

บทคัดย่อ

การกำจัดของเสียอันตรายวิธีหนึ่งที่นิยมกันมากในปัจจุบันคือ การนำของเสียอันตรายไปกำจัดในเตาเผาของการผลิตซีเมนต์ ซึ่งวิธีการนี้นอกจากจะสามารถกำจัดของเสียแล้วยังได้รับประโยชน์จากการเผาของเสีย เช่น เป็นเชื้อเพลิงทดแทน เป็นวัตถุดับทดแทน เป็นต้น วิธีการนี้สามารถนำไปใช้ได้ถ้าไม่มีการปนเปื้อนของมลพิษในอากาศหรือการระลั่งสู่สิ่งแวดล้อม ในงานวิจัยนี้ได้นุ่งเน้นถึงการศึกษาพฤติกรรมการระลั่งของโลหะหนักจากซีเมนต์ โดยโลหะหนักในการศึกษานี้ได้แก่ โครเมียม นิกเกิล และ สังกะสี ใน การศึกษาพฤติกรรมการระลั่งนี้ วิธีการทดสอบมาตรฐานได้แก่ Microwave-assisted leach method 3051A, Availability leaching test (NEN 7341) และ pH static leach test ได้ถูกนำมาใช้ในการศึกษานี้ จากผลการทดลองพบว่า โครเมียมและสังกะสีมีแนวโน้มที่จะถูกระลั่งออกมากจากซีเมนต์ได้ง่ายซึ่งมากกว่า 90% ของ โครเมียมและสังกะสีนั้นจะสามารถถูกระลั่งสู่สิ่งแวดล้อม ได้ ในขณะที่มีเพียง 3% ของนิกเกิลเท่านั้นที่สามารถถูกระลั่งสู่สิ่งแวดล้อม ได้ และจากการทดสอบด้วยวิธี pH static leach test จะพบว่า โครเมียมนั้นจะถูกระลั่งได้ที่น้ำระลั่งมีค่า pH อยู่ในช่วง 4-10 สำหรับนิกเกิลและสังกะสีนั้น จะถูกระลั่งได้ที่น้ำระลั่ง มีค่า pH 4 และจะมีค่าลดลงเรื่อยๆ จนถึงน้ำระลั่งมีค่า pH เพิ่มขึ้น ในงานวิจัยนี้ยังได้มีการทดสอบซีเมนต์ที่มีโลหะหนักผสมอยู่ว่า จัดเป็นของเสียอันตรายด้วย โดยวิธีที่ใช้ทดสอบคือ Toxicity characteristic leaching procedure (TCLP) จากผลการทดสอบพบว่า เมื่อวัตถุดับมีโครเมียมผสมอยู่มากกว่าหรือเท่ากับ 0.1% โดยน้ำหนัก ซีเมนต์ที่ได้นั้นจัดว่าเป็นของเสียอันตราย ในขณะที่นิกเกิล และสังกะสีนั้น เมื่อมีอยู่ในวัตถุดับมากถึง 2% โดยน้ำหนัก ยังคงไม่จัดว่าเป็นของเสียอันตราย

Abstract

Burning of hazardous waste in cement kiln is the new technology based on waste-derived and alternative fuels. Besides being the alternative way to destroy hazardous waste, this method provides alternative material as raw material or the fuel in the cement production process. This disposal method can be applied if the contaminant either does not appear in the emission or leach from cement to environment. This research focused on the leaching behavior of heavy metals from cement. The studied heavy metals were chromium, zinc, and nickel. To study the leaching behavior, Microwave-assisted leach method 3051A, Availability leaching test (NEN 7341), and pH static leach test were used. Results showed that chromium and zinc were likely to be leached from the cement that more than 90% of them can be leached to the environment. In contrast, approximately 3% of nickel can be leached to environment. From the pH static leach test, chromium was effectively leached at pH range 4-10. Zinc and nickel were effectively leached at pH 4 and the leachability of them decreased when the pH increased. In this research, Toxicity characteristic leaching procedure (TCLP) was also used to identify the cement as hazardous waste or non-hazardous waste. The results showed that raw material doped with chromium more than 0.1 wt.%, the cement was classified as hazardous waste. In contrast, the raw material doped with nickel and zinc up to 2 wt.%, the cement was not classified as hazardous waste.