

บทคัดย่อ

รหัสโครงการ : RDG4630001

ชื่อโครงการ : การนำน้ำทิ้งจากระบบบำบัดน้ำเสียชุมชนมาใช้เพื่อการเกษตรกรรม : ระยะที่ ๒

ชื่อนักวิจัย : เสนีย์ กาญจนวงศ์^๑, วิไลดักยณ์ กิจนะพานิช^๑, สมใจ กาญจนวงศ์^๑

ทรงเจ้าว์ อินสมพันธ์^๒, นายโศกชัย ไชยมงคล^๒, อคุง ศิลป์ประเสริฐ^๓,

พิพวรรณ ประภานุตตา^๔, รัศมี แก้ววิชิต^๓, กัลยา ว่องภัทร^๓, สุรีย์ บุญญานุพงษ์^๔

^๑คณะวิศวกรรมศาสตร์, ^๒คณะเกษตรศาสตร์, ^๓สถาบันวิจัยวิทยาศาสตร์สุขภาพ,

^๔สถาบันวิจัยสังคม มหาวิทยาลัยเชียงใหม่

email address : seni@eng.cmu.ac.th

ระยะเวลาโครงการ : มกราคม 2546 – มกราคม 2549

ปัญหาการขาดแคลนน้ำในการเกษตรกรรมอาจบรรเทาได้โดยการนำน้ำทิ้งจากระบบบำบัดน้ำเสียชุมชนมาใช้ ผลการวิจัยโครงการ “การนำน้ำทิ้งจากระบบบำบัดน้ำเสียชุมชนมาใช้เพื่อการเกษตรกรรม” (พ.ศ. 2542- 2545) ได้ยืนยันว่า นำน้ำทิ้งจากระบบบำบัดขึ้นที่สอง สามารถนำมาใช้ในการเพาะปลูกได้ การวิจัยระยะที่ ๒ นี้ เป็นการศึกษาต่อเนื่อง โดยเน้นในนำน้ำที่มีระดับการปนเปื้อนสูงขึ้น การวิจัยประกอบด้วยการทดลองปลูกผักในแปลง ๒ กลุ่ม คือ แปลงผัก ๑ ปลูกกลางแจ้ง และแปลงผัก ๒ มีหลังคาพลาสติกใส่คุณกันฝนและมีคาดสแตนเลส รองรับน้ำซึมใต้ดินเพื่อเก็บตัวอย่างไปศึกษา ระยะแรกของการวิจัย ช่วงเดือนมกราคม 2546 - มิถุนายน 2547 เทศบาลนครเชียงใหม่ ซ้อมท่อตักน้ำเสีย ไม่มีนำน้ำเสียให้ลงบ่อสูบน้ำเสียจุดสุดท้าย โดยสมน้ำเสียง โครงการวิจัยฯ ได้ปลูกพืชโดยใช้น้ำ ๓ ชนิด คือ น้ำขังในบ่อสูบน้ำเสียและทดลองแม่ข่าเรียงว่า น้ำสกปรก(CW) น้ำสกปรกที่ตกรตะกอน(Sed.CW) และน้ำบาดาล (GWps) เป็นแปลงความคุณ การทดลองระยะที่สองใช้น้ำเสีย (RW) นำทิ้งจากระบบบำบัดขึ้นต้น (PE) และนำ GWps เป็นแปลงความคุณ ทดลองปลูกพืชประกอบด้วย ผักคะน้า (๗ ครั้ง) กะหล่ำดอก (๖ ครั้ง) ผักกาดขาวปีลี (๔ ครั้ง) ผักกาดหัว (๖ ครั้ง) คอกแอกสเตอร์ (๒ ครั้ง) ในการปลูกได้ปรับลดปุ๋ยลงตามในโตรเจนและฟอสฟอรัสที่มีในน้ำรด ผลการทดลองไม่พบอาการเป็นพิษของพืช ผลผลิตในภาพรวมไม่แตกต่างกันจากการใช้น้ำทิ้ง ๕ ชนิด แต่การปลูกพืชชนิดเดียวกันในต่างกันให้ผลผลิตที่แตกต่างกัน โดยเฉลี่ยระดับการปนเปื้อนในผลผลิต (พยาธิ แบคทีเรีย โลหะหนัก) และการปนเปื้อนในดิน (พยาธิ โลหะหนัก) ไม่แตกต่างกันมากนัก ผลผลิตที่ได้อ่ายในมาตรฐาน ปลดปล่อยในการบริโภค ในการทดลองแปลงผัก ๒ ใช้น้ำ RW, PE, GWps ปลูกเฉพาะผักคะน้า แปลงผัก ๒/๑ ศึกษาการใช้อัตราการใช้น้ำรดที่น้อยลง (ปลูก ๔ ครั้ง) แปลงผัก ๒/๒ ศึกษาการใช้อัตราเติมน้ำปุ๋ยน้อยลง (ปลูก ๕ ครั้ง) ผลการทดลองแปลง ๒/๑ พบว่า ผักคะน้าขึ้น茂密

ผลผลิตที่ดี ที่อัตราการใช้น้ำ 200 ม³/ไร่.เดือน) ซึ่งเป็น 50% ของอัตราการปกติ น้ำซึ่มน้ำค่าปีโอดี และฟอสฟอรัสลดลง (กรณีน้ำรด RW, PE) และมีในโตรเจนสูงขึ้นจากการชะล้างปูยที่ติดระหว่างปลูก ในแปลงผัก 2/2 ใช้น้ำอัตราปกติ แต่ลดการใช้น้ำลง พบว่าที่อัตราการเติมน้ำ 60% ยังมีการเจริญเติบโตตามปกติ น้ำซึ่มน้ำการลดของฟอสฟอรัส แต่มีในโตรเจนและบีโอดีที่เพิ่มขึ้นในการปลูกครั้งหลัง ๆ (การปลูกปรับอัตราเติมน้ำปูยจากค่าน้อยไปมาก)

การวิจัยปลูกข้าวมี 2 กลุ่มคือ นาข้าว 1 (6 ครั้ง) ใช้น้ำทึ้งจากการระบายน้ำบ่อเติมอาคาร (AL) และน้ำบาดาล (GWSW) เป็นแปลงควบคุม การทดลองนาข้าว 1 นี้ทำต่อเนื่องจากโครงการระยะแรก ช่วงการปลูก 4 ครั้งแรก ไม่มีน้ำเสียเข้าระบบบ่อเติมอาคารโดยสม่ำเสมอ จึงใช้น้ำขังในบ่อ Polishing Pond เป็นส่วนใหญ่ไม่ใช้น้ำ AL การปลูกข้าวในนาข้าว 2 (2 ครั้ง) ใช้น้ำ RW และ PE มี 2 พื้นที่ คือนาข้าว 2/1 และนาข้าว 2/2 การเพาะปลูกข้าวทั้งหมด ใช้อัตราการรด เติมน้ำปูยและสารเคมีการเกษตรเหมือนกัน แตกต่างเพียงชนิดน้ำรด ผลการทดลองไม่พบอาการเป็นพิษต่อต้นข้าวจากการใช้น้ำรด 4 ชนิด ในนาข้าว 1 มีการเจริญเติบโตและผลผลิตของข้าวโดยเฉลี่ย ไม่แตกต่างกัน ในทางสถิติเป็นส่วนใหญ่ จากการใช้น้ำ AL และ GWSW เพาะปลูก ในนาข้าว 2 การเจริญเติบโตและผลผลิตของข้าวไม่ได้แตกต่างกันจากการใช้น้ำ RW, PE เพาะปลูก ระดับการปนเปื้อนในผลผลิตในข้าวขาวและข้าวกล้อง จากแปลงนาข้าว 1 และ นาข้าว 2 รวมทั้งในดิน ก็ไม่แตกต่างกัน ข้าวที่ได้จากการใช้น้ำ 4 ชนิดเพาะปลูกอยู่ในมาตรฐานปลดปล่อยในการบริโภค

ผลการสำรวจทัศนคติเกษตรกรทั่วไปรับนาข้าวและแปลงปลูกผัก ยอมรับการใช้น้ำทึ้งในการเกษตรเป็นส่วนใหญ่ (ร้อยละ 78.9 และ 95 ตามลำดับ) สำหรับการใช้น้ำเสียน้ำ มากกว่าร้อยละ 50 ไม่ยอมรับ โดยห่วงในประเด็นการเจริญเติบโต การสะสมสารพิษ ฯลฯ เกษตรกรที่ร่วมในการทดลองและเจ้าหน้าที่โครงการฯ ที่ร่วมในการเพาะปลูกในระยะแรก ไม่มั่นใจด้านความปลอดภัย แต่หลังการทดลองก็ยอมรับมากขึ้น โครงการวิจัยได้เผยแพร่ข้อมูลการวิจัยผ่านบทความทางวิชาการ การจัดสัมมนาดูงาน เผยแพร่ผ่านสื่อต่าง ๆ และจัดทำคู่มือการใช้น้ำทึ้งจากการบ่มบัดน้ำเสียชุมชนในการเกษตรกรรมชีว เพื่อเผยแพร่สู่เทศบาล และหน่วยงานราชการที่เกี่ยวข้อง แม้ว่าการใช้น้ำทึ้งจะมีผลการทดลองระยะยาวยืนยันความปลอดภัย แต่ยังไม่มีส่วนราชการใดที่แสดงความรับผิดชอบในการดำเนินงานโครงการโดยตรง

คำหลัก : ข้าว น้ำทึ้ง น้ำเสีย ผัก พยาธิ โภคภัณฑ์

Abstract

Project Code : RDG4630001

Project Title : Reuse of Effluent from Domestic Wastewater Treatment Plant in Agriculture :

Phase 2

Investigators : Karnchanawong S.¹, Kijjanapanich V.¹, Karnchanawong S.¹,

Insomphun S.², Chaimongkol C.², Silprasert A.³, Prapamontol T.³,

Keawwichit R.³, Wongworapat K.³, Boonyanupong S.⁴

¹Faculty of Engineering, ²Faculty of Agriculture, ³Research Institute for Health Sciences, ⁴Social Research Institute, Chiang Mai University

email address : seni@eng.cmu.ac.th

Project Duration : January 2003 – January 2006

Water shortage in agriculture can be alleviated by effluent reuse. The research titled "Reuse of Effluent from Domestic Wastewater Treatment Plant in Agriculture" (1999-2002) confirmed that it was feasible to use effluent of secondary wastewater treatment plant in crop cultivation. This study was the continuity with more emphases on irrigation with more polluted water. The research on vegetable cultivation had been conducted in two groups of plots, i.e. group 1 as normal plots and groups 2 with transparent plastic sheet covering to prevent rainwater and infiltrate collection pipes under the plots. During the initial period of study, i.e. January 2003-June 2004, Chiang Mai municipality had repaired the interceptor, resulting in non-uniform wastewater flow to the final pumping station. The crop cultivation was done by using contaminated water (CW, i.e. wastewater in pumping station and Mae Kha canal), settled contaminated water (Sed.CW) and groundwater (GWps) as the control plot. The second stage cultivation used raw wastewater (RW), primary treatment effluent (PE) and GWps. The vegetable grown throughout the study covered Chinese kale (7 crops), cauliflower (6 crops), Petsai Chinese cabbage (4 crops), turnip (6 crops) and aster, ornamental flower (2 crops). The fertilizer applications were adjusted according to nitrogen and phosphorus available in irrigated water. Throughout these experiments, toxicity effects on crop were not observed. The yields and growth rates were generally not different among plots irrigated with 5 types of water. However, the vegetable cultivation under different season had different yields. The contamination levels in

vegetables (parasite, bacteria, heavy metals) and soils (parasite, heavy metals) were also not much different. The contamination levels of harvested products were within permissible limit and safe for consumption. For group 2 cultivation consisting of plot 2/1 and 2/2, Chinese kale was irrigated with RW, PE and GWPs as the control. The vegetable plots 2/1 (4 crops) were investigated by reduction rates of amount of irrigated water, while plots 2/2 (5 crops) were observed the effects of fertilizer reduction. It was found from plots 2/1 that Chinese kale gave normal yields at irrigation rate of $200 \text{ m}^3/(\text{rai.month})$, equivalent to 50% of a normal watering rate. The infiltrate contained lower concentrations of biochemical oxygen demand (BOD) and phosphorus (RW, PE plots) while the higher values of nitrogen were found in all plots due to fertilizer leaching. For plots 2/2, the fertilization rate could be reduced to 60% of a normal value without adverse effect on yields. The infiltrate had lower phosphorus concentration while nitrogen and BOD values increased during the consecutive cultivation, in which fertilization rates were stepwise increased.

The research on rice cultivation covered 2 groups of rice fields, i.e. plots 1 and plots 2. The rice plots 1, irrigated with AL and groundwater (GWsw) as a control, had been continued since phase 1 study for 6 additional crops. During the first 4 cultivation, wastewater was not regularly treated and irrigated water was pumped from polishing pond, not exactly representing AL. The rice plots 2 employed 2 paddy fields, i.e. plots 2/1 and plots 2/2, and were both irrigated with RW and PE for 2 crops. All rice plots were applied with fertilizer and agricultural chemicals at the same rates. It was found that rice growth and yields in plots 1 were not much different between 2 irrigated water. The toxicity on rice was not observed throughout the study. In plot 2, rice growth and yields were not much different between plots irrigated with RW and PE. The contamination levels in white and brown rice were also within the same ranges of which the rice was safe for consumption. The contamination levels in soils from paddy fields irrigated with 4 types of water were also not much different.

The attitude study indicated that farmers around paddy fields and vegetable plots accepted for effluent reuse at 79.8 and 95 %, respectively. For wastewater reuse, over 50% rejected according to plant growth, crop contamination, etc. The participating farmers and project's workers were initially reluctant to accept. After the actual cultivation was finished, they agreed on wastewater reuse concept. Research information had been disseminated via academic conferences, seminars, field visits and mass media. The handbook on effluent reuse in agriculture was published and distributed to the municipalities and related government agencies. Although

effluent reuse was confirmed to be safe under long-term study, no government authority takes direct responsibility on implementation.

Keywords : effluent, heavy metal, parasite, rice, vegetable, wastewater