บทคัดย่อ

การวิจัยนี้มีวัตถุประสงค์เพื่อหากำลังอัคประลัย การหคตัวแบบแห้งของซีเมนต์มอร์ด้าร์ และระยะเวลาการก่อตัวของซีเมนต์เพสต์ที่ใช้เถ้าลอยกองทิ้งที่ได้จากพื้นที่กองทิ้งเส้นทางลำเลียง หมายเลข 3 ที่เหมืองแม่เมาะแทนที่ปูนซีเมนต์บางส่วน เถ้าลอยกองทิ้งที่ใช้ในงานวิจัยได้ทำการเจาะ เก็บโดยสว่านจากผิวเถ้ากองทิ้งทุก 1 ม.จนถึงระดับดินเดิมรวมทั้งสิ้น 6 หลุมแล้วคัดเลือกตัวแทน ชั้นความลึกของแต่ละหลุมมาอบและร่อนผ่านตะแกรงเบอร์ 100 เพื่อใช้สำหรับเป็นวัสคุทดสอบ รวมถึงเปรียบเทียบผลที่ได้จากการใช้เถ้าลอยสดจากแหล่งเดียวกันด้วย ในการศึกษากำลังอัดประลัย และการหคตัวแบบแห้งจะใช้เถ้าลอยกองทิ้งแทนที่ปูนซีเมนต์ร้อยละ 10 20 และ 30 โดยน้ำหนัก ของวัสดุเชื่อมประสานและใช้ปริมาณน้ำที่ทำให้มอร์ด้าร์มีค่าการใหลแผ่ 110 ± 5 % จากนั้นทำการทดสอบหากำลังอัดและการหดตัวแบบแห้งที่อายุ 7 28 และ 56 วันโดยก้อนมอร์ด้าร์ที่ใช้ทดสอบ กำลังอัดจะทำการบ่มในน้ำและแท่งมอร์ด้าร์ที่ใช้ทดสอบการหดตัวแบบแห้งจะบ่มในอากาศที่ อุณหภูมิเฉลี่ย 30 องศาเซลเซียสและความชื้นสัมพัทธ์เฉลี่ยร้อยละ 26 ในขณะที่การทดสอบหา ระยะเวลาการก่อตัวจะใช้เถ้าลอยกองทิ้งแทนที่ปูนร้อยละ 10 20 และ 30 และใช้ปริมาณน้ำที่ทำให้ ซีเมนต์เพสด์มีค่าความขันเหลวปกติโดยอัตราส่วนน้ำต่อวัสดุเชื่อมประสานที่ใช้มีค่าไม่เกิน 0.400

ผลการวิจัยพบว่าเล้าลอยกองทิ้งทั้ง 37 ตัวอย่างของหลุมเจาะทั้ง 6 มียิบซั่มปะปนมาค้วยใน ปริมาณและสัคส่วนที่ไม่แน่นอน ทำให้เล้าลอยกองทิ้งที่พบมีคุณสมบัติทางกายภาพและ องค์ประกอบทางเคมีที่มีความแปรปรวนและมีค่าที่ได้ในแต่ละตัวอย่างแตกต่างกันในช่วงที่กว้าง มาก เมื่อใช้แทนที่จะทำให้ใช้น้ำที่เป็นส่วนผสมมอร์ต้าร์หรือซีเมนต์เพสต์ในรูปของอัตราส่วนน้ำ ต่อวัสคุเชื่อมประสานมากกว่าเมื่อเทียบกับการใช้เล้าลอยสคที่แทนที่ในปริมาณร้อยละที่เท่ากัน เพื่อให้มอร์ต้าร์และซีเมนต์เพสต์มีความสามารถในการทำงานได้หรือให้ความข้นเหลวปกติ เมื่อใช้ เล้าลอยกองทิ้งตัวอย่างใดๆในปริมาณที่เพิ่มมากขึ้นจะทำให้ใช้อัตราส่วนน้ำต่อวัสคุเชื่อมประสาน เพิ่มขึ้นตามไปด้วยเนื่องจากเล้าลอยกองทิ้งที่พบมีขนาดอนุภาคเฉลี่ยที่ใหญ่กว่าเล้าลอยสค รูปร่าง ไม่แน่นอน พื้นผิวอนุภาคมีความขรุขระและมีเหลี่ยมมุมมากในขณะที่การใช้เล้าลอยสคเพิ่มขึ้นจะ ช่วยลดปริมาณน้ำที่ใช้ให้ลดลง

การใช้เถ้าลอยกองทิ้งตัวอย่างใคๆแทนที่ในปริมาณร้อยละที่เพิ่มขึ้นจะส่งผลให้กำลังอัค ของมอร์ต้าร์ที่ได้ที่อายุ 7-56 วันมีแนวโน้มที่จะมีค่าลดลงตามอัตราส่วนน้ำต่อวัสดุเชื่อมประสานที่ เพิ่มขึ้นและกำลังอัดที่ได้ส่วนใหญ่มีค่าน้อยกว่ามอร์ต้าร์ที่ใช้เถ้าลอยสดที่การแทนที่และอายุที่ เท่ากัน และมีเถ้าลอยกองทิ้งถึง 25 ตัวอย่างจากทั้งหมด 37 ตัวอย่างที่ให้ค่าดัชนีกำลังที่อายุ 7 และ 28 วันต่ำกว่า 0.75 ซึ่งเป็นค่าต่ำสุดที่มาตรฐาน ASTM C618 ได้กำหนดให้สำหรับการนำวัสคุปอชโซ ลานไปใช้งาน

ผลทคสอบการหคตัวแบบแห้งพบว่าการใช้เถ้าลอยกองทิ้งจะให้ค่าการหคตัวแบบแห้งทั้งที่ สูงกว่าค่าการหคตัวแบบแห้งที่ได้จากการใช้เถ้าลอยสคตั้งแต่ร้อยละ 0.01-0.06 และต่ำกว่าค่าการหค ตัวแบบแห้งที่ได้จากการใช้เถ้าลอยสคตั้งแต่ร้อยละ 0.01-0.05 และการใช้เถ้าลอยกองทิ้งบาง ตัวอย่างให้ค่าการหคตัวแบบแห้งเกินไปจากค่าที่ยอมให้เกินจากมาตรฐาน

ในการทดสอบหาระยะเวลาการก่อตัวพบว่า การใช้เถ้าลอยกองทิ้งตัวอย่างที่มีปริมาณของ SO, ร้อยละ 10-16 แทนที่ปูนร้อยละ 30 ซีเมนต์เพสต์ที่ได้จะเกิดการก่อตัวแบบผิดปกติและการใช้ เถ้าลอยกองทิ้งที่มีปริมาณของ SO, ร้อยละ 23-27 แทนที่ปูนในปริมาณร้อยละ 20 และ 30 รวมถึง การใช้เถ้าลอยกองทิ้งที่มีปริมาณของ SO, ร้อยละ 29-44 ในทุกร้อยละการแทนที่ก็เกิดการก่อตัว แบบผิดปกติไม่สามารถหาระยะเวลาการก่อตัวได้เช่นกัน ในขณะที่ซีเมนต์เพสต์ที่สามารถหา ระยะเวลาการก่อตัวได้ในทุกร้อยละการแทนที่พบว่าเถ้าลอยกองทิ้งที่ใช้มีปริมาณของ SO, ร้อยละ 2-9 ซึ่งระยะเวลาการก่อตัวได้ในทุกร้อยละการแทนที่พบว่าเถ้าลอยกองทิ้งที่ใช้มีปริมาณของ SO, ร้อยละ ใด้ก็ยังมีค่าอยู่ในช่วงที่มาตรฐาน ASTM ได้กำหนดไว้

ABSTRACT

The purpose of this research was to determine compressive strength, drying shrinkage and setting time of cement mortar containing Mae Moh weathered fly ash as a partial replacement for Portland cement. Six positions in the dumping area No.3 were bored and 1-m depth sampling of the ash in each hole were successively made including fresh fly ash from the same area was collected for comparing the results. Then, the ash with grain size smaller than standard sieve No.100 was employed. For testing compressive strength and drying shrinkage, cement mortar with weathered fly ash replacement of 10 20 and 30% used water-to-binder (W/(C+P)) ratio that obtained standard flow. Hardened mortar samples with water curing were tested for compressive strength and with air curing were tested for drying shrinkage at the ages of 7, 28 and 56 days. The cement paste with weathered fly ash replacement of 10 20 and 30% used water-to-binder ratio up to 0.400 was obtained for determining setting time.

The results indicated that weathered fly ash in this area was mixed up with gypsum dumped together in the unpredictable quantity. From the influence of mixed gypsum, physical properties and chemical contents of weathered fly ash were found in wide range. Mortar with weathered fly ash was used water-to-binder ratio much more than mortar with fresh fly ash at the same replacement to obtained workability or normal consistency. By increasing weathered fly ash replacement, the water-to-binder ratio was gained due to the irregular shape and roughness surface of weathered fly ash particles not likely to fresh fly ash that improved rheology by decreasing the water-to-binder ratio. Compressive strength of mortar with weathered fly ash replacement of 10%-30% was lower than that of mortar with fresh fly ash at the same age for any replacement. In the form of strength activity index, 25 from 37 samples weathered fly ash yielded the results lower than 0.75 which the minimum value for pozzolans given by ASTM standard.

For drying shringkage test showed that mortar with weathered fly ash replacement of 10%-30% obtained shringkage not only higher than that of mortar with fresh fly ash at the same age for any replacement in range 0.01-0.06% but also lower in range 0.01-0.05% too. By comparing results with standard was found that almost weathered fly ash samples yielded the shringkage beyond the accepted interval given by standard.

Finally, cement paste using weathered fly ash containing 10-16% SO₃ content replacement of 30% was not unable to found setting time in the manner of false set also weathered fly ash containing 23-27% SO₃ content replacement of 20-30% and weathered fly ash containing 29-44% SO₃ content replacement of 20-30% too. Only using 2-9% SO₃ weathered fly ash was able to yielded initial and final setting time but the tendency of the results not to be coincide with the arising of replacement, however both initial and final setting time still conceded by ASTM standard.