บทคัดย่อ

ผ้าใหมไทยเป็นส่วนหนึ่งของเอกลักษณ์ไทยอันเป็นที่ยอมรับในระดับสากล และผลิตภัณฑ์จากผ้าใหมไทย สะท้อนให้เห็นการผสมผสานภูมิปัญญาท้องถิ่น และเทคโนโลยีอุตสาหกรรมอย่างลงตัว ตั้งแต่การปลูกหม่อนเลี้ยงไหม จนถึงการทอผ้าใหม ทั้งหัตถกรรมผ้าใหมและผ้าทอจากโรงงานอุตสาหกรรม ต่างมีส่วนในการพัฒนาเศรษฐกิจของ ชมชนและประเทศชาติ

ใหมที่ใช้เลี้ยงเพื่อนำเส้นใยมาทอผ้านั้นเรียกว่าใหมเลี้ยง (cultivated silk) หรือใหมหม่อน เพราะกินใบหม่อน เป็นอาหาร ให้เส้นใยชนิคใยยาว (filament) มีความยาวต่อเนื่องเฉลี่ยระหว่าง 900 ถึง 1200 เมตรต่อรัง นอกจากนี้ใหมป่า (wild silk) บางชนิดก็สามารถให้เส้นใยได้เช่นกัน โดยเฉพาะใหม่อี่รี่ (Eri silk worm, Philosamia ricini) เป็นใหม่ป่าชนิด เดียวที่มนุษย์สามารถนำมาเลี้ยงได้สมบูรณ์ครบวงจรชีวิต ลักษณะเส้นใยไหมที่ได้เป็นใยสั้น (staple) ที่ไม่ต่อเนื่อง เส้นใย หยิกงอ มีเนื้อสัมผัสฟู จึงเหมาะแก่การทำใหมปั่น (spun silk)

การพัฒนาผ้าใหมอีรี่ถ้วนด้วยเครื่องจักรอตสาหกรรม เป็นการประชกต์ใช้เครื่องจักรและกระบวนการปั่นฝ้ายมา ใช้ปั่นเส้นใยจากรังไหมอีรี่ ทำให้สามารถควบคุมคุณภาพของเส้นค้ายให้มีความสม่ำเสมอ สามารถใช้เป็นทั้งเส้นยืนและ เส้นพุ่งในการทอผ้าได้ งานวิจัยครั้งนี้ได้ทดลองปั่นเส้นด้ายไหมอีรี่ชนิดด้ายเดี่ยวเบอร์ 17/1 และด้ายควบเบอร์ 17/2 ด้วย กระบวนการปั่นค้ายแบบปลายเปิด และนำไปทอผ้า 2 โครงสร้างค้วยลายขัดและลายทแยงคังนี้

โครงสร้างที่ 1
$$\frac{17/2 spunsilk \times 17/2 spunsilk}{32 \times 26}$$
40" ลายขัด 30 หลา และลายทแยง 60 หลา

โครงสร้างที่ 2
$$\frac{17/1spunsilk \times 17/1spunsilk}{62 \times 60}$$
 40" ลายขัด 30 หลา และลายทแยง 60 หลา

นอกจากนี้ ได้ศึกษาสมบัติของผ้าไหมอีรี่ต่อกระบวนการทางเคมีสิ่งทอได้แก่ การฟอกขาว และย้อมสี

ผลการวิเคราะห์คุณภาพเส้นค้ายใหมอีรี่ที่ผลิตขึ้นทั้งสองขนาดพบว่า เส้นค้ายเคี่ยวมีการยืดตัวร้อยละ 16.55 ความแข็งแรง 10.86 cN/tex และมีค่าสัมประสิทธิ์ความแปรปรวน (%CV) 15.77 ส่วนเส้นค้ายควบมีการยืดตัวร้อยละ 9.14 ความแข็งแรง 11.68 cN/tex และ %CV 18.45 ตามลำดับ

ผลการวิเคราะห์ต้นทุนการผลิตผ้าใหม่อีรี่ด้วยเครื่องจักรอุตสาหกรรมในงานวิจัยครั้งนี้พบว่า ค่าทำเส้นใยเฉลี่ย ตลอดกระบวนการ 427.62 บาท/กก. ค่าใช้จ่ายในการผลิตเส้นด้ายเฉลี่ย 185.00 บาท/กก. และเส้นด้ายใหม่อีรี่ที่ผลิตขึ้นมี ราคาสูงกว่าเส้นค้ายใหมใยสั้นทั่วไปถึง 112.62 บาท/กก. เนื่องจากต้นทุนรังใหมอีรี่ในงานวิจัยครั้งนี้สูงถึง 300 บาท/กก. ทำให้ราคาผ้าใหมอีรี่ที่ผลิตได้สูงถึง 107.18 บาทต่อหลา

ผลการศึกษาการฟอกขาวผ้าใหม่อีรี่ด้วยใชโครเจนเปอร์ออกใชค์ร่วมกับโซคาแอช เปรียบเทียบกับใชโครเจน เปอร์ออกไซค์ร่วมกับแอมโมเนียมไฮครอกไซค์พบว่า ปริมาณไฮโครเจนเปอร์ออกไซค์ที่เหมาะสมอยู่ระหว่าง 4-6 g/l ร่วมกับโซคาแอช 1 g/l หรือร่วมกับแอมโมเนียมไฮครอกไซค์ 20 ml/l มิฉะนั้นอาจทำให้ความแข็งแรงของผ้าลคลงได้

ผ้าไหมอีรี่ที่ผลิตได้สามารถข้อมด้วยสีแอสิด และสีรีแอกทีฟ โดยสีแอสิดที่ใช้ในการศึกษาครั้งนี้ให้ค่าร้อยละการ ดูคซึมสี (%E) 78.18 ขึ้นไป ในขณะที่สีรีแอกทีฟที่ใช้ให้ค่าร้อยละการผนึกสี (%F) ระหว่าง 78.58-94.81 ส่วนผลความ คงทนต่อการซักในระดับปานกลาง (grey scale 3) ถึงระดับดี-ดีมาก (grey scale 4-5) การเปื้อนสีบนผ้าฝ้ายและบนผ้าใหม อีรี่ระดับปานกลาง (grey scale 3) ถึงระดับดีมาก (grey scale 5) การเปลี่ยนแปลงสี (color difference, ΔE) เมื่อผ่านการซัก มีค่า $\Delta \mathrm{E}$ ตั้งแต่ 0.250 ถึง 18.740 ทั้งนี้ขึ้นอย่กับตัวสี และแรงยึดเหนี่ยวระหว่างเส้นใยกับสีนั้น

ผลการวิจัยในครั้งนี้ แสดงให้เห็นศักยภาพในการผลิตผ้าไหมอีรี่ในระบบอุตสาหกรรม ไม่เพียงการพัฒนา ผลิตภัณฑ์สิ่งทอให้สอดคล้องกับการพัฒนาสินค้าเกษตร ยังมีส่วนสร้างความเข้มแข็งแก่อุตสาหกรรมของประเทศ ตลอคจนสร้างอาชีพให้แก่เกษตรกรและผู้ที่สนใจ

Abstract

Thai silk, one of Thai uniqueness, has been worldwide acknowledged; whereas Thai silk fabric achieved a combination of local intelligence and industrial technology. Those involve growing up mulberry, raising silkworms, and weaving fabric, i.e. silk handicraft and industrial woven fabric, which incorporate community and nation economy.

According to silk sericulture, mulberry silk, namely because its main food is mulberry leaves, produces filament fiber with average length between 900 to 1,200 metre per cocoon. Moreover, some wild silk moths can produce fiber, i.e. eri silk worm, *Philosamia ricini*, the only completely domesticated non-mulberry variety of silkworm. The fiber is discontinuous staple fiber with some degree of crimp and bulky touch, which is considered for short fiber spinning process.

The development of pure eri silk fabric using industrial textile machine was aimed to employ cotton spinning machine and process for spinning eri silk yarn. Therefore, the uniform yarn could be obtained and used as warp and weft for weaving fabric. In this research, eri silk fiber was spun into single yarn no. 17/1, and twisted yarn no. 17/2 by using open-ended process. Consequently, it was woven into 2 constructions of plain, and twill weave pattern as follows:

Construction 1
$$\frac{17/2 spunsilk \times 17/2 spunsilk}{32 \times 26}$$
 40" 30 yards of plain, and 60 yards of twill weave. Construction 2 $\frac{17/1 spunsilk \times 17/1 spunsilk}{62 \times 60}$ 40" 30 yards of plain, and 60 yards of twill weave.

Then, the effect of textile chemistry process to eri silk fabric, i.e. bleaching and dyeing was investigated.

The qualitative analysis of the produced yarns elucidated that the single yarn performed 16.55% elongation at break, 10.86 cN/tex of tensile strength, and 15.77% CV (coefficient of variance); whereas twisted yarn were 9.14% elongation at break, 11.68 cN/tex of tensile strength, and 18.45% CV respectively.

According to the cost analysis of eri silk production in this study, the average cost of fiber preparation was 427.62 baht/kg., average expenditure of yarn processing was 185.00 baht/kg. Hence the cost of obtained eri silk yarn was 112.62 baht/kg. higher than conventional spun silk. Since the price of eri silk used in this study was 300 baht/kg, therefore, the obtained eri silk fabric was 107.18 baht per yard.

Either soda ash or ammonium hydroxide could be combined with hydrogen peroxide in bleaching eri silk fabric. However, the optimum amount of hydrogen peroxide were 4-6 g/l and 1 g/l of soda ash, or hydrogen peroxide and 20 ml/l of ammonium hydroxide. Otherwise, it would affect the strength of fabric being bleached.

It was found that obtained eri silk fabric could be dyed by acid, and reactive dyestuff. The percentage of exhaustion (%E) of acid dyes in this study was more than 78.18; whereas the degree of fixation (%F) of reactive dyes was 78.58 to 94.18. Regarding fastness to washing, the grey scale of color change was medium (grey scale 3) to goodvery good (grey scale 4-5), whereas the grey scale to staining on cotton and eri silk were 3 to 5 (medium to very good). In addition, total color difference, ΔE was lied between 0.250 and 18.740 depending on dyestuff and fiber-dye interaction.

This project reveals the potential of industrial production of eri silk fabric. Intuitively, not only textile and agricultural product development can be achieved, but also strengthened our industry. As a result, an alternative occupation can be introduced to farmer and the interested investors.