

บทคัดย่อ

การศึกษาสารเคมีทัดแทนชั้ลเฟอร์ไคออกไซด์เพื่อยึดอาชญาการเก็บรักษาลำไยสด โดยเริ่มต้นศึกษาข้อมูลการปฏิบัติในทางการค้าของลำไยหลังการเก็บเกี่ยว การเก็บรักษาและการขนส่งลำไยจากเกษตรกรไปตลาดในประเทศไทยและต่างประเทศ การศึกษาชนิดและความเข้มข้นของสารเคมีกลุ่มต่างๆ ได้แก่ โซเดียมเมตาไบชัลไฟต์ โพร์พิลพาราบен แคลเซียมคลอไรด์ เอ็กซิลรีซอร์ชันอล เอ็นอะเซทิลแอลซิสเตอีน กรดซิตริก กรดแอสคอร์บิกและไฮโดรเจนเพอร์ออกไซด์ วิธีการใช้ที่เหมาะสม อุณหภูมิในการจุ่มสารที่เหมาะสมและปัจจัยร่วมที่เหมาะสมของสารเคมีชนิดที่คัดเลือกได้ เวลาและอุณหภูมิในการจุ่ม และการศึกษาเปรียบเทียบคุณภาพของลำไยที่ใช้สารชัลเฟอร์ไคออกไซด์ และสารเคมีชนิดที่คัดเลือกได้ ผลการศึกษาข้อมูลการปฏิบัติในทางการค้าของลำไยหลังการเก็บเกี่ยวในภาคเหนือ 3 จังหวัด ได้แก่ เชียงใหม่ ลำพูนและพะเยาจากเกษตรกรจำนวน 150 รายพบว่า เกษตรกรส่วนใหญ่ใช้แรงงานคนในการเก็บเกี่ยว โดยดัชนีที่ใช้เก็บเกี่ยว ได้แก่ สีผิว ขนาดผล ลักษณะผลและความหวาน เกษตรกรจะเก็บเกี่ยวทั้งช่วงเข้าและน้ำย ในการคัดเกรดลำไยพิจารณาจากขนาด จำนวนผลต่อช่อและสีผิว โดยแบ่งเป็น 4 เกรดคือ AA A B และ C เกษตรกรใช้ภายน้ำบรรจุลำไยคือตะกร้าพลาสติกและกล่องกระดาษโดยบรรจุกล่องละ 10 - 11 กิโลกรัม เกษตรกรส่วนใหญ่ไม่ได้ลดความร้อนแก่ลำไยหลังการเก็บเกี่ยวและไม่ได้น้ำลำไยไปรน ชัลเฟอร์ไคออกไซด์เพื่อยึดอาชญาการเก็บรักษา การศึกษาข้อมูลการปฏิบัติในทางการค้าของลำไยหลังการเก็บเกี่ยวจากกลุ่มผู้ค้าลำไยจำนวน 30 กลุ่มพบว่ามีการคัดเกรดลำไย เช่นเดียวกับเกษตรกร เกณฑ์ในการรับซื้อพิจารณาจากผิวลำไยที่ปราศจากโรคและขนาดที่สม่ำเสมอในช่อ ภายน้ำบรรจุที่ใช้คือเร่งไนฟ์ขนาดบรรจุ 20 กิโลกรัม ตะกร้าพลาสติกขนาดบรรจุ 10 กิโลกรัม ส่วนใหญ่ไม่มีการลดความร้อนแต่มีการพรมน้ำ มีการขนส่งลำไยโดยรถชนิดและรถห้องเย็นปรับอากาศ การศึกษา ข้อมูลการปฏิบัติในทางการค้าของลำไยหลังการเก็บเกี่ยวจากผู้ค้าเพื่อส่งออกต่างประเทศของลำไยจำนวน 11 ราย พบว่าผู้ค้าเพื่อส่งออกรับซื้อลำไยเฉพาะพันธุ์อีดอ โดยรับซื้อที่โรงคัดบรรจุของบริษัท ทำการบรรจุลำไยในตะกร้าพลาสติกขนาดบรรจุ 11 กิโลกรัม ชั้นน้ำหนักและคัดเกรดและแบ่งเป็น 3 - 12 เกรด โดยใช้พนักงานที่ชำนาญ เกณฑ์การคัดเกรด ได้แก่ ผิวลำไย ขนาดผลและความสม่ำเสมอของผล จากนั้นจึงนำไปรนด้วยชัลเฟอร์ไคออกไซด์ บรรจุในถุงกันเทนเนอร์ที่ปรับอุณหภูมิระหว่าง 2 - 4 องศาเซลเซียส

การศึกษาชนิดและความเข้มข้นที่เหมาะสมของสารเคมีต่างๆ พบว่าโซเดียมเมตาไบชัลไฟต์ ความเข้มข้น 2,000 ppm สามารถยับยั้งจุลินทรีย์ได้ดีที่สุด เมื่ออะเซทิลแอลซิสเตอีนความเข้มข้น 5 mM สามารถช่วยลดการเกิดสีน้ำตาลได้ดีที่สุดและแคลเซียมคลอไรด์ความเข้มข้นร้อยละ 0.2 ช่วยเพิ่มแข็งแรงให้กับข้าวผลลำไยได้ จากนั้นนำสารเคมีแต่ละชนิดและความเข้มข้นที่คัดเลือกได้มาพัฒนากัน ศึกษาเวลาการจุ่มและพ่นสารเคมีผสมที่คัดเลือกได้พบว่าเวลาที่เหมาะสมที่สุดใช้การจุ่ม 5 นาที การศึกษาอุณหภูมิในการจุ่มสารที่เหมาะสมพบว่าที่อุณหภูมิ 50 องศาเซลเซียสมีผลทำให้สีผิวเปลี่ยน

คำไวย์มีความสว่างกว่าที่อุณหภูมิอื่นๆ การศึกษาปัจจัยร่วมที่เหมาะสมระหว่างสารเคมีผสมที่คัดเลือกได้ เวลาและอุณหภูมิในการจุ่นโดยเก็บรักษาลำไยที่ 4 ± 2 องศาเซลเซียส พบว่าการใช้สารเคมีผสมที่อุณหภูมิ 50 องศาเซลเซียส โดยการจุ่นเป็นเวลา 5 นาทีสามารถลดการเกิดสีน้ำตาลบนผิวเปลือกลำไยได้ดีกว่าชุดควบคุม ในขณะที่ปริมาณวิตามินซี การสูญเสียน้ำหนัก การเน่าเสียและจำนวนจุลินทรีย์พบว่าไม่มีความแตกต่างกัน ($p>0.05$) การศึกษาอาชุดการเก็บรักษาของลำไยโดยใช้สภาวะดังกล่าว พบว่าคำไวย์มีอาชุดการเก็บรักษานาน 10 วัน ในขณะที่ชุดควบคุมมีอาชุดการเก็บรักษานาน 8 วัน

การศึกษาเปรียบเทียบคุณภาพของคำไวย์ที่ใช้สารชั้ลเพอร์์โดยออกไซด์และสารเคมีชนิดที่คัดเลือกได้โดยการจำลองการขนส่งเพื่อจำหน่ายตลาดในประเทศไทยโดยการขนส่งด้วยรถขนต์ พบว่า การเปลี่ยนแปลงสีผิวของคำไวย์มีค่าไกล์เคียงกัน เมื่อเก็บรักษาที่อุณหภูมิห้องเป็นเวลา 4 วันพบว่าค่า L^* ของคำไวย์ที่จุ่นสารละลายผสมมีค่าต่ำกว่าและมีแนวโน้มการสูญเสียน้ำหนักมากกว่าแต่มีการร่วงของผลน้อยกว่าคำไวย์ที่ใช้สารชัลเพอร์์โดยออกไซด์และสารเคมีชนิดที่คัดเลือกได้จากการจำลองการขนส่งด้วยรถห้องเย็นอุณหภูมิ 4 ± 2 องศาเซลเซียส เพื่อจำหน่ายตลาดต่างประเทศเป็นระยะเวลาประมาณ 15 ชั่วโมง พบว่าคำไวย์ที่ใช้สารชัลเพอร์์โดยออกไซด์มีค่า L^* และค่า a^* สูงกว่าคำไวย์ที่จุ่นสารเคมีที่คัดเลือกได้ ($p \leq 0.05$) และมีการสูญเสียน้ำหนักต่ำกว่า ($p \leq 0.05$) ในขณะที่ปริมาณของเยื่องที่ละลายน้ำได้ของคำไวย์ทั้งสองมีค่าไม่แตกต่างกัน ($p>0.05$)

Abstract

The study of sulfur dioxide substituted chemicals for shelf life extension of fresh longan, the commercial postharvest treatment, the storage conditions and transportation of longan for inland consumption and exportation, were investigated. The study of chemicals with various concentrations e.g. sodium metabisulfite, propyl paraben, calcium chloride, hexylresorcinol, N-acetyl-L-cysteine, citric acid, ascorbic acid and hydrogen peroxide, the methods for chemical application, the temperatures of chemical solution and the combination of selected conditions, were determined. The study of longan quality compared between longan treated with sulfur dioxide and selected conditions, was also compared. The result showed that the commercial postharvest treatment of 150 farmers in 3 main provinces that produces fresh longans (Chiangmai, Lampoon and Payao) were following. Most farmers harvest longan by hand, the harvest indexes were peel color, size of fruit, fruit characteristics and its sweetness. The farmers harvest fruits both in the morning and afternoon. The grading of longan was in consideration of size of fruits, fruits per bunch and peel color and were devided into 4 grades e.g. AA, A, B and C. The farmers used plastic containers and paper box and packed with 10 - 11 kg fresh longan. Most farmers did not lower field heat after harvesting and did not vaporized longan with sulfur dioxide for shelf life extension.

The study of commercial postharvest treatment of 30 purchased groups showed that the grading of longan was as same as the farmers and the criteria were peel color, fruits without plant pathogen and equally fruit size. The packages used were wood crates packed with 20 kg and plastic containers packed with 10 kg fresh longan. Most of them was not lower the field heat but sometimes spray fruits with plain water. The transportation of longan were done with normal cars and cars with controlled temperature chamber. The study of commercial postharvest treatment of 11 longan exporters found that they purchased only longan c.v. Door at the company packing plant. They packed 11 kg fresh longan in plastic containers, weighed and graded into 3 – 12 levels by skilful operators. The criteria for grading were peel color, equally size of fruits. The selected longan were subjected to vaporize with sulfur dioxide and then put in controlled temperature chamber (2 – 4 °C).

The study of suitable sulfur dioxide substituted chemicals and concentration found that 2,000 ppm sodium metabisulfite was the most effective for microorganism inhibition, 5 mM N-acetyl-L-cysteine was the most effective for browning reduction and 0.2% calcium chloride was helpful for strengthen of bunches. Each of selected chemical and its concentration was then mixed

and studied on the suitable method for chemical application, the optimum temperature of chemical solution and the combination of selected conditions. It was found that dipping longan with mixed solution at temperature of 50 $^{\circ}\text{C}$ for 5 min was the most effective condition and could inhibit browning reaction better than the control. The vitamin C content, weight loss, spoilage and number of microorganisms of longan treated with mixed solution, were not significantly different than those of the control ($p>0.05$) and it was found that the shelf life of longan treated with mixed solution was 10 days which was 2 days more than that of the control.

The study of longan quality compared between longan treated with sulfur dioxide and mixed solution was investigated. For inland transportation using a normal car, the discoloration of both longan was similar when kept for 4 days at room temperature. The L^* value of longan treated with mixed solution tended to be less than that treated with sulfur dioxide, the weight loss tended to be more and the fall off fruits were less. The longan packed in plastic container had less number of microorganisms and less spoilage than that packed in paper box. The quality of longan compared between longan treated with sulfur dioxide and mixed solution for exportation using a controlled temperature container car of 4 ± 2 $^{\circ}\text{C}$ for 15 hour, was also investigated. It was found that the L^* and b^* values of longan treated with sulfur dioxide were higher than that treated with mixed solution ($p\leq 0.05$) and had less weight loss ($p\leq 0.05$). The total soluble solid contents of both longan were not significantly different ($p>0.05$).