## บทคัดย่อ

รหัสโครงการ: RDG 720016

**ชื่อโครงการ** : การพัฒนาวิธีการทางเซรุ่มวิทยาเพื่อวินิจฉัยโรคทริสเตซาของส้มใน

ประเทศไทย

ชื่อนักวิจัย : รัตนา สดุดี $^{1/}$ , สมปอง เตชะโต $^{1/}$  และ John Milne $^{2/}$ 

<sup>1/</sup>คณะทรัพยากรธรรมชาติ มหาวิทยาลัยสงขลานครินทร์

<sup>2/</sup>คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail address: ratana.sd@psu.ac.th

ระยะเวลาโครงการ: มีนาคม 2547 – พฤศจิกายน 2551

ในการตรวจเชื้อโดยเทคนิคอีไลซาของตัวอย่างโรคส้มที่เก็บจากพื้นที่ปลูกทุกภาคของ พบตัวอย่างติดเชื้อทริสเตซาไวรัสสายพันธุ์รุนแรงที่ให้อาการลำต้นบุ๋มในส้มโอเชี่ยนที่ ประเทศไทย ภาคเหนือ จ.เชียงราย และ จ.เชียงใหม่ และภาคตะวันออกที่ จ.ระยอง และ จ.ตราด ส้มเขียวหวาน ส้มโชกุนและมะนาวพบในภาคใต้ที่ จ.ตรัง และ จ.สงขลา ตามลำดับ พบที่ภาคกลาง จ.ลพบุรี สำหรับอาการลำต้นบุ๋มของโรคทริสเตซาที่เกิดกับส้มโอเชี่ยนมีความรุนแรงและพบในความถี่สูงกว่าส้ม ชนิดอื่น และพบตัวอย่างล้มโชกุน (จ.เชียงใหม่ และ จ.ตรัง) ส้มจุก (จ.สงขลา) ส้มเขียวหวาน (จ.นครศรีธรรมราช) และมะนาว (จ.สงขลา) ติดเชื้อทริสเตซาไวรัสและแสดงอาการผิดปกติ (เส้นใบใส) นอกจากนี้พบการติดเชื้อร่วมระหว่างทริสเตซาไวรัสและแบคทีเรียสาเหตุโรคฮวงลองบิง ชนิดของส้มที่พบการติดเชื้อร่วมคือ ส้มโคเชี่ยนและส้ม ในตัวอย่างโรคส้มประมาณ 48 เปอร์เซ็นต์ สวีทออเรนจ์ในภาคเหนือ ส้มโชกุนและส้มจุกในภาคใต้ ส้มโชกุนและส้มจุกที่ติดเชื้อร่วมมีอาการรุนแรง กว่าส้มโอเชี่ยนและส้มสวีทออเรนจ์ ผลการจำแนกสายพันธุ์เชื้อทริสเตซาไวรัสที่แยกได้จากตัวอย่างโรค ส้มโดยอาศัยลักษณะอาการบนพืชทดสอบมะนาว พบเชื้อสายพันธุ์รุนแรงที่ให้อาการลำต้นบุ๋มจำนวน 68 ไอโซเลท และสายพันธุ์อ่อนจำนวน 12 ไอโซเลท ในการถ่ายทอดเพื่อแยกเชื้อทริสเตซาไวรัสโดยแมลง พาหะเพลี้ยอ่อนส้ม (Toxoptera citricida) พบว่าเพลี้ยอ่อนถ่ายทอดเชื้อไปยังพืชทดสอบมะนาวใน อัตรา 5-15% โดยมีอัตราการถ่ายทอดเชื้อสายพันธุ์รุนแรง (10-15%) สูงกว่าสายพันธุ์อ่อน (5-10%) และผลการแยกเชื้อโดยแมลงพาหะบ่งชี้การติดเชื้อร่วมของสายพันธุ์อ่อนและสายพันธุ์รุนแรงในต้น จากการศึกษาโครงสร้างภายในลำต้นส้มติดเชื้อสายพันธุ์ลำต้นบุ๋ม พบโพรงขนาดเล็กและ ใหญ่เส้นผ่าศูนย์กลาง 0.2-1.45 มม. เกิดขึ้นภายใน 4-7 สัปดาห์ภายหลังกิ่งเจริญออกตาที่บริเวณ

เนื้อเยื่อเจริญขั้นที่สอง ทำให้กลุ่มเซลล์ท่อน้ำขาดหายไปซึ่งโพรงดังกล่าวคือ ร่องบุ๋มที่ปรากฏในเนื้อไม้ นอกจากนี้ประสบผลสำเร็จในการขยายพันธุ์เชื้อทริสเตซาไวรัสในโปรโตพลาสต์ของยาสูบจำนวน 12 ไอโซเลท แยกเป็นสายพันธุ์ลำต้นบุ๋ม 9 ไอโซเลท สายพันธุ์รุนแรงปานกลาง 1 ไอโซเลท และสายพันธุ์ อ่อน 2 ไอโซเลท ทั้งนี้เพื่อใช้เป็นแหล่งสำรองพันธุกรรมของเชื้อทริสเตซาไวรัสที่พบในประเทศไทย

จากการศึกษารหัสพันธุกรรมเปลือกโปรตีน p27 ของเชื้อทริสเตซาไวรัสที่แยกได้จาก ตัวอย่างโรคส้มในประเทศ โดยใช้เทคนิค SSCP (single strand conformation polymorphism) พบว่า สายพันธุ์เชื้อที่ทำให้เกิดอาการลำต้นบุ๋มมีแบบแผนของ SSCP เหมือนกัน เมื่อวิเคราะห์ลำดับเบสของ รหัสพันธุกรรม p27 บ่งชี้ว่าสายพันธุ์ลำต้นบุ๋ม CmO1 จาก จ.เชียงใหม่ และสายพันธุ์ TS12 จาก จ.ตรัง มีลำดับเบสร่วมกันสูงสุด 99% เมื่อเทียบกับสายพันธุ์ต่างประเทศ สายพันธุ์ Capoa Bonito จาก ประเทศบราซิลซึ่งทำให้เกิดลำต้นบุ๋มในสวีทออเรนจ์ มีลำดับเบสร่วมกับสายพันธุ์ CmO1 และ TS12 98% ในการแปลงรหัสพันธุกรรมเป็นกรดอะมิโนของโปรตีน p27 พบว่าโปรตีน p27 ของ CmO1 และ TS12 มีกรดอะมิโนแตกต่างกันที่ตำแหน่งที่ 9 เพียงตำแหน่งเดียว แต่แตกต่างจากสายพันธุ์อ่อน SM4 สี่ตำแหน่งคือ 53, 67, 154 และ 207

เมื่อถ่ายโอนรหัสพันธุกรรม p27 ของเชื้อสายพันธุ์ CmO1 ลงในเซลล์เจ้าบ้าน Escherichia coli (BL21 star DE3) สามารถซักนำให้ยืนผลิตโปรตีน p27 เพราะตรวจพบการเรื่องแสง ของโปรตีนผลผลิตในไลเซทของเซลล์เจ้าบ้านโดยอิเลคโตรโฟรีซีส (SDS – PAGE) ทั้งนี้เนื่องจากโปรตีน ผลผลิตของยืน p27 ถูกปิดฉลากไว้ด้วย Lumio tag (Cys – Cys – Pro – Gly – Cys – Cys) ซึ่งเรื่องแสง สีเขียวเมื่อทำปฏิกิริยากับแฟลซ (FLASH, Fluorescien Arsenical Hairpin binding) แยกโปรตีน p27 ออกจากโปรตีนอื่นโดยใช้แมคเนติคบีด (magnetic polystyrene bead) ผ่านทางตัวปิดฉลากฮิทติดีน (6 x histidine tag) จากนั้นนำโปรตีนบริสุทธิ์ p27 ไปผลิตแอนติเซรัม (polyclonal antiserum) ใน ผลการทดสอบประสิทธิภาพและความไวของแกมมากลอบบูลินซึ่งสกัดจากแอนติเซรัมของ กระต่าย โปรตีน p27 พบว่าแกมมากลอบบูลินมีปฏิกิริยาจำเพาะเจาะจงต่อเชื้อทริสเตซาไวรัสสายพันธุ์ SM4 และ CmO1 และต่อโปรตีน p27 แต่จะไม่ตอบสนองต่อโปรตีน p25 และส้มปกติเมื่อทดสอบโดยอีไลซา โดยมีปฏิกิริยาตอบสนองสูงสุดกับโปรตีน p27 และตอบสนองต่อ SM4 สูงกว่า CmO1 แกมมากลอบ-บูลินของโปรตีน p27 ทำปฏิกิริยาสูงสุดที่ความเข้มข้น 10 ไมโครกรัมต่อมิลลิลิตร และไม่มีปฏิกริยา เกิดขึ้นเมื่อใช้ที่ความเข้มข้น 0.1 ไมโครกรัมต่อมิลลิลิตร นอกจากนี้ได้ผลิตแอนติเซรัมต่อเชื้อทริสเตซา ไวรัสบริสุทธิ์ที่แยกจากเนื้อเยื่อส้มติดเชื้อสายพันธุ์ SM4 และพบว่าแกมมากลอบบูลินของแอนติเซรัม ชนิดนี้ มีปฏิกิริยาตอบสนองจำเพาะเจาะจงต่อเชื้อสายพันธุ์ SM4 สูงกว่า CmO1 ทั้งนี้มีประสิทธิภาพ ในการตรวจเชื้อทริสเตซาไวรัสโดยเทคนิคอีไลซา (OD405 nm) ใกล้เคียงกับแกมมากลอบบูลินทาง การค้า เมื่อใช้ที่ระดับความเข้มข้น 2 ไมโครกรัมต่อมิลลิลิตร

จากการนำแกมมากลอบบูลินซึ่งสกัดจากแอนติเซรัมของเชื้อทริสเตซาไวรัสบริสุทธิ์มา ทดลองตรวจเชื้อไวรัสโดยเทคนิคอิมมูโนสตริป โดยใช้แกมมากลอบบูลินที่ระดับความเข้มข้น 100, 150 และ 200 ไมโครกรัมต่อมิลลิลิตร เคลือบเม็ดลาเท็กซ์สีขาว (solid phase) และเม็ดลาเท็กซ์สีขมพู (dye marker) พบว่าเม็ดลาเท็กซ์สีขมพูเข้มข้น 0.5% ปริมาตร 5 ไมโครลิตร ซึ่งป้ายไว้บนแผ่นตรวจอิมมูโนสตริปและเม็ดลาเท็กซ์สีขมพูเข้มข้น 0.05% สามารถใช้ตรวจหาเชื้อทริสเตซาไวรัสที่ปรากฏใน น้ำคั้นเจือจาง 1:5, 1:10, 1:50 และ 1:100 โดยปรากฏแถบสีชมพูบนแผ่นตรวจที่สามารถมองเห็นด้วย ตาเปล่า ทั้งนี้การตรวจในน้ำคั้นเจือจาง 1:5 ให้แถบสีขมพูที่มองเห็นชัดเจนที่สุด โดยมีความเข้มของ สีสูงสุด 1.391 เมื่อวัดด้วยเครื่องตรวจวัดสี (color meter) และในการทดลองความคงทนของแผ่นตรวจ ซึ่งป้ายเม็ดลาเท็กซ์สีขาวเป็นระยะเวลา 1 วัน 1 สัปดาห์ 1 เดือน 2 เดือน และ 3 เดือน ที่ระดับอุณหภูมิ 7° และ 28° พบว่าแผ่นตรวจที่เก็บรักษาไว้ทุกระยะเวลายังคงทำปฏิกิริยากับเชื้อไวรัสให้แถบสีชมพูที่ มองเห็นด้วยตาเปล่า ทั้งนี้การเก็บรักษาที่อุณหภูมิ 7° ชิ ให้ความเข้มของแถบสีลดลงเมื่อเปรียบเทียบ แผ่นตรวจที่เก็บไว้ที่ 28° จากผลการทดลองได้พัฒนาชุดตรวจเชื้อทริสเตซาไวรัสโดยอิมมูโนสตริป ซึ่ง ตรวจประกอบด้วยแผ่นตรวจ 5 แผ่น น้ำยาสกัดน้ำคัน 5 หลอด น้ำยาตรวจเชื้อ 5 หลอด แท่งบดเนื้อเยื่อ 5 แท่ง พร้อมคู่มือแสดงวิธีการตรวจ

## Abstract

Project code: RDG 720016

Project title: Development of Serological Methods for the Diagnosis of Citrus

Tristeza Disease in Thailand

Investigators: Sdoodee, R. 1/2, Te-chato, S. 1/2, Milne, J<sup>2/2</sup>

<sup>1/</sup>Faculty of Natural Resources Prince of Songkla University

<sup>2/</sup>Faculty of Science Mahidol University

E-mail address : ratana.sd@psu.ac.th

Project duration: March 2004 – November 2008

Citrus diseased samples collected from all part of citrus growing area in Thailand were tested by ELISA (Enzyme - Linked Immunosorbent Assay) for citrus tristeza Closterovirus (CTV). Evidence from ELISA confirmed CTV infection of citrus samples showing distinct stem pitting including Ocean (Orah) mandarin (Citrus reticulate hybrid) from Chiang Rai and Chiang Mai provinces, the North and from Rayong and Trad provinces the Central plain, Shoqun mandarin (C. reticulate) from Trang provinces and acid lime (C.aurantifolia) from Songkhla provinces, the South. The symptom occurring to Ocean mandarin was more severe than other citrus varieties. High incidence of stem pitting was also found in Ocean mandarin. In addition, mild symptom (vein clearing) was noticed on infected Shogun mandarin (Chiang Mai), Neck orange (C. reticulata, Songkhla), Som Kaewan (Nakorn Sritamarat) and acid lime (Songkhla). Moreover, mix infection of CTV and Huanglongbing bacterium was recorded on 48% of examination samples. These were Ocean mandarin and sweet orange (Citrus sinensis) in the North and Shogun mandarin and Neck orange in the South. When infected samples were graft transmitted onto indicator plants (acid lime), 68 and 12 isolate of stem pitting and mild strain of CTV, respectively were obtained according to there specific symptom induction on acid lime. CTV single aphid transmission was also attempted and 5-15% transmission rates were recognized. The severe isolate was transmitted to indicator plant in the rates of 10-15% which was higher than transmission

rates of mild strain, 5-10%. Isolation of CTV by aphid vector also revealed the mix infection of mild and severe strain in the same tree. Cross section of young twig collected from citrus infected with the stem pitting isolate of CTV showed small and large pits, diameter 0.2-1.45 mm, locating at cambial zone of secondary growth within 4-7 weeks after flushing. This resulted in missing of secondary xylem and causing pits or groves in the wood. Later, 12 CTV isolates consisted of 7 stem pitting isolates and 2 mild isolates were successfully propagated in *Nicotiana benthamiana* protoplast as a genetic resource for CTV occurring in Thailand.

SSCP (Single Strand Conformation Polymorphism) analysis of CTV minor coat protein gene (p27 gene) revealed an identical pattern of stem pitting isolates. Furthermore DNA sequence analysis of p27 gene indicated that CmO1 from Chiang Mai and TS12 from Trang, the stem pitting isolates, shared 99% of p27 nucleotide sequence identities meanwhile their sequence identities were 98% of sequence from Capoa Bonito strain causing stem pitting in sweet orange occurring in Brazil. Apparently, amino acids deduced from p27 base sequence of CmO1 and TS12 isolates were very much similar to each other. The different occurred to only one amino acid residue at position 9. However, p27 amino acid alignment between TS12 (stem pitting isolates) and SM4 (mild isolate) illustrated 4 different amino acid residues at position 53, 67, 154, and 207.

The p27 gene from Cmo1 isolate was constructed and transformed to expression *Escherichia coli* competent cell. Subsequently, protein expression was induced. P27 fusion protein labeled with Lumio (Cys – Cys – Pro – Gly – Cys – Cys) and histidine tag, the expression protein of p27 gene was detected by SDS – PAGE in the lysate from transformed *E. coli*. Since the fusion protein omitted green fluorescence when it reacted with FLASH (Fluorescien Arsenical Hairpin binding) reagent. The p27 expression protein was purified through histidine tag using magnetic polystyrene bead prior to rabbit immunization for polyclonal antiserum production. ELISA test of gamma-globulin (IgG) extracted from p27 expression protein antiserum revealed its high specificity to homologous antigen, p27 protein. P27 IgG also reacted specifically to SM4 and CmO1 isolates of CTV with more reaction to SM4 than the CmO1. However, P27 antiserum did not react with p25 (CTV coat protein) expression protein nor healthy citrus. The optimum concentration of p27 IgG for using in

ELISA test was 10 ug/ml and the endpoint of its reaction was at 0.1 ug/ml. In addition, polyclonal antiserum against purified SM4 – CTV isolate was also produced and it reacted specifically with homologous antigen (SM4 – CTV) and CmO1 isolate. IgG of purified CTV antiserum at concentration 2 ug/ml responded to CTV antigen as the same level of reaction from commercial IgG by mean of ELISA absorption reading at OD405 nm.

Results from immunostrip test indicated that white latex (solid phase) and pink latex bead (dye marker) could be used to assay CTV in sap extract diluted 1:5, 1:10, 1:50 or 1:100 when they were coated with IgG of CTV purified antiserum at concentration 100, 150 or 200 ug/ml. With variation of latex bead concentration, it was found that an application of 0.5% coated white bead at 5 ul streak on a test strip and 0.05% coated pink bead as marker produced pink band (CTV positive) at a test line as determined by visual assessment. However, the most prominent CTV positive pink band giving the highest color insensity (1.391) as measured by color meter was obtained from detection of sap extract diluted 1:5 and using 150 ug/ml IgG. Moreover, it was found that immunostrips kept at 7°C or 28°C for 1 day, 1 week, 1 month, 2 months and 3 months still reacted with CTV. However, reduction of color intensity of pink band producing by immunostrip kept at 7°C was observed. CTV immunostrip test kit was then developed using antiserum produced from purified CTV. The test kit consisted of 5 test strip, 5 tubes containing sap extraction buffer, 5 tubes containing pink latex bead, 5 plastic pestle and an instruction manual.