บทคัดย่อ

งานวิจัยนี้ศึกษาถึงผลกระทบต่อคอนกรีตผสมสารผสมเพิ่มจากการใช้น้ำสลัดจ์ (Sludge Water) จากโรงงานคอนกรีตผสมเสร็จ โดยสารผสมเพิ่มที่ศึกษาคือสารปอชโซลานและสารเคมี ผสมคอนกรีต การศึกษาประกอบด้วยการศึกษาถึงคุณสมบัติเบื้องต้นของน้ำสลัดจ์ การหาปริมาณ ค่าของแข็งทั้งหมดที่เหมาะสมโดยใช้ซีเมนต์เพสต์โดยมีตัวแปรคือค่าปริมาณของแข็งทั้งหมดที่ร้อย ละ 0.5, 2.5, 5, 7.5, 10, 12.5 และ 15 และการศึกษาพฤติกรรมของคอนกรีตที่ผสมโดยใช้น้ำสลัดจ์ที่ ความเข้มข้นดังกล่าว ตัวอย่างน้ำสลัดจ์นำมาจากโรงงานผลิตคอนกรีตผสมเสร็จ 3 โรงประกอบด้วย ศูนย์อุตสาหกรรมอิตาเลียน-ไทยและบริษัท เอเซียผลิตภัณฑ์ซีเมนต์ จำกัดและบริษัทนครหลวง คอนกรีต จำกัด ซึ่งเป็นบริษัทในเครือของบริษัท ปูนซีเมนต์นครหลวง จำกัด (มหาชน)

จากการทดสอบพบว่าค่าคุณสมบัติของสารเคมีในน้ำสลัดจ์ของทั้งสามโรงงานอยู่ในเกณฑ์ ตามข้อกำหนดมาตรฐาน ASTM C94 ลักษณะองค์ประกอบทางเคมีของผงสลัดจ์มีลักษณะใกล้เคียง กับเถ้าลอยแต่มีค่าสูญเสียจากการเผาใหม้ที่สูงกว่า ผงสลัดจ์ประกอบไปด้วยผลิตภัณฑ์จากปฏิกิริยา ไฮเดรชั่น ที่มีผิวขรุขระ พรุนและยึดเกาะกันแบบหลวมๆ ขนาดของอนุภาคมีขนาดเฉลี่ยที่ใหญ่กว่า อนุภาคปูนซีเมนต์ ค่าปริมาณค่าของแข็งทั้งหมดของน้ำสลัดจ์มีผลต่อค่ากำลังอัดที่อายุ 7 วันและค่า ระยะเวลาการก่อตัวของซีเมนต์เพสต์ โดยค่าที่ผ่านเกณฑ์มาตรฐาน ASTM C94 อยู่ในช่วง 52,700 ถึง 61,300 มก./ล.

การใช้น้ำสลัดจ์ผสมคอนกรีตมีผลต่อกระทบต่อระดับความสามารถในการทำงานของ คอนกรีตทำให้ต้องใช้น้ำในส่วนผสมที่มากขึ้น หน่วยน้ำหนักคอนกรีตสดลดลง บริมาณอากาศใน คอนกรีตลดลง เวลาในการก่อตัวเร็วขึ้น คุณสมบัติทางกลด้อยลงไป ค่าการเปลี่ยนแปลงความยาว หดตัวเพิ่มขึ้นและทำให้คุณสมบัติทางความทนทานต่อสารเคมีลดลง การใช้น้ำสลัดจ์ผสมคอนกรีต ทำให้ประสิทธิภาพของสารผสมเพิ่มในอัตราส่วนการใช้ที่แนะนำโดยผู้ผลิตไม่ผ่านเกณฑ์ของมาตร ฐานสารเคมีผสมคอนกรีต (ASTM C494) จากผลการทดสอบพบว่าคอนกรีตที่ผสมโดยใช้น้ำสลัดจ์ ร่วมกับสารผสมเพิ่มมีคุณสมบัติที่ดีขึ้นเมื่อเทียบกับคอนกรีตที่ผสมโดยใช้น้ำสลัดจ์อย่างเดียว ตัว อย่างที่ผสมโดยใช้น้ำสลัดจ์มีค่าความพรุนเพิ่มขึ้นกว่าตัวอย่างควบคุมในช่วงร้อยละ 1.50 ถึงร้อย ละ 4.0 วิธีการทดสอบความพรุนโดยวิธีตามASTM C642 จะให้ผลการทดสอบที่ต่ำกว่าวิธี Mercury Intrusion Porosimeter (MIP) ประมาณร้อยละ 2 สำหรับตัวอย่างควบคุมและตัวอย่างที่ผสมโดยใช้ น้ำสลัดจ์จะมีค่าที่ต่ำกว่าอยู่ในช่วงร้อยละ 1.0 ถึงร้อยละ 5.0

Abstract

This research studied the effect of sludge water from ready-mixed concrete plant replacing mixing water in concrete containing admixtures. The admixtures used in this study were pozzolan and chemical admixture. The experimental procedures were performed to study the characteristic of sludge water as concrete mixing water and to determine the optimal total solids content of sludge water in cement paste by varying the percentage of total solids content in sludge water between 0.5%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15%. The sludge water was taken from 3 plants namely Italian-Thai industry complex of Italian-Thai PCL, Asia Concrete Products Co., Ltd. and Siam City Cement Concrete Co., Ltd., subsidiary company of Siam City Cement PCL.

The test results showed that chemical properties of sludge water from 3 plants passed the requirement of ASTM C94. Chemical compositions of sludge power were similar to that of fly ash, but sludge powder has more loss of ignition value. Sludge powder consisting of hydration products has a rugged surface, porous and weak bonding. The average size of sludge powder was bigger than cement type I powder. Total solids content of sludge water, found in the range of 52,700-61,300 mg/l. for the criteria of ASTM C94, has an influence on the compressive strength and setting time of cement paste.

Using sludge water as concrete mixing water effects the workability of concrete resulting in requiring more water in mix proportion, decreasing unit weight of concrete and air content in fresh concrete, accelerating the setting time, reducing the mechanical properties of concrete, more shrinkage and reducing chemical durability of concrete. Dosage of chemical admixture recommended by the manufacture was affected by sludge water resulting in failing the criteria of ASTM C494. Testing results showed that concrete using sludge water with admixture has better characteristics than concrete using only sludge water. The specimen mixing with sludge water has more porosity than control specimen in range of 1.5% - 4%. The porosity testing by ASTM C642 method gives lower value compared with Mercury Intrusion Porosimeter (MIP) method by 2% for control specimen and by the range of 1% - 5% for the specimen mixing with sludge water.