additives. Molasses was better than cassava at all levels because of the low silage pH. Dry matter increased with the increase in additives. The evaluation of silage degradation in the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter was not different in all treatments and crude protein in Ubon paspalum silage with 6 and 9% molasses was higher than other Ubon paspalum silage treatments. Ubon stylo with 6% cassava added, had higher dry matter than other Ubon stylo silage treatments, but crude protein was not different in all treatments. When A, B and c values from the nylon bag technique were used to predict dry matter intake (DMI) and growth rate according to multiple regression proposed by Shem et al. (1995), the values were not different in all treatments on Ubon paspalum. But Ubon stylo with no additive had higher values than additive treatments.

Experiment 4: This experiment examined the effects of chopping and air suction on Ubon paspalum silage quality in two trials. The first trial was completely randomized design with 4 replications and 2 chopping treatments, chopped and unchopped. The grass was filled into plastic drums, each containing about 60 kgs, and kept for 4 weeks. It was found that chopped grass produced good quality silage because of the higher dry matter, higher crude protein and lower butyric acid levels compared to unchopped grass silage. The evaluation of silage degradation in

the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter was higher in unchopped than chopped silage. But crude protein levels were not different. The second trial was a completely randomized design with 4 replications, 2 chopping methods (chopped and unchopped) and 2 suction levels (suction and no suction). The grass was filled into plastic bags, each containing about 40 kgs, and kept for 4 weeks. Chopped silage in plastic bags produced higher dry matter than unchopped silage in plastic bags. The quality of silage in bags that were sucked free of air had better quality silage than silage in bags where the air was not sucked. The evaluation of silage degradation in the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter and crude protein was not different in all treatments. When A, B and c values from the nylon bag technique were used to predict dry matter intake (DMI) and growth rate according to multiple regression proposed by Shem et al. (1995), the values were not different in all treatments in both plastic drums and plastic bags.

Experiment 5: This experiment examined the effects of different levels of grass (Ubon paspalum) and legume (Ubon stylo) on silage quality. The experiment was a completely randomized design with 4 replications and five levels of grass and legume, grass 100% - legume 0%, grass 75% - legume 25%, grass 50% - legume 50%, grass 25% - legume 75% and grass 0% - legume 100%. All treatments had 3% molasses added. The forage was filled into plastic drums, each containing about 60 kgs, and kept for 4 weeks. It was found that a rate up to 50% Ubon stylo produced good quality silage because of high dry matter, high crude protein and low butyric acid levels. The evaluation of silage degradation in the rumen using the nylon bag technique found that the average potential degradability (A+B) of dry matter and crude protein at grass 100% - legume 0% ratio was higher than other treatments. When A, B and c values from the nylon bag technique were used to predict dry matter intake (DMI) and growth rate according to multiple regression proposed by Shem et al. (1995), the values increased with the increase in Ubon stylo.