บทสรุปสำหรับผู้บริหาร

การขยายตัวของภากอุตสาหกรรมอย่างรวดเร็วทั้งที่ผ่านมาและในปัจจุบัน ส่งผลให้ของเสียจากภากอุตสาหกรรม
มีปริมาณเพิ่มขึ้นอย่างรวดเร็ว ของเสียดังกล่าวอาจอยู่ทั้งในรูปของเสียอันตราย (Hazardous Waste: HZW) และที่ไม่
เป็นของเสียอันตราย (Non-Hazardous Waste: Non-HZW) ซึ่งมักถูกจัดเก็บอย่างไม่เป็นระบบและเกิดการปะปนกัน
ทำให้ยากต่อการจัดการในลำดับต่อไป ภาครัฐที่เกี่ยวข้องจึงกำหนดยุทธสาสตร์การรวบรวมข้อมูลและติดตามกากของ
เสียอันตรายขึ้น การดำเนินงานเบื้องด้นหน่วยงานที่รับผิดชอบได้จัดให้มีการสึกษาเพื่อประเมินสถานการณ์ แต่พบว่า
การประเมินสถานการณ์ของเสียอันตรายและปริมาณตัวเลขของเสียภากอุตสาหกรรมจากแหล่งศึกษาต่างๆ มีผลที่ได้
แตกต่างกัน ความแตกต่างกันของการประมาณการที่เกิดขึ้นนั้นมาจากหลายสาเหตุ ได้แก่ สมมติฐานของการประเมิน
ต่างกัน ข้อมูลที่ใช้เป็นพื้นฐานในการประเมินต่างกัน แต่สิ่งสำคัญยิ่งก็คือความไม่สมบูรณ์ของข้อมูล อันเนื่องมาจาก
การติดตามข้อมูลกากของเสียอันตรายที่ไม่ครบวงจร ตั้งแต่ผู้ทำให้เกิดของเสีย (Waste Generator: WG) ผู้ขนส่ง
(Waste Transporter: WT) ผู้บำบัด/กำจัดของเสีย (Waste Processor: WP) ผู้กำกับดูแล (Waste Regulator: WR)
และการขาดแนวปฏิบัติที่ชัดเจนและคู่มือเพื่อสึกษาให้เกิดความรู้ความเข้าใจเบื้องด้นเกี่ยวกับของเสีย ทำให้ผู้ประกอบ
การไม่สามารถกรอกข้อมูลได้อย่างถูกต้องจึงเป็นผลให้เกิดความคลาดเคลื่อนในการวิเคราะห์ข้อมูล

กรมโรงงานอุตสาหกรรม และนักวิชาการจากจุฬาลงกรณ์มหาวิทยาลัย โดยการสนับสนุนของสำนักงานกองทุน สนับสนุนการวิจัย ได้จัดทำโครงการนำร่องเรื่องแนวทางการจัดเก็บข้อมูลวัสดุที่ไม่ใช้แล้วที่เป็นของเสียอันตรายจาก โรงงานอุตสาหกรรมในจังหวัดสมุทรปราการ โดยมีกำหนดระยะเวลาดำเนินงาน 3 เดือน ตั้งแต่เดือนตุลาคม – ธันวาคม 2546 เพื่อพัฒนารูปแบบที่เหมาะสมสำหรับการจัดเก็บข้อมูลปฐมภูมิ ซึ่งบุคลากรของหน่วยงานรัฐและโรงงาน อุตสาหกรรมสามารถนำไปใช้ได้ และเพื่อการประเมินประสิทธิภาพรูปแบบดังกล่าวจึงอาศัยแหล่งอุตสาหกรรมใน จังหวัดสมุทรปราการซึ่งมีโรงงานอุตสาหกรรมหลากหลายประเภทเป็นพื้นที่นำร่องศึกษา โดยมีเป้าหมายให้เกิดระบบ การจัดเก็บข้อมูลวัสดุที่ไม่ใช้แล้วที่เป็นของเสียอันตรายจากโรงงานอุตสาหกรรม ที่สามารถใช้ติดตาม ประเมิน และ วิเคราะห์ข้อมูลที่ได้มา สำหรับใช้ในการดำเนินงานเพื่อวางแผนและกำหนดนโยบายการจัดการของเสียอันตรายใน ภาพรวมต่อไป

การดำเนินงานโครงการได้เริ่มจากการสรุปรูปแบบการดำเนินงานเดิมเกี่ยวกับการควบคุมของเสียอุตสาหกรรม ตามกฎกระทรวงฉบับที่ 2 พ.ศ. 2535 ออกตามความในพระราชบัญญัติโรงงาน พ.ศ. 2535 หมวด 4 ข้อ 13 มีข้อ กำหนดเกี่ยวกับการจัดการขยะ สิ่งปฏิกูลและวัสดุที่ไม่ใช้แล้ว และประกาศกระทรวงอุตสาหกรรม 2 ฉบับ คือ ประกาศฯ ฉบับที่ 6 (พ.ศ. 2540) และประกาศฯ ฉบับที่ 1 (พ.ศ. 2541) เรื่องการกำจัดสิ่งปฏิกูลและวัสดุที่ไม่ใช้แล้ว ซึ่ง กำหนดให้ผู้ประกอบกิจการโรงงานอุตสาหกรรมทุกประเภทต้องขออนุญาตดำเนินการกำจัดสิ่งปฏิกูลและวัสดุที่ไม่ใช้ แล้ว โดยประกาศฯ ฉบับที่ 6 (พ.ศ. 2540) ควบคุมสิ่งปฏิกูลและวัสดุที่ไม่ใช้แล้วที่เป็นของเสียอันตราย โดยกำหนดให้ผู้ ประกอบการต้องรายงานชนิด ปริมาณ ลักษณะ คุณสมบัติของของเสียอันตรายที่มีอยู่ต่อกรมโรงงานอุตสาหกรรมตาม แบบ ร.จ. 6 ภายในวันที่ 30 ธันวาคมของทุกปี และบังคับใช้กับโรงงานทั่วประเทศ ส่วนประกาศฯ ฉบับที่ 1 (พ.ศ. 2541) ควบคุมสิ่งปฏิกูลและวัสดุที่ไม่ใช้แล้วที่ไม่เป็นของเสียอันตราย และบังคับใช้กับโรงงานในพื้นที่ 14 จังหวัด (กรุงเทพมหานครและปริมณฑล และจังหวัดหลักตามภูมิภาค) และ มีเพิ่มเติมเมื่อวันที่ 17 พฤษภาคม พ.ศ. 2547 ขยาย พื้นที่บังคับใช้เพิ่มเติมเป็น 76 จังหวัดทั่วประเทศ

อย่างไรก็ตาม การคำเนินงานของกรมโรงงานอุตสาหกรรมยังไม่ได้รับข้อมูลเท่าที่ควร กล่าวคือ ในปี พ.ศ. 2544 มีผู้ประกอบการขออนุญาตนำวัสคุที่ไม่ใช้แล้วออกนอกโรงงานเพียง 805 ราย ในขณะที่จากฐานข้อมูลกรมโรงงานอุตสาหกรรมมีโรงงานจำพวกที่ 3 ซึ่งอยู่ในข่ายที่จะมีวัสคุที่ไม่ใช้แล้วจากการประกอบกิจการอยู่ถึง 58,077 โรงงาน และมีโรงงานที่ได้รับอนุญาตให้รับบำบัค/กำจัคกากของเสียเพียง 15 ราย และในปี พ.ศ. 2545 กรมโรงงานอุตสาหกรรมจึงใช้นโยบายสนับสนุนการจัดตั้งโรงงานกำจัดของเสียอุตสาหกรรมอย่างเสรี โดยเพิ่มประเภทโรงงาน ลำดับที่ 105 (คัดแยก และ/หรือฝังกลบฯ) และ โรงงานลำดับที่ 106 (รีไซเกิล) เป็นผลให้ในปลายปี พ.ศ. 2546 มีผู้บำบัคหรือ กำจัด หรือ WP ถึง 65 ราย และมีโรงงานที่ขออนุญาตนำวัสคุที่ไม่ใช้แล้วออกนอกโรงงานเพิ่มขึ้นเป็น 2,917 ราย กระนั้นก็ตาม ปริมาณของเสียที่กรมโรงงานอุตสาหกรรมอนุญาตให้นำออกนอกโรงงานนั้นเพิ่มขึ้นน้อยมาก คือ ปริมาณของเสียอันตรายที่อนุญาตเพิ่มจาก 0.173 ล้านตันเป็น 0.431 ล้านตัน และปริมาณของเสียที่ไม่อันตรายที่ อนุญาตเพิ่มจาก 1.097 ล้านตัน เป็น 1.589 ล้านตัน ในปี พ.ศ. 2545 และ พ.ศ. 2546 ตามลำดับ ซึ่งจะเห็นได้ว่า การเพิ่มขึ้นของปริมาณของเสียที่อนุญาตไม่สอดคล้องกับการเพิ่มขึ้นของคำขออนุญาต

คณะผู้วิจัยได้วิเคราะห์การจัดประเภทของเสียอุตสาหกรรมในภาคผนวกที่ 1 ท้ายประกาศฯ ฉบับที่ 6 (พ.ศ. 2540) กำหนดบัญชีลักษณะและคุณสมบัติของสิ่งปฏิกูลหรือวัสดุที่ไม่ใช้แล้วที่เป็นของเสียอันตราย ซึ่งเป็นการรวบรวม มาจากบัญชีของเสียอันตรายขององค์การพิทักษ์สิ่งแวดล้อมแห่งสหรัฐอเมริกา (United States Environmental Protection Agency) หรือ USEPA ของเสียที่ควบคุมการเคลื่อนย้ายข้ามแดนตามอนุสัญญาบาเซลว่าด้วยการเคลื่อนย้ายข้ามแดนของของเสียอันตรายและการกำจัด และบัญชีรายชื่อของเสียเกมีวัตถุตามพระราชบัญญัติวัตถุอันตราย พ.ศ. 2535 พร้อม กันนั้นได้รวบรวมข้อคิดเห็นการปฏิบัติตามข้อกำหนดของกฎหมาย โดยร่วมกับสำนักงานอุตสาหกรรมจังหวัดสมุทรปราการใน การอบรมให้ความรู้ที่เกี่ยวข้องกับการประกอบการอุตสาหกรรมแก่ผู้ประกอบการในจังหวัดสมุทรปราการ และจัด ประชุมระดมความคิดเห็นเกี่ยวกับการสร้างกรอบการจัดแบ่งรหัสของเสียอันตรายตามที่กฎหมายกำหนดจากเจ้าหน้าที่ ที่เกี่ยวข้องในกรมโรงงานอุตสาหกรรม ผู้ประกอบการ และนักวิชาการที่เกี่ยวข้อง

ผลจากการอบรมและระคมความคิดเห็นสรุปได้ว่า ปัญหาที่การรวบรวมข้อมูลปริมาณของเสียไม่ได้ผลตาม ข้อกำหนดของกฎหมายมาจากเหตุผลหลัก 3 ประการ ประการแรก คือ ความไม่ชัดเจนของคำจำกัดความ ทั้งในส่วนที่ เป็นคำจำกัดความของสิ่งปฏิกูลหรือวัสดุที่ไม่ใช้แล้ว และคำจำกัดความของลักษณะและคุณสมบัติของของเสียอันตราย ประการที่สองคือ การจำแนกของเสียอันตรายกระทำได้ค่อนข้างยากจำเป็นต้องมีความรู้ความเข้าใจด้านเทคนิค เนื่องจาก ของเสียหลายชนิดต้องมีการพิสูจน์หรือวินิจฉัยโดยทำการวิเคราะห์ในห้องปฏิบัติการ หรือของเสียอันตรายหนึ่งชนิด อาจจัดเป็นของเสียอันตรายได้หลายหมวดหรือหลายข้อที่กำหนดในภาคผนวกที่ 1 ท้ายประกาศฯ ฉบับที่ 6 ก็ได้ และ ประการที่สามคือ เอกสารที่ใช้สำหรับรายงาน (แบบ ร.ง. 6 และที่ใช้ในการยื่นขออนุญาต) และความยุ่งยากของขั้น ตอนการปฏิบัติ

โดยข้อสรุปข้างต้น คณะผู้วิจัยจึงได้นำเสนอการจัดประเภทของเสียอันตรายและพัฒนารูปแบบการจัดเก็บข้อมูล ของเสียจากโรงงานอุตสาหกรรมขึ้นใหม่ ดังนี้

1) การจัดประเภทของเสียอันตรายตามระบบของสหภาพยุโรป หรือ European Waste Code (EWC)-Hazardous Waste List (HWL) ซึ่งเป็นระบบที่มีการจำแนกของเสียตามกิจกรรมการผลิตหรือกระบวนการผลิต สามารถระบุได้ว่าประเภทของเสียมาจากขั้นตอนใดของกระบวนการ และมีการชี้ชัดว่าของเสียใดเป็นของเสียอันตราย และของเสียที่ไม่เป็นของเสียอันตราย ช่วยทำให้การจำแนกชนิดของเสียอันตรายทำได้สะดวกขึ้น ลดความยุ่งยากใน การวินิจฉัยเชิงเทคนิคและการวิเคราะห์ในห้องปฏิบัติการ

ระบบการจัดประเภทของเสียของสหภาพยุโรป กำหนดของเสียเป็น 20 หมวด (หมวด 01 ถึงหมวด 20) จำแนกตามลักษณะของกระบวนการผลิต กระบวนการสนับสนุนการผลิต เช่น โรงงานผลิตน้ำประปา โรงงานปรับ กุณภาพของเสีย เป็นต้น และกิจกรรมที่เกิดของเสียอื่นๆ ด้วย เช่น ของเสียจากงานก่อสร้าง ของเสียจากการสาธารณ สุข ของเสียชุมชน เป็นต้น ระบบนี้กำหนดรหัสของเสียที่ประกอบด้วยเลขชุด 6 หลัก คือ 2 หลักแรกระบุกระบวน การผลิต 2 หลักต่อมาระบุกิจกรรมของกระบวนการผลิต และ 2 หลักสุดท้ายระบุของเสียที่เกิดขึ้นในกระบวนการผลิตหลักและกิจกรรมของกระบวนการผลิตนั้นๆ การกำหนดของเสียด้วยเลขชุด 6 หลักดังกล่าวทำให้เกิดความเข้าใจ ที่ตรงกันและสามารถนำข้อมูลของเสียที่จัดเก็บได้มาประมวลผลได้สะดวกและถูกต้องยิ่งขึ้นอีกด้วย

2) การพัฒนารูปแบบการจัดเก็บข้อมูลของเสียให้สะดวกต่อการนำไปใช้งานในแต่ละประเภทอุตสาหกรรม ในระบบมาตรฐานอุตสาหกรรมไทย (Thailand Standard Industrial Classification : TSIC) ที่กรมโรงงานอุตสาหกรรม ได้พัฒนาจากการจัดประเภทอุตสาหกรรมตามกิจกรรมเสรษฐกิจตามมาตรฐานขององค์การสหประชาชาติ (International Standard Industrial Classification of All Economic Activities : ISIC) และจัดทำขึ้นเพื่อเริ่มใช้ในปี พ.ศ. 2547 โดยใช้ กิจกรรมการผลิตเชื่อมโยงประเภทของเสียเข้ากับกิจกรรมทางเสรษฐกิจในระบบมาตรฐานอุตสาหกรรมไทย

รูปแบบการจัดเก็บข้อมูลของเสีย ประกอบด้วยข้อมูล 2 ส่วน คือ ข้อมูลของเสียเฉพาะจากกระบวนการผลิต หลัก (specific wastes) ตั้งแต่หมวด 01 ถึงหมวด 12 และข้อมูลของเสียทั่วไปหรือของเสียที่ไม่ได้เกิดจากกระบวนการผลิต หลัก (common wastes) ตั้งแต่หมวด 13 ถึงหมวด 20 โดยคณะผู้วิจัยได้เสนอรายการของเสียสำหรับอุตสาหกรรมแต่ละ ประเภทไว้ด้วย โดยการจัดเกีบข้อมูลของเสียเฉพาะกิจกรรมและข้อมูลของเสียทั่วไปหรือของเสียที่ไม่ได้เกิดจาก กระบวนการผลิตหลักจะแตกต่างกันไปขึ้นอยู่กับกระบวนการผลิตและกิจกรรมของแต่ละประเภทอุตสาหกรรม

กณะผู้วิจัยได้นำรูปแบบการจัดเก็บข้อมูลของเสียไปทดสอบกับโรงงาน 10 ประเภท ในจังหวัด สมุทรปราการ และจังหวัดอื่น ๆ อีก 4 จังหวัด ได้แก่ กรุงเทพมหานคร พระนครศรีอยุธยา สระบุรี และสมุทรสาคร แต่ เนื่องจากกรอบเวลามีจำกัดจึงทดสอบได้เพียง 20 โรงงาน พร้อมทั้งประเมินผลเบื้องต้น โดยใช้แบบสอบถาม และพบ ว่าได้รับการตอบรับจากผู้ประกอบการอย่างดียิ่ง

ประโยชน์ของรูปแบบการจัดเก็บของเสียที่นำเสนอนี้ จะทำให้ผู้ประกอบการสามารถจำแนกของเสียได้ สะควกและถูกต้องจากแบบฟอร์มซึ่งมีรายการชนิคของเสียจากกระบวนการผลิตของอุตสาหกรรมประเภทต่างๆ และ ทำให้ผู้ปฏิบัติงานในภาครัฐสามารถตรวจสอบและประมวลผลข้อมูลของเสียอุตสาหกรรมได้สะควกและรวดเร็ว เป็น ผลให้เกิดข้อมูลที่เชื่อถือได้มากขึ้น

ในส่วนของการบริหารจัดการนั้น กรมโรงงานอุตสาหกรรมได้มีนโยบายในการปรับปรุงประกาศฯ ฉบับ ที่ 6 (พ.ศ. 2540) และประกาศฯ ฉบับที่ 1 (พ.ศ. 2541) อยู่แล้ว รูปแบบที่เสนอในรายงานนี้จึงสามารถนำไปปรับใช้ ตามนโยบายได้

การดำเนินงานโครงการวิจัยนี้ เป็นผลการดำเนินงานร่วมกันระหว่างผู้ปฏิบัติงานของกรมโรงงานอุตสาห กรรมและนักวิชาการ ซึ่งเห็นความสำคัญในการที่จะผลักดันให้มีการดำเนินงานตามนโยบายการจัดการของเสียอุตสาห กรรม จนเกิดผลงานที่เป็นรูปธรรม ซึ่งสามารถนำไปปรับใช้ให้เกิดผลการดำเนินงานสืบเนื่อง เพื่อให้ได้ระบบการ เก็บข้อมูลที่เชื่อถือได้ และสามารถพัฒนาให้เกิดศูนย์ข้อมูลของเสียเคมีวัตถุ (กากและวัสดุเหลือใช้จากอุตสาหกรรม) ในอนาคต แต่จำเป็นต้องได้รับการยอมรับเชิงนโยบายและการวางแผนปฏิบัติอย่างเป็นขั้นตอน เพื่อให้เกิดการดำเนิน งานที่สืบเนื่องให้ได้ผลสำหรับใช้ในการวางแผนการจัดการของเสียอุตสาหกรรมให้สอดคล้องกับภาพรวมภาค เศรษฐกิจให้สามารถพัฒนาอย่างยั่งยืนได้ต่อไป

สรุปผลการศึกษา

- 1) รูปแบบการจัดเก็บข้อมูลของเสียครอบคลุมการได้ข้อมูลทั้งที่เป็นของเสียอันตรายและไม่เป็นของเสียอันตราย และสอดคล้องกับการจัดประเภทโรงงานอุตสาหกรรมตามระบบ TSIC ซึ่งกรมโรงงานอุตสาหกรรมจะปรับ แก้ใช้แทนระบบทะเบียนโรงงานเดิม
- 2) การตอบรับของผู้ประกอบการทั้ง WG และ WP เป็นไปในเชิงบวก รวมทั้งของเจ้าหน้าที่กรมโรงงานอุต สาหกรรม (Waste Regulator : WR) ด้วย
- 3) จาก ข้อ 1 และข้อ 2 ข้างต้นจะสามารถทำให้การเก็บข้อมูลของเสียโรงงานเป็นระบบ สามารถประมวลผล ได้ง่าย เนื่องจากเชื่อมโยงกับกิจกรรมทางเศรษฐกิจ และสามารถนำไปวางแผนในภาพรวมของภาค เศรษฐกิจของประเทศได้

ข้อเสนอแนะ

- ให้มีการระคมข้อกิดเห็นจากนักวิชาการ หน่วยงานของรัฐที่เกี่ยวข้อง และผู้ประกอบการ เพื่อพิจารณา ปรับแก้การจัดรหัสของเสียเบื้องต้น จากผลงานของโครงการนี้ตามกลุ่มหรือรายสาขาอุตสาหกรรม
- ทคสอบการใช้รหัสแบบใหม่กับ WG และ WP เพิ่มเติมให้ครบทุกกลุ่มหรือรายสาขาอุตสาหกรรม ตาม ผลจากข้อ 1 ก่อนการตัดสินใจนำมาใช้งาน
- 3) เสนอกระทรวงอุตสาหกรรมให้แก้ไขและปรับปรุงประกาศฯ ฉบับที่ 6 (พ.ศ. 2540) และประกาศฯ ฉบับที่ 1 (พ.ศ. 2541) ให้สอดกล้องตามข้อ 1 และ ข้อ 2 และกำหนดคำนิยาม แล้วจัดทำคู่มือและอบรมใช้งานให้แก่หน่วยงานของรัฐที่เกี่ยวข้อง
- 4) ปรับระบบการควบกุมและจัดการกากอุตสาหกรรมหรือของเสียจากโรงงานใหม่ทั้งหมดให้สามารถรองรับ ปริมาณงานที่จะเกิดขึ้นในอนาคตได้ โดย
 - 4.1 ยกเลิกระบบการอนุญาต และใช้ระบบการขึ้นทะเบียนแทน
 - 4.2 ใช้ระบบอิเล็กทรอนิกส์ในการส่งข้อมูลการขนส่งของเสียระหว่าง WG WR และ WP ทดแทน การใช้เอกสารพิมพ์
 - ทั้งนี้ หน่วยงานของรัฐยังมีความจำเป็นต้องสุ่มตรวจสอบ (cross check) ความถูกต้องของข้อมูล อิเล็กทรอนิกส์กับข้อมูลตามเอกสารพิมพ์ เพื่อป้องกันการรายงานเท็จ
- 5) ให้มีการพิจารณาเปรียบเทียบรูปแบบการจัดประเภทของเสียอันตรายในระบบต่างๆ เช่น ของเสียประเภท เครื่องใช้ไฟฟ้าและอิเล็กทรอนิคส์ (Wastes from Electrical and Electronic Equipment : WEEE) เพื่อ เอื้อประโยชน์ในการบริหารจัดการและการควบคุมการขนส่งของเสียอันตรายภายในประเทศและผ่านแคน

Executive Summary

From the past to the present development of industrial sector in Thailand, wastes generated by factories have rapidly been increased in terms of quantity and variety. Those wastes might be of hazardous wastes (HZW) or non-hazardous wastes (Non-HZW) types; the two different wastes are often mishandled and mixed up, which makes further management of these wastes become much more difficult.

Responsible government authorities have established a common strategy for collection and monitoring of HZW, an initial attempt was a number of studies conducted to appraise industrial wastes' situation. However, there are always discrepancies found in the results of those studies, especially, on wastes' quantity and their generation units. Apparently, these discrepancies resulted from many causes i.e., differences in hypotheses and basic data used in waste estimation and, particularly, incompleteness in waste information. The entire waste information involves waste generator (WG), waste transporter (WT), waste processor (WP), and waste regulator (WR). Any missing or false information obtained from one of these players will, ultimately, lead to a wrong scenario of national waste management. Of importance, intrinsic information from a WG, who has no basic knowledge in industrial wastes, gives incorrect figures of his wastes and, consequently, results in erroneous analyses of the whole data.

To make an access to primary information more plausible, the Department of Industrial Works (DIW) and a team of researchers from Chulalongkorn University, under a support of the Thailand Reseach Fund, had initiated a pilot project entitled "Procedural Approach for Data collection of Industrial Hazardous Wastes in Samut Prakan Province". The aims of this research study were first, to develop a facilitating tool, which can be used by both the authorities' and enterprises' personnel, for gathering industrial waste data, and second, to evaluate an efficiency of the tool. The project period was 3-month, starting from October 2003 to December 2003, and the project implementation area was selected in Samut Prakan Province where a broad variety of factories are located and a number of different kinds of HZW are generated. The developed tool shall be usable for a systematic HZW data collection i.e., to monitor, evaluate, and analyze raw data in order to transform the data into information for planning and setting up relevant policy of overall HZW management in a future.

The project commenced with a review of an existing industrial-waste management scheme, which is empowered by the Ministerial Rule No. 2 (B.E. 2535) prescribed pursuant to the Factory Act B.E. 2535. In Section 4, Article 13 of the Rule describes about a duty of factory operators i.e., WG, to manage their wastes (i.e., garbage and unusable materials) properly. According to Article 13(3) of the Rule, the Notifications of the Ministry of Industry viz., No. 6 (B.E. 2540) and No. 1 (B.E. 2541) were issued for controlling the disposal of HZW and Non-HZW, respectively.

The two Ministerial Notifications require WG to get prior approval from DIW if they intend to evacuate their wastes i.e., HZW and Non-HZW out of factory premises. Additionally, the Notification No. 6 (B.E. 2540) further demands WG of HZW to report details on their types, characteristics, properties, quantity and storage places as well as methods of storage, treatment, disposal and transportation according to the *Ror.Ngor.6-Form* to DIW annually by the 30th day of December.

After the two Ministerial Notifications have been imposed, it appears that DIW still obtained insufficient data of actual industrial wastes, in terms types and quantity, of from WG. This is partly due to inadequate stringent enforcement of the waste regulations upon the violator by the WR. Of importance is a problem of difficulty in identifying types of HZW, which is full of variety, and most WG have not enough technical data and knowledge to identify HZW properly. This intrinsic problem caused the implementation of industrial HZW management unattainable. In 2001, there were only 805 WG applying for waste evacuation permits out of 58,077 category-3 factories, which were potential generators of both Non-HZW and HZW, and only 15 WP registered by DIW. In the following year viz. 2002, the Ministry of Industry employed a free-market oriented policy to boost the establishment of waste-processing facilities by legitimately issued the Ministerial Rule about Factory Type Definitions by adding the Factory Type 105 (Sorting and/or landfilling facilities) and the Factory Type 106 (Waste recycling facilities). As a result, by the end of 2003, WP numbered to 65; while 2,917 WG applied for their waste evacuation permits. Nevertheless, an increase in permitted waste quantity from 2002 to 2003, i.e., by 0.173 to 0.431 million ton for HZW and by 1.097 to 1.589 million ton for Non-HZW, was not proportional to an increase in a number of permits. Yet, there is no efficient monitoring system to follow up an actual amount of "evacuated wastes".

Initially, the research team of the project had reviewed and analyzed a number of waste identification methods such as, the Chemical Wastes, as indicated in the Notification of the Ministry of Industry entitled "The Hazardous Substances List (B.E. 2535)" prescribed pursuant to the Hazardous Substances Act B.E. 2535, and the Lists of HZW Characteristics and Properties in Annex I, as attached to the Notifications of the Ministry of Industry No. 6 (B.E. 2540) entitled "Disposal of Wastes or Unusable Materials". In essence, the latter notification includes "the Code of Federal Regulations Title 40: Protection of Environment" of the United States Environmental Protection Agency (U.S. EPA), "the Chemical Wastes List" prescribed pursuant to the Hazardous Substances Act B.E. 2535 and "the HZW List" as described by the Basel Convention.

Subsequently, together with the Industrial Provincial Office of Samut Prakan, the research team were able to gather a considerable amount of opinions, concerning legal compliance about industrial HZW and Non-HZW, from participants of "the Training Workshop for Factory Operators in Samut Prakan Province" and "the Seminar for Setting-up a Framework for Identification of HZW Code as Legally Defined" by use of questionnaires and interactive discussion. These two events involved a number of DIW officials, industrial entrepreneurs, professional scholars and university academics in related field i.e., waste management. A conclusion drawn from the collected opinions is as followed:

The major cause of insufficient collectable data of actual industrial wastes from WG is: first, Ambiguity in wastes' definition, which is a meaning of "unusable materials" and HZW characteristics and properties, and second, difficulty for the factory operators to report to the concerned authority when using the legal *Ror.Ngor.6Form*, as mentioned earlier.

Finally, by studying numbers of HZW identification systems, the research team came to a decision to formulate the method for HZW identification in accordance with the European Waste Code (EWC) – Hazardous Waste List (HWL). The EWC has identified wastes according to their origins i.e., major activities or production

processes, which are described by 20 Chapters. Each Chapter is represented by numbers of 2 digits. The first set of numbers is a process identity; following by Sub-Chapter i.e., 2 sets of 2-digit numbers, the second set identifies a specific activity of the process and the third set stands for a waste material i.e., type or characteristics, of the specified activity of the production process. Hence, each waste material from a specific activity and process is totally represented by 6-digit numbers. Under EWC identification, HZW and Non-HZW can be distinguished; this makes the code appropriate for further practical use. In the proposed method, the researchers also included relevant terms and definitions of "wastes and their management" for better clarification.

In addition, the research team had integrated the proposed HZW identification with the Thailand Standard Industrial Classification (TSIC) for the reason that the Ministry of Industry was planning to change a conventional Factory Registration Number system to a more international approach TSIC system by 2004. The equivalence list comparing between the conventional system and the TSIC has been made by DIW; this will enable the authority to convert all 107 types of factories into new TSIC codes. The TSIC code consists of numbers of 5 digits; the first 4 digits are identical to the International Standard Industrial Classification of All Economic Activities (ISIC). The 4-digit ISIC code comprises 3 sets of numbers; the first 2-digit set, the second 1-digit set and the third 1-digit set represent Divisions, Major Groups, and Groups, respectively. The fifth digit of TSIC system means types of factories, which are specific for industrial activities in Thailand.

To test the applicability of the proposed HZW identification system in accordance with the TSIC, under time-limited condition, the research team approached 20 factories from 10 different industrial sectors. The tested factories mostly located in Samut Prakan and some were in other provinces i.e., Phra Nakhon Si Ayuthaya, Sara Buri, Samut Sakhon, and Bangkok. The factories' responsible personnel were requested to fill in an industrial waste reporting form, which was modified from the legal *Ror.Ngor.6-Form*. From early evaluation using questionnaires, it was found that most of the industrial entrepreneurs were satisfactory with the proposed HZW identification system.

The waste identification system, which was classified by all relevant economic activities, proposed in this report is expected to help data collection of industrial wastes become more systematic, reliable and convenient for any further processing. As the research period was limited, prior to actual use of the new system, it is strongly advisable to test the system in a larger scale with more industrial sectors and statistically sufficient numbers of factories.

In terms of industrial waste management, DIW has planned to revise and improve its existing waste regulations viz. the Notifications of the Ministry of Industry No. 6 (B.E. 2540) and No. 1 (B.E. 2541). Therefore, this proposed HZW identification system, which is in accordance with the TSIC, can be utilized and served DIW's revision plan.

This study is a result of the work between "DIW's officials responsible for industrial waste management" and "the professional scholars and university academics". The research team comprehended the importance of realizing the industrial waste management policy and intended to promote the more user-friendly industrial waste identification system into practice. This newly proposed system will make collected industrial-waste data more reliable and plausible to be further developed as a basis of Chemical Waste Centre (i.e. wastes and unusable

materials from industry) in a future. This could be achievable if it is accepted as a state policy and a plan of action is systematically prepared for continuous and effective implementation of an overall industrial-waste management scheme, which has to correspond with a sustainable development of domestic economy.

Conclusions

- 1) The industrial waste identification system, which is in accordance with the European Waste Code (EWC) for both HZW and Non-HZW, corresponds with the Factory Registration Number (FRN) based on TSIC system, which the Ministry of Industry has planned to add in the existing conventional system.
- 2) The sampled industrial entrepreneurs, both WG and WP, positively respond to the proposed industrial identification system, as well as the officials of DIW (as WR).
- 3) As a result of Conclusions 1 and 2, this will enable data collection of industrial wastes become systematic, easy to compile and, eventually, due to its nature which associates with all economic activities, can be used for planning of a national macro-economics.

Recommendations

- 1) The newly-proposed industrial identification system shall, inevitably, be tested with additional WG and WP to fulfill all industrial sectors and/or sub-sectors, and it should be modified properly prior to adoption, if necessary.
- 2) The existing Notifications of the Ministry of Industry No. 6 (B.E. 2540) and No. 1 (B.E. 2541) should be revised and improved according to Recommendation 1. A manual for the newly-proposed industrial waste identification system should be arranged for potential users i.e., WG, WT, WP and WR.
- 3) The existing systems for controlling and managing of industrial wastes should also be revised and reorganized in order to handle all future workload. For example, a waste permit system could be cancelled and replaced with a waste registration system. Substituting some copies of waste manifest printings with electronic manifest forms is also possible.
- 4) Comparison of the newly-proposed system with other in-use HZW identification systems should be conducted to create possible correlation in order to facilitate a control of domestic and trans-boundary movement of HZW.
- 5) Mutual Code of Practice of Industrial Waste Identification for all relevant authorities should be prepared in due time.