บทคัดย่อ

สารสกัดหยาบใบมะม่วง (Mangifera indica L) มีสารสำคัญคือ mangiferin ที่มีฤทธิ์ในการ เป็นสารต้านออกซิเคชัน ซึ่งน่าจะนำมาใช้เป็นสารเสริมอาหารในอาหารสัตว์ อย่างไรก็ตามสาร ซึ่งยากต่อการนำไปผสมให้เข้ากันได้ดีในอาหารสัตว์ สกัดดังกล่าวมีลักษณะเหนียวข้นและหนืด วัตถุประสงค์ของการศึกษานี้คือต้องการแปรรูปสารสกัดที่ข้นหนืดนี้ให้อยู่ในรูปของผงแห้ง การใช้สื่อตัวพาดูคซับ ได้แก่ silica (Sipernat 22S, 50, 2200), maltodextrin (DE 2, 9, 18) และผง แห้ง chitosan ที่เตรียมจากการสเปร์ยครายสารละลาย chitosan ที่ความเข้มข้น 0.4%, 0.5% และ 0.6% (chitosan 0.4, 0.5, 0.6) การเตรียมสารสกัดหยาบของใบมะม่วงเตรียมโดยวิธีการหมักด้วย เมทานอลและระเหยให้แห้งจนได้สารสกัดหนืดข้น 16.28-20.00% ซึ่งมี mangiferin 2.21-2.82 มก. ในสารสกัด 20 มก. เมื่อนำไปผสมกับสื่อตัวพาทั้งสามชนิดที่ความเข้มข้นต่างๆกัน พบว่า silica เป็นสื่อตัวพาที่มีประสิทธิภาพในการดูคซับที่ดีที่สุด รองลงมาเป็น chitosan และ maltodextrin ตาม ลำดับ เมื่อปริมาณของสื่อตัวพาพบว่าจะได้ผงแห้งที่มีการไหลที่ดีขึ้น ผลการทดลองชี้ให้เห็นว่า การใช้ silica 20-25%, maltodextrin 70% และ chitosan 30% เป็นความเข้มข้นต่ำสุดที่จะทำให้ได้ผง แห้งที่มีลักษณะการใหลที่ดีมีการเกาะกันในระดับปานกลาง จากการศึกษาความคงตัวของผงแห้งที่ เตรียมจาก Sipernat 50 ที่ 20%, maltodextrin DE 18 ที่ 70% และ chitosan 0.6 ที่ 30% ที่อุณหภูมิ ห้อง (30 องศาเซลเซียส) และ 45 องศาเซลเซียส พบว่าผงแห้งของสื่อตัวพาทั้งสามชนิคมีความคง ตัวที่ดีที่อุณหภูมิห้องเป็นเวลานาน 4 เดือน แต่เฉพาะผงแห้งของ Sipernat 50 ที่ 20% เท่านั้นที่มี ความคงตัวดีที่ 45 องศาเซลเซียส เป็นเวลานาน 4 เดือน ดังนั้น ผงแห้งสารสกัดใบมะม่วงที่เตรียม จาก Sipernat 50 ที่ 20% จึงมีความเหมาะสมที่จะพัฒนาไปใช้เพื่อผลิตเป็นสารเสริมอาหารในอาหาร สัตว์ต่อไป

คำสำคัญ: สารสกัดหยาบใบมะม่วง, สื่อตัวพาดูคซับ, สารเสริมอาหารสัตว์, ความคงตัว

Abstract

The crude extract of mango (Mangifera indica L.) leaf containing magiferin as a main active component have potential to use as antioxidant for supplement in animal feed. However, the viscous semisolid extract has difficulty in mixing homogeneously with solid animal feed. The aim of this study is to convert the mango leaf extract from viscous liquid into dry solid powder by using suitable adsorptive carriers; i.e. silica (Sipernat 22S, 50, 2200), maltodextrin (DE 2, 9, 18) and spray-dried chitosan prepared from 0.4%, 0.5% and 0.6% chitosan solution (chiotan 0.4, 0.5, 0.6). The crude extract of mango leaf was prepared by maceration with methanol and evaporation to yield 16.28-20.00% dry viscous extract which contained 2.21-2.82 mg mangiferin in 20 mg of crude extract. When mixing with various amounts of carries, it was found that silica had the highest adsorptive capacity, followed by spray-dried chitosan and maltodextrin, respectively. As the amount of carriers increased, the dry powder having better flow properties was obtained. The results indicate that the lowest amount of carries resulting in dry powder with mildly cohesive were 20-25% silica, 70% maltodextrin and 30% chitosan. The stability of the dry powders of 20% Sipernat 50, 70% maltodextrin DE 18 and 30% chitosan 0.6 was investigated at room temperature (30°C) and 45°C. The results show that all dry powders were stable at room temperature for 4 months; however, only the dry powders of 20% Sipernat 50 showed good stability at 45°C for 4 months. In conclusion, the dry powders of 20% Sipernat 50 showed good properties and high stability which had potential to be further developed into food supplement to use in animal feed.

Keywords: Crude extract of mango leaf, *Mangifera indica* L., Adsorptive carriers, Feed additive, Stability