บทคัดย่อ

ยางธรรมชาติที่ผลิตจากน้ำยางพารา Hevea brasiliensis มีสมบัติทางกลที่ดีกว่ายางสังเคราะห์ ขณะเดียวกันขาดความคงตัวด้าน คุณภาพเนื่องจากลักษณะทางธรรมชาติ ซึ่งความผันแปรนั้นส่วนหนึ่งเป็นผลจากสารในกลุ่ม non-isoprene โดยเฉพาะใขมันซึ่งเป็นสารกลุ่ม หลักที่คงอย่ในยางธรรมชาติ วัตถประสงค์ของการศึกษานี้ คือเพื่อจำแนกองค์ประกอบไขมันในน้ำยาง และยางธรรมชาติที่ผลิตไค้จากยางพารา Hevea brasiliensis และหาความสัมพันธ์ของสารในกลุ่มนี้กับโครงสร้างและสมบัติ โดยทำการศึกษาในยาง 4 พันธ์: RRIM600, GT1, PB235 และ BPM24 นอกจากน้ำยางสดแล้วยางแผ่นที่เตรียมจากวิธีการที่มีการควบคมและมีความสม่ำเสมอได้นำมาใช้เป็นตัวอย่างในการศึกษาด้วย เมื่อสกัด ใขมันในตัวอย่างจากทั้งน้ำยางสดและยางแห้งโดยวิธีการที่เหมาะสม พบว่าปริมาณไขมันในตัวอย่างทั้งสองชนิดแตกต่างกันตามพันธ์ ตัวอย่างจากยางพันธุ์ PB235, BPM24 และ RRIM600 (อ่อน) มีปริมาณใจมันมากกว่า (3.4-3.7% โดยน้ำหนักยางแห้ง ในน้ำยางสดและ 2.3-3.3% ในยางแผ่น) จากยางพันธุ์ GT1 และ RRIM600 (แก่) (2.5-2.8% และ 2.0- 2.2% ในน้ำยางสดและยางแผ่นตามลำดับ) กลุ่มไขมันที่มีขั้ว ได้แก่ glycolipids และ phospholipids พบในยางแผ่นในปริมาณน้อยกว่าน้ำยางสด ซึ่งอาจเนื่องมาจากการสูญเสียในขั้นตอนการเตรียมยางแผ่น และ/หรือการย่อยสลายโดยเอนไซม์ เมื่อศึกษาเพิ่มเติมถึงองค์ประกอบของไขมันโดยเทคนิคโครมาโตกราฟีหลายชนิด พบว่ากรดไขมัน furan มี ปริมาณมากในยางพันธุ์ PB235 ในขณะที่กรดไขมัน linoleic พบมากในยางพันธุ์อื่นๆ การวิเคราะห์ด้วยแก๊สโครมาโตกราฟีและแมสสเปกโตร เมตรี (GC-MS) ทำให้สามารถระบุชนิคของสารกลุ่ม unsaponifiable ได้ ซึ่งประกอบด้วย sterols (β-sitosterol, Δ5-avenasterol, stigmasterol), tocotrienol (γ and α) และ fatty alcohols (C18 และ C20) กรดไขมันที่เป็นองค์ประกอบใน glycolipids ซึ่งมี digalactosyl diglyceride (DGDG), monogalactosyl diglyceride (MGDG), steryl glucoside (SG) และ esterified steryl glucoside (ESG) เช่นเคียวกับ phospholipids (phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidic acid (PA), phosphatidylchanolamine (PE), phosphatidylinositol (PI) และ lysophosphatidylinositol (LPI)) สามารถระบได้จากการวิเคราะห์ด้วยเครื่อง HPLC-MS

ในขณะเดียวกันทำการศึกษาโครงสร้างและสมบัติของยางแผ่นควบคู่กันไป โดยตัวแปรที่ศึกษาคือโครงสร้างระดับ meso- structure (gel and molar mass distribution), macrostructure (ตรวจสอบด้วยวิธีมาตรฐาน) และพฤติกรรมของยางในขั้นตอนการบดและกระบวนการ vulcanization จากการวิเคราะห์ทางสถิติ (PCA) พบว่าข้อมูลจากตัวอย่างมีความผันแปรตามพันธุ์ของยางโดยยางจากพันธุ์ PB235 มีความ แตกต่างจากพันธุ์อื่น ดังนั้นการหาความสัมพันธ์ระหว่างองค์ประกอบไขมันและโครงสร้างและสมบัติทางกายภาพจึงแยกระหว่าง PB235 และ พันธุ์อื่น (RRIM600, GT1 และ BPM24) ผลของกรดไขมัน โดยเฉพาะในการ plasticizing furan พบในยางพันธุ์ RRIM600, GT1 และ BPM24 อย่างไรก็ตาม ยางพันธุ์ PB235 ซึ่งมีปริมาณกรดไขมัน furan มากไม่พบว่ามีผลดังกล่าว โดยพบค่าความอ่อนตัว (initial plasticity) และค่าความ ยืดหยุ่น (Mooney viscosity) สูงสุดจากยางพันธุ์นี้ สารกลุ่ม unsaponifiable โดยเฉพาะ α-tocotrienol และ stigmasterol แสดงคุณสมบัติเป็นสาร ด้านอนุมูลอิสระซึ่งมีผลให้กำดัชนีความอ่อนตัว (plasticity retention index) สูงขึ้น และยังพบว่าไขมันมีผลต่อพฤติกรรมของยางธรรมชาติใน กระบวนการบดและ vulcanization ซึ่งตามจริงแล้วใขมันมีบทบาทในการช่วยกระบวนการบดตั้งมีผลให้การใช้พลังงานในการบดน้อยลง พบว่ายางแต่ละพันธุ์มีพฤติกรรมในกระบวนการ vulcanization ต่างกัน สัมพันธ์กับสมบัติทางกายภาพก่อนการ vulcanization ใขมัน โดยเฉพาะ ใขมันอิสระมีสมบัติเป็นสารเร่งตามธรรมชาติในกระบวนการโดยพบจากค่า scorch time (t₂) ที่สั้นลงในยางพันธุ์ RRIM600, GT1 และ BPM24 แต่ไม่พบความสัมพันธ์ที่กล่าวมาเมื่อพิจารณาในยางพันธ์ PB235 เพียงพันธ์เดียว

การศึกษานี้แสดงถึงองค์ประกอบของไขมัน โครงสร้าง และสมบัติ ของยางธรรมชาติที่จำแนกอย่างชัดเจนในยางพาราพันธุ์ต่าง ๆ ใน ฐานข้อมูล ซึ่งจากผลทางสถิติทำให้เห็นภาพรวมของความสัมพันธ์ระหว่างองค์ประกอบไขมันและสมบัติทางกายภาพของยางธรรมชาติ โดย วิธีการศึกษาและความรู้ที่ได้จากการศึกษานี้จะสามารถใช้เป็นแนวทางในการศึกษาถึงความเกี่ยวข้องของสารในกลุ่มไขมันและสมบัติทางของ ยางธรรมชาติในตัวอย่างประเภทอื่นๆ ที่มีสมบัติทางกายภาพที่หลากหลายมากขึ้นต่อไป

Abstract

Natural rubber produced from Hevea brasiliensis latex possesses superior mechanical properties over its synthetic counterpart but lacks consistency in its quality due to its natural origin. This variability has been partly ascribed to non-isoprene components, especially lipids which are the main non-isoprene compounds retained in dry rubber. The aim of this work was to characterize the lipid composition of H. brasiliensis latex and derived dry rubber and to study its relationships with natural rubber structure and properties. The study was conducted with four Hevea clones: RRIM600, GT1, PB235 and BPM24. Beside latex, unsmoked sheet rubber (USS) prepared using a controlled and repeatable process was chosen as dry rubber sample. Lipid extraction was performed with an optimized method developed for both fresh latex and dry rubber. Lipid content of both sample types was found to be clonal dependent. Samples from PB235, BPM24 and RRIM600 (young) clones contained more lipids (3.4-3.7% w/w dry rubber for latex vs. 2.3-3.3% for USS) than GT1 and RRIM600 (old) clones (2.5-2.8% and 2.0-2.2% for latex and USS, respectively). Polar lipids, namely glycolipids and phospholipids, were found in lower amounts in sheet rubber than in the latex used for its preparation. This reduction in polar lipid content could be due to a loss during the rubber washing step and/or to an enzyme-catalyzed hydrolysis during rubber processing. Lipid composition was further analyzed with various chromatographic techniques. High amounts of a furan fatty acid were found in lipids from PB235 clone while linoleic acid was the main fatty acid in samples from the other clones. Gas chromatography coupled with mass spectrometry permitted to identify the unsaponifiable composition of the samples: sterols (β-sitosterol, Δ 5-avenasterol, stigmasterol), tocotrienols (γ and α) and fatty alcohols (C18 and C20). The fatty acid composition of glycolipids, namely digalactosyl diglycerides (DGDG), monogalactosyl diglycerides (MGDG), steryl glucosides (SG) and esterified steryl glucosides (ESG) as well as phospholipids (phosphatidylcholine lysophosphatidylcholine (PC). (LPC), phosphatidic phosphatidylethanolamine (PE), phosphatidyl inositol (PI) and lysophosphatidylinositol (LPI)) were elucidated through HPLC-ESI/MS analysis.

In parallel, USS rubber samples were studied for their structure and properties. The studied parameters were mesostructure (gel and molar mass distribution), macrostructure (measured with standardized specification methods), breakdown behavior and vulcanization behavior. Statistical analysis (PCA) of all data showed that samples from PB235 were clearly distinguished from those from the three other clones. Therefore, the correlations between lipid composition and natural rubber properties were studied separately for PB235 and the other clones (RRIM600, GT1 and BPM24). A predominant plasticizing effect of esterified fatty acids and especially of furan fatty acids was observed in RRIM600, GT1 and BPM24. Nevertheless, PB235 rubber, that contained high amounts of furan fatty acid, did not exhibit such a behavior as it showed the highest initial plasticity and Mooney viscosity value. Unsaponifiable components, especially α-tocotrienol and stigmasterol, seemed to exhibit an antioxidant activity that resulted in a higher plasticity retention index. Lipids were found to also influence rubber behavior during mastication and vulcanization. Indeed, lipids act as processing aids during mastication resulting in a lower mechanical energy consumption. Vulcanization characteristics of rubber from each clone were found to relate to the properties of rubber in its unvulcanized state. Lipids, especially free fatty acids, act as activators as observed from the shorter scorch time (t_{s2}) of rubber from RRIM600, GT1 and BPM24. These correlations were not observed with PB235 alone.

The present study permitted a characterization of lipids composition, structure and properties of fully identified natural rubber samples from various *Hevea* clones, collected in a database. This allowed, through statistical analyses, to provide an overview of the relationships between lipid composition and rubber properties. This approach, and the knowledge obtained from this work, could constitute a basis for further studies of the involvement of lipids in rubber properties with various rubber types whose properties cover a wider range of values.

Keywords Natural rubber, *Hevea brasiliensis*, lipids, glycolipids, sterols, phospholipids, lipid extraction, non-isoprene component, fresh latex, unsmoked sheet, rubber propertie