บทคัดย่อ

เพื่อหาวิธีการที่ง่ายและแม่นยำในการแบ่งระยะลอกคราบปู่ม้า ด้วยการสังเกตจากการ เปลี่ยนแปลงของสีและช่องว่างบริเวณขอบด้านในของรยางค์คู่ที่ 5 ของปู่ม้าทั้ง 2 เพศ ร่วมกับการ เปลี่ยนสีและรอยเส้นบริเวณตับปิ้งของปู่ม้าทั้งเพศเมียและเพศผู้ ตามลำดับ ที่ระยะลอกคราบ ต่าง ๆ ด้วยแว่นขยาย และทดสอบการผลิตปู่ม้านิ่มเชิงพาณิชย์ในบ่อซิเมนต์และบ่อดิน โดยใช้ปู่ม้าเพศผู้ และเมียขนาดความกว้างของกระดองด้านนอก 3 ขนาด ได้แก่ 8.1-9.0 ซม. 9.1-10.0 ซม. และ 10.1-11.0 ซม.จากธรรมชาติ ให้ปลาสดเป็นอาหาร วันละ 10-20% ของน้ำหนักปู ทำการปรับให้ตาม ความเหมาะสมตามระยะลอกคราบ และหยุดให้อาหารเมื่อปู่ม้าเข้าสู่ระยะ D3-D4

การสังเกตการเปลี่ยนแปลงของสีและระดับรอยแยกบริเวณขอบด้านในของรยางค์คู่ที่ 5 และการเปลี่ยนแปลงสีและการเกิดลายเส้นของปู่ม้าทั้งเพศผู้และเพศเมียมีความแม่นยำในการ กำหนดระยะการลอกคราบปู่ม้า (P<0.05) กล่าวคือช่วงระยะลอกคราบจาก A-B ขอบด้านในของ รยางค์คู่ที่ 5 เป็นสีม่วง 100% จะลดน้อยลงในระยะ B ซึ่งเป็นช่วงเริ่มต้นของการเกิดสีชมพู และสี ชมพูนี้จะชัดมากขึ้นเรื่อย ๆ ในระยะ C1 จนสูงสุดในระยะลอกคราบ C2 (88%) สีแดงเริ่มปรากฏ ขึ้นในระยะ C3 และมีความเข้มมากขึ้นตามลำดับจากระยะลอกคราบ D1 ถึง D4 ขณะที่สีชมพู ค่อย ๆ ลดลงจนไม่พบในระยะ D3-D4 โดยระยะ A-C3 จะไม่พบรอยแยก จะพบรอยแยกเพียงเล็ก น้อยถึงห่างมาก จากระยะ D1 ถึง ระยะ D4 ตามลำดับ

ตับปิ้งปู่ม้าเพศเมียในระยะ A ปรากฏแถบสีดำ 100% เมื่อเข้าสู่ระยะ B สีดำเริ่มจางไป แต่ มีสีเทาหรือน้ำตาลเข้ามาปน โดยปรากฏสีน้ำตาล สีเทา และสีขาวในระยะ C1 ถึง C3 ซึ่งสัดส่วน ของสีน้ำตาลและสีขาวจะสูงมากขึ้นตามลำดับ หลังจากนั้นสีดำเริ่มกลับมาปรากฏอีกครั้งในระยะ D1 และเข้มมากขึ้นตามลำดับจากระยะ D1 ถึง D4 ทำนองเดียวกันตับปิ้งปู่ม้าเพศผู้ระยะ D2-D3 จะเห็นรอยของแนวเส้นที่เกิดซ้อนขึ้นมาด้านใน แต่ไม่ดำเข้มชัดเจนและไม่ห่างจากขอบตับปิ้งเดิม จนเข้าสู่ระยะ D4 จึงสังเกตเห็นแนวซัดเจน ขณะที่ไม่ปรากฏช่วงระยะ A-D1

ขนาดของปู่ม้ามีผลต่อขนาดที่เพิ่มขึ้นหลังลอกคราบและระยะเวลาลอกคราบ กล่าวคือปู่ ม้าขนาดใหญ่ใช้เวลาในการลอกคราบนานกว่าปู่ม้าขนาดเล็ก ในทางตรงกันข้ามปู่ม้าขนาดเล็ก กว่ามี %การเพิ่มขนาดมากกว่าปู่ม้าขนาดใหญ่ หากทำการพิจารณาจากระยะเวลาที่คืนทุนและผล ตอบแทนที่ใกล้เคียงกัน ภายใต้การเช่าฟาร์ม และการรอดตาย 70% ชี้ให้เห็นว่าการลงทุนเริ่มแรก และต้นทุนผันแปรของการเลี้ยงในบ่อชิเมนต์สูงกว่าการเลี้ยงในบ่อดินประมาณ 40% และ 100% ตามลำดับ ปู่ม้าขนาดเล็ก (8-9 cmCW) นับเป็นทางเลือกที่ดีที่สุดในการผลิตปู่ม้านิ่มในบ่อซิเมนต์ และในบ่อดิน เพราะให้ผลตอบแทนที่เท่ากันหรือสูงกว่าเล็กน้อย และการลงทุนต่ำกว่าปู่ม้าขนาดใหญ่ ซึ่งการเลี้ยงปู่ม้านิ่มทั้งในบ่อซิเมนต์และบ่อดินให้มีกำไรได้นั้น จะต้องมีการรอดตายสูงกว่า 50%

Abstract

To accomplish a simple and precise methodology for identification of molting stages in blue swimming crabs (*Portunus pelagicus*), color and a translucent zone between the old and the new cuticle (degree of separation) of the outer edge of dactylopodite of both female and male crabs were monitored under a magnifier. Furthermore, changes in abdomen color of female crabs and the appearances of inner line abdomen of male crabs were investigated. For our commercial soft-shell crab farm, wild crabs were classified in three groups based on their external carapace width (8.1-9.0 cm, 9.1-10.0 cm and 10.1-11.0 cm) prior to be raised in cement and earthen ponds. According to their molting stages, crabs were fed with fresh yellow tail fish at feed ratio of 10-20% based on their body weight. However, no feeding when crabs were at their D3-D4 molting stages.

It was found that the molting stage of blue swimming crab was precisely identified via monitoring color, degree of translucent zone of dactylopodite, the proportional of color steaks in abdomen female crabs and the appearances of inner line in abdomen of male crabs. At A stage, deep purplish red line was recognized in all crabs. While crabs at B stage, the proportional color of abdomen was 69% deep purplish red line, 28% pink line and 3% green lines. The higher proportional of pink to green was found on crabs at C1-C3 stages. However, red line was particularly occurred only at C3 stage. The proportion of red color in abdomen increased from 59% to 90% and the translucent zone became larger from D1 to D3 stage. The translucent zone did not appear during A-C3 stages. The coloration of abdomen in female crabs also changed throughout the molt cycle. At A stage of female crabs, abdomen color was black while gray or brown was found in abdomen of female crab during B-C1 stages. At C2 stage, the proportion of white color became higher while brown color was dominant at C3 stage. The ratio of black color from D1 stage to D3 stage was obviously increased and recognized in all crabs at their pre-molt stages. For male abdomen, the inner line occurred during D2-D3 stages and it was obvious line at D4 stage. It was not found during A-D1 stages.

Size increment after molt and molting period was significantly governed by the initial size of crabs (P<0.05). Molting period of larger crab was significantly longer than that of the smaller one (P<0.05). Nonetheless, the percentage of size increment of smaller crab was significantly higher than that of the larger one (P<0.05). When considering of payback period, net profit and rent, it was concluded that initial investment and variable cost of cement pond, which survival rate at 70%, was higher than those of the earthen pond at 40% and 100%, respectively. The small crab (8-9 cm CW) is the best chance for soft-shell crab production for both cement and earthen ponds because the net profit was equal or a little higher than those of the larger one while the investment was lower. The net profit of soft-shell crab production for both methods will be feasible when survival rate is higher than 50%.