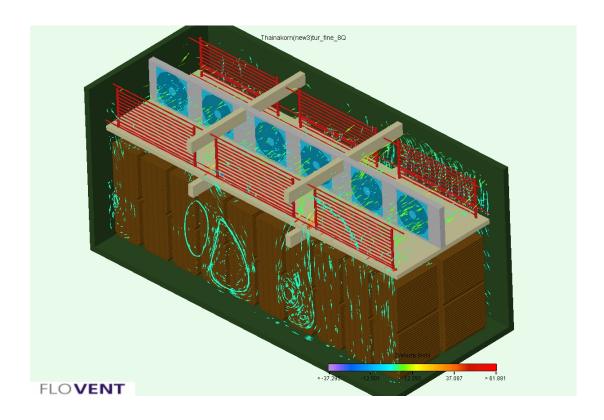
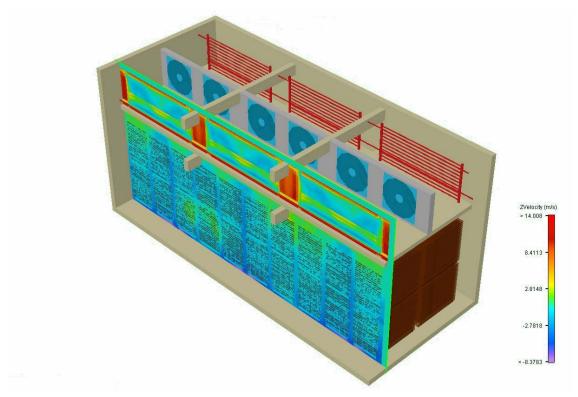


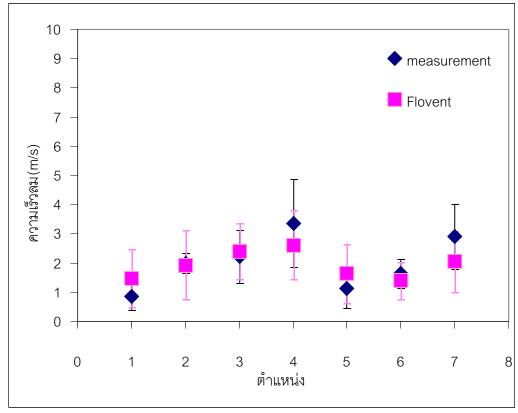
ภาพที่ 6.17 ผลการวัดอัตราเร็วลมผ่านช่องไม้


ภาพที่ 6.18 ผลการเปรียบเทียบอัตราเร็วลมจากการวัดและการคำนวณต่อตำแหน่งช่องไม้

6.3.2 การจำลองการใหลของอากาศภายในเตาอบในโรงงาน

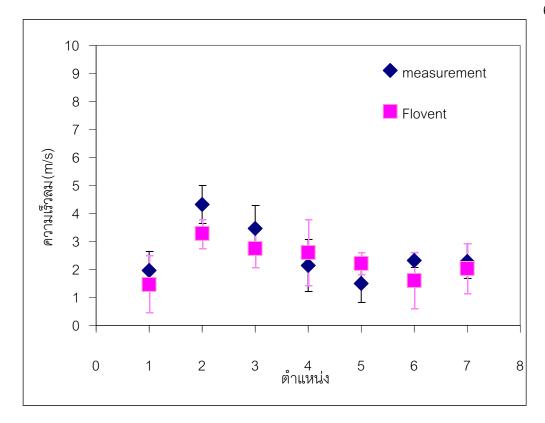

6.3.2.1 การจำลองการไหลของอากาศภายในเตาอบในโรงงานที่ไม่มีแผ่นกั้นลม

การจำลองเตาอบสามารถจำลองส่วนประกอบต่างๆของเตาเช่น พัดลม แผงคอยล์ร้อน ผนังเตา พื้นห้องพัดลม คาน ผลจากการจำลองการใหลของอากาศในเตาอบเมื่อไม่มีแผ่นกั้นลม สามารถแสดงให้เห็นรูปแบบและทิศการใหลของลมด้วยแถบลูกศรที่บอกขนาดของอัตราเร็วลมด้วย สีของแถบลูกศร อัตราเร็วลมจะสูงเมื่อออกจากพัดลมและลดลงเมื่อไหลผ่านแผงคอยล์ร้อนจนถึง กองไม้ ลมจะไหลแบบหมุนวนมากเมื่อผ่านคาน จะเห็นได้ว่ามีลมส่วนหนึ่งไหลผ่านช่องว่างบนกอง ไม้โดยไม่ผ่านกองไม้ซึ่งทำให้เป็นการสิ้นเปลืองพลังงาน


นำค่าอัตราเร็วลมเฉลี่ยจาก 7 ตำแหน่งที่วัดจากกองไม้ในภาพที่ 6.9 เปรียบเทียบกับ อัตราเร็วลมเฉลี่ยในตำแหน่งเดียวกันจากการจำลองพบว่ามีค่าใกล้เคียงกันค่าที่ได้มีแนวโน้มที่ สอดคล้องกัน (ภาพที่ 6.21) โดยค่าอัตราเร็วลมเฉลี่ยจากการคำนวณในแต่ละตำแหน่งจะอยู่ในช่วง แถบความผิดพลาดของค่าอัตราเร็วลมเฉลี่ยจากการ อัตราเร็วลมเฉลี่ยจากการวัดทั้งระนาบเท่ากับ 2.06 ± 1.16 m/s ค่าอัตราเร็วลมเฉลี่ยจากการคำนวณทั้งระนาบเท่ากับ 2.20 ± 1.28 m/s

ภาพที่ 6.19 ผลจากการจำลองการไหลของอากาศในเตาอบเมื่อไม่มีแผ่นกั้น

ภาพที่ 6.20 อัตราเร็วลมถูกวัดที่ระนาบลมด้านลมเข้ากองไม้


ภาพที่ 6.21 กราฟเปรียบเทียบอัตราเร็วลมที่ได้จากการวัดกับค่าที่ได้จากการจำลองที่ไม่มีแผ่นกั้น ลม

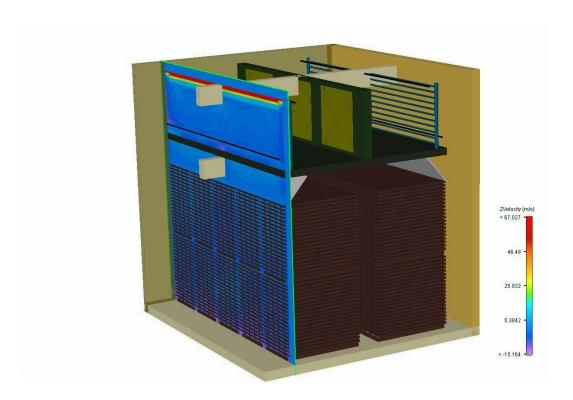
6.3.2.2 การจำลองการไหลของอากาศภายในเตาอบในโรงงานที่มีแผ่นกั้นลม

การจำลองเตาอบในโรงงานที่มีแผ่นกั้นลม สามารถเห็นรูปแบบและทิศการใหลของลม ด้วยแถบลูกศรที่บอกขนาดของอัตราเร็วลมด้วยสีของแถบลูกศร การใหลของลมจะลดการหมุนวน ลงมาก จะเห็นได้ว่าอัตราเร็วลมเฉลี่ยจากการวัดทั้งระนาบเท่ากับ 2.56 ± 1.07 m/s ในขณะที่ค่า อัตราเร็วลมเฉลี่ยจากการคำนวณทั้งระนาบเท่ากับ 2.34 ± 1.08 m/s เมื่อนำค่าอัตราเร็วลมเฉลี่ยจาก 7 ตำแหน่งที่วัดจากกองไม้เปรียบเทียบกับอัตราเร็วลมเฉลี่ยในตำแหน่งเดียวกันจากการจำลอง พบว่ามีค่าใกล้เคียงกันค่าที่ได้มีแนวใน้มที่สอดคล้องกัน และเมื่อมีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจากการวัดทั้งระนาบเพิ่มขึ้น 10.30 % ค่าเบี่ยงเบนมาตรฐานลดลง 8.41 % เช่นเดียวกับผลจากการ คำนวณอัตราเร็วลมเฉลี่ยจากการวัดทั้งระนาบเพิ่มขึ้น 6.36 % ค่าเบี่ยงเบนมาตรฐานลดลง 1.90 % ดังนั้นการติดตั้งแผ่นกั้นลมช่วยให้มีอัตราเร็วลมเฉลี่ยเพิ่มขึ้นและมีการกระจายตัวที่ดีขึ้น

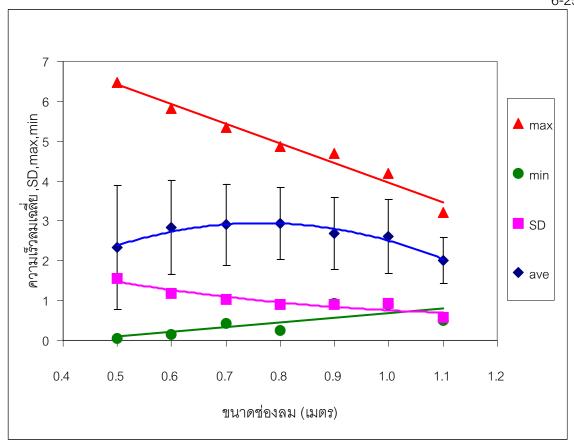
ภาพที่ 6.22 ผลจากการจำลองการไหลของอากาศในเตาอบเมื่อมีแผ่นกั้น

ภาพที่ 6.23 กราฟเปรียบเทียบอัตราเร็วลมที่ได้จากการวัดกับค่าที่ได้จากการจำลองที่มีแผ่นกั้นลม

6.3.3 การออกแบบเตาที่มีประสิทธิภาพสูงโดยใช้แบบจำลองด้วยคอมพิวเตอร์

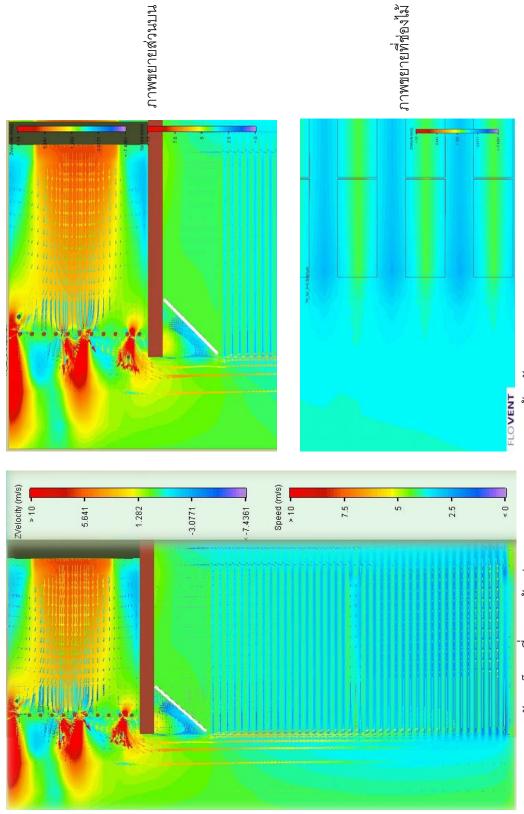

ในการศึกษาส่วนที่ผ่านมาเราสามารถใช้วิธีการจำลองการไหลของของไหลด้วย คอมพิวเตอร์ เพื่อจำลองการไหลของอากาศในเตาอบไม้ยางพารา พบว่าเตาที่ดีอัตราเร็วลมควรมี ค่าที่สูงและค่าเบี่ยงเบนมาตรฐานต่ำการกระจายของอัตราเร็วลมที่ดีมีผลต่อคุณภาพไม้ช่วยให้ไม้ แห้งได้อย่างสม่ำเสมอและลดเวลาในการอบ

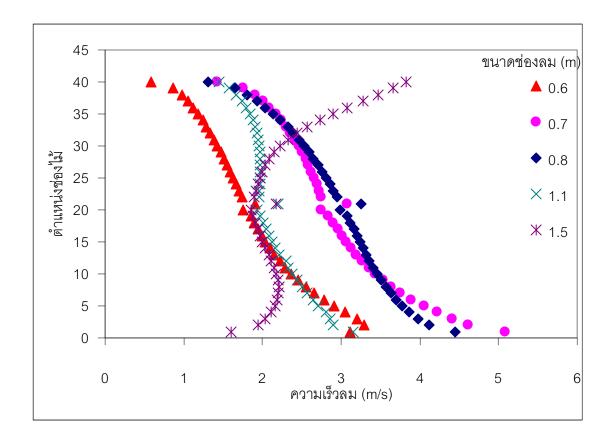
6.3.3.1 การเปรียบเทียบค่าอัตราเร็วลมตามขนาดช่องลม


ค่าอัตราเร็วลมผ่านกองไม้จากระนาบด้านลมเข้าจำนวน 60 ค่า หาค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด และค่าต่ำสุดในแต่ละการทดลอง เปรียบเทียบกับขนาดของช่องลมในภาพที่ 6.25 พบว่าที่ ขนาดช่องลมตั้งแต่ 0.70 ถึง 0.80 เมตรให้ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 3.00 ± 0.90 m/s และ พบว่าถ้าขนาดช่องลมมากกว่า 0.80 เมตร ค่าเบี่ยงเบนมาตรฐานจะลดลงและอัตราเร็วลมเฉลี่ยจะ ลดลงด้วย ในขณะที่ถ้าขนาดช่องลมน้อยกว่า 0.80 เมตร ค่าอัตราเร็วลมเฉลี่ยลดลงแต่ค่าเบี่ยงเบน มาตรฐานเพิ่มขึ้น ในการออกแบบขนาดช่องลมถ้าให้ขนาดช่องลมเล็กเกินไปลมจะกระจายตัวไม่ดี

6-24

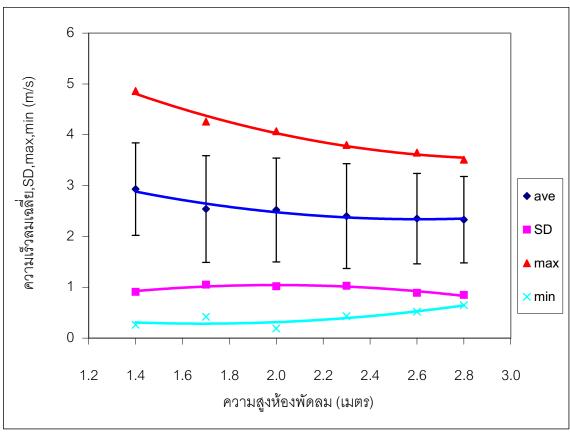
อัตราเร็วลมฉลี่ยลดลงทำให้ไม้แห้งไม่เท่ากันเวลาในการอบยาวนานขึ้นและพื้นที่ที่แคบไม่ สะดวกในการทำงาน ถ้าขนาดกว้างมากกว่า 1.00 เมตรไม่ได้ช่วยให้ลมกระจายตัวดีขึ้นอัตราเร็วลม เฉลี่ยลดลงให้ผลเช่นเดียวกันกับขนาดช่องลมเล็กเกินไปและไม่เกิดประโยชน์ในการใช้พื้นที่ จาก ภาพที่ 6.26 แสดงขนาดช่องลมในโรงงานทั่วไปมีค่าประมาณ 0.50 เมตร และเรียงไม้ไม่ตรงกับแนว ช่องลม ดังนั้นถ้าหากเรียงไม้ได้ตรงในแนวดิ่งและกองไม้ในเตาได้ขนาด 0.70 ถึง 0.80 เมตรจะได้ อัตราเร็วลมสูงสุด


ภาพที่ 6.24 ระนาบด้านลมเข้าที่ใช้วัดค่าอัตราเร็วลม

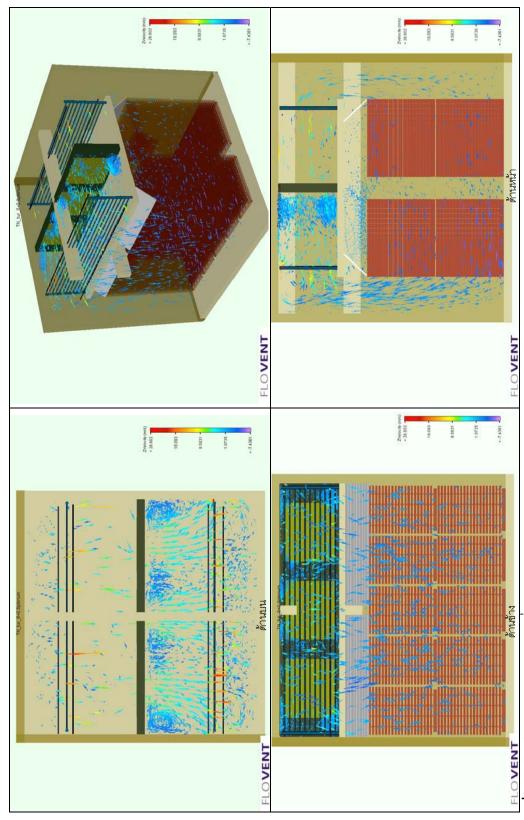

ภาพที่ 6.25 กราฟแสดงการเปรียบเทียบค่าอัตราเร็วลมตามขนาดช่องลม

ภาพที่ 6.26 แสดงช่องลมและการกองไม้ในเตาที่โรงงาน

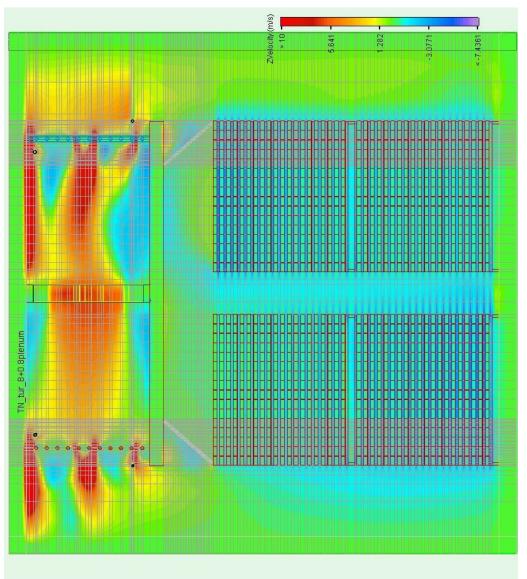
ภาพที่ 6.27 การกระจายของอัตราเร็วลมที่ความกว้างช่องลม 0.8 เมตรและความสูงห้องพัดลม 1.4 เมตร


ภาพที่ 6.28 การเปรียบเทียบอัตราเร็วลมตามขนาดช่องลมกับตำแหน่งช่องไม้

ในภาพที่ 6.27 แสดงการกระจายของอัตราเร็วลมที่ความกว้างช่องลม 0.80 เมตรและ ความสูงห้องพัดลม 1.40 เมตรลมมีความเร็วสูงเมื่ออยู่ในส่วนห้องพัดลมและค่อยๆลดลงเมื่อลงมา ที่ช่องลมจากนั้นจะเพิ่มอีกครั้งเมื่อใกล้กับพื้นและก่อนเข้าช่องไม้เนื่องจากแรงดันเพิ่มขึ้น ในภาพที่ 6.28 เมื่อเปรียบเทียบค่าอัตราเร็วลมที่ขนาดช่องลมทั้ง 5 ค่ากับตำแหน่งช่องไม้ของกองไม้ 2 ชั้น พบว่าอัตราเร็วลมผ่านช่องไม้ของกองไม้ชั้นบนน้อยที่สุดและมีแนวโน้มเพิ่มขึ้นจนถึงตำแหน่งช่อง ไม้ชั้นล่าง ที่ขนาดช่องลม 0.70 และ 0.80 เมตร มีรูปแบบและค่าใกล้เคียงกันมากโดยมีอัตราเร็ว ลมเฉลี่ย 3.00 m/s ซึ่งเป็นค่าอัตราเร็วลมเฉลี่ยสูงที่สุดตามผลการทดลองข้างต้น ที่ขนาดช่องลม 0.60 เมตรและ1.50 เมตร อัตราเร็วลมเฉลี่ยลดลงและการกระจายตัวไม่ดีส่วนที่ขนาดช่องลม 0.9, 1.0 และ1.10 เมตร การกระจายตัวดีแต่อัตราเร็วลมเฉลี่ยลดลง


6.3.3.2 การเปรียบเทียบค่าอัตราเร็วลมตามความสูงห้องพัดลม

เมื่อนำค่าอัตราเร็วลมเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน ค่าสูงสุด และค่าต่ำสุดจากระนาบ ที่ได้จากการจำลองเปรียบเทียบกับความสูงห้องพัดลม พบว่าที่ความสูงห้องพัดลม 1.40 เมตรให้ ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 2.90 ± 0.90 m/s ที่ความสูงห้องพัดลม 1.40 เมตรเป็นค่าน้อย ที่สุดเนื่องจากเป็นความสูงที่เกิดจากขนาดของพัดลม ถ้าขนาดความสูงห้องพัดลมมากกว่า 1.40 เมตร จะได้ค่าอัตราเร็วลมเฉลี่ยจะลดลง ในขณะที่ค่าเบี่ยงเบนมาตรฐานไม่เปลี่ยนแปลง ดังนั้น การเพิ่มขนาดความสูงห้องพัดลมเพื่อง่ายต่อการบำรุงรักษาแต่ทำให้อัตราเร็วลมเฉลี่ยลดลงจึงควร ให้ขนาดความสูงห้องพัดลมเท่ากับการติดตั้งพัดลมก็เพียงพอแล้ว


การใหลของลมในเตาที่ขนาดช่องลม 0.80 เมตรและความสูงห้องพัดลม 1.40 เมตรใน ภาพที่ 6.30 แสดงให้เห็นการกระจายตัวของอัตราเร็วลมที่สม่ำเสมอมีจุดที่ลมหมุนวนเฉพาะ บริเวณที่เป็นมุมอับจากรูปทรงเหลี่ยมของเตา ภาพที่ 6.31 แสดงการแบ่งเซลที่ให้ความละเอียดสูง การคำนวณจึงมีความแม่นยำมาก

ภาพที่ 6.29 กราฟแสดงการเปรียบเทียบค่าอัตราเร็วลมตามขนาดความสูงห้องพัดลม

ภาพที่ 6.30 การใหลวนของลมในเตาที่ขนาดช่องลม 0.80 เมตรและความสูงห้องพัดลม 1.40 เมตร

ภาพที่ 6.31 การแบ่งกริดเซลของเตา

3.4 สรุปผลการทดลอง

การใช้แบบจำลองด้วยคอมพิวเตอร์เพื่อศึกษาการกระจายตัวของลมในแบบเตาอบไม้ ยางพาราทั้งในห้องปฏิบัติการและเตาอบในโรงงานสามารถอธิบายการไหลของอากาศในเตาได้ทั้ง ในเชิงคุณภาพที่สามารถเห็นรูปแบบและทิศทางการไหลของลมในเตา และเชิงปริมาณเมื่อทดสอบ ความถูกต้องของแบบจำลองกับการวัดอัตราเร็วลมจากการทดลองพบว่ามีค่าอัตราเร็วลมเฉลี่ย ใกล้เคียงกันและมีแนวโน้มที่สอดคล้องกัน โดยผลจากแบบจำลองเตาอบในห้องปฏิบัติการได้ค่า อัตราเร็วลมที่ผ่านช่องไม้ 8.22±0.28 m/s มีค่าใกล้เคียงกับค่าอัตราเร็วลมเฉลี่ยจากการวัด 7.92±0.51 m/s ส่วนผลจากการจำลองการใหลของอากาศในเตาอบเมื่อไม่มีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจากการจำลองเตาอบในโรงงานที่มีแผ่นกั้นลม จะเห็นได้ว่าอัตราเร็วลมเฉลี่ยจากการวัดเท่ากับ 2.06±1.16 m/s ค่าอัตราเร็วลมเฉลี่ยจากการจำลองเต่าอบในโรงงานที่มีแผ่นกั้นลม จะเห็นได้ว่าอัตราเร็วลมเฉลี่ยจากการวัดเท่ากับ 2.56±1.07 m/s ในขณะที่ค่าอัตราเร็วลมเฉลี่ยจากการจำลองเท่ากับ 2.34±1.08 m/s สามารถ เห็นรูปแบบและทิศการใหลของลมการไหลของลมจะลดการหมุนวนลงมาก นอกจากนี้การใช้แผ่น กั้นลมสามารถเพิ่มอัตราเร็วลมในเตาอบที่โรงงานและทำให้การกระจายตัวของลมกระจายตัวได้ดี ขึ้นซึ่งจะช่วยให้ไม้แห้งอย่างสม่ำเสมอจึงลดเวลาอบลงได้ เมื่อมีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจาก การวัดในเตาอบที่โรงงานเพิ่มขึ้น 24.27% ค่าเบี่ยงเบนมาตรฐานลดลง 8.41 % สอดคล้องกับ อัตราเร็วลมเฉลี่ยจากการจำลองที่เพิ่มขึ้น 6.36 % ค่าเบี่ยงเบนมาตรฐานลดลง 18.52 %

เมื่อใช้แบบจำลองด้วยคอมพิวเตอร์มาปรับปรุงเตาอบที่มีประสิทธิภาพสูงโดยการ ปรับเปลี่ยนขนาดช่องลมและห้องพัดลมแล้ววัดการกระจายตัวของอัตราเร็วลมพบว่าที่ขนาดช่อง ลมตั้งแต่ 0.70 ถึง 0.80 เมตรให้ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 3.00±0.90 m/s ส่วนความสูง ของห้องพัดลมพบว่าที่ความสูง 1.40 เมตรให้ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 2.90±0.90 m/s ซึ่ง เป็นขนาดความสูงของการติดตั้งพัดลม ถ้าขนาดความสูงห้องพัดลมมากกว่า 1.40 เมตร จะได้ค่า อัตราเร็วลมเฉลี่ยจะลดลง ในขณะที่ค่าเบี่ยงเบนมาตรฐานไม่เปลี่ยนแปลง

บทที่ 7 การปรับปรุงเตาอบไม้ยางพาราในโรงงานไม้ยางพาราแปรรูป

7.1 บทน้ำ

นับตั้งแต่มีการนำเทคโนโลยีการแปรรูปไม้มาใช้กับไม้ยางพาราที่อายุมาก มีโรงงานแปร รูปไม้ยางพาราเกิดขึ้นมากมายกระจายทั่วไปตามแหล่งวัตถุดิบในพื้นที่ภาคใต้และภาคตะวันออก ขั้นตอนการผลิตประกอบด้วย 3 ขั้นตอนคือการเลื่อย การอัดน้ำยา และการอบ ขั้นตอนการอบไม้ ยางพาราใช้พลังงานถึง 40-70% ของพลังงานที่ใช้ในกระบวนการผลิตทั้งหมด (ฐานันดร์ศักดิ์, 2541) กระบวนการอบไม้ยางพาราในอุตสาหกรรมไม้ยางพาราโดยเฉพาะในพื้นที่ภาคใต้ยังขาด การนำความรู้ด้านเทคโนโลยีการอบไม้ไปใช้อย่างมีประสิทธิภาพ ตั้งแต่การออกแบบขนาดเตา การเลือกใช้วัสดุทำผนังหรือประตูเตาอบ การติดตั้งระบบควบคุมสภาวะการอบในเตาอบที่เกือบ ทุกโรงงานมีการควบคุมเตาอบที่ไม่ได้มาตรฐาน การเลือกใช้อุปกรณ์ประกอบภายในเตาเช่น พัด ลม คอยล์ร้อน ปัญหาจากการออกแบบเตาที่ไม่ดี ทำให้ลมร้อนที่กระจายตัวภายในเตาไม่ สม่ำเสมอ ไม้จึงแห้งไม่เท่ากันและใช้เวลาในการอบนานขึ้น เป็นผลให้มีการใช้พลังงานในการอบมากขึ้น งานวิจัยในส่วนนี้ต้องการที่จะพัฒนาและปรับปรุงเตาอบไม้ยางพาราให้มีประสิทธิภาพ สูงขึ้นและสามารถนำไปประยุกต์ใช้ได้จริงกับเตาอบที่ใช้ในโรงอบไม้ยางพาราทั่วไป ในการศึกษา เริ่มจากการสำรวจและเก็บข้อมูลกระบวนการอบตามสภาพเดิมของโรงงานก่อน จากนั้นจะเสนอ วิธีการปรับปรุงในด้านต่างๆพร้อมการตรวจสอบและเก็บข้อมูลผลจากการปรับปรุงอีกครั้ง

7.2 วิธีการทดลอง

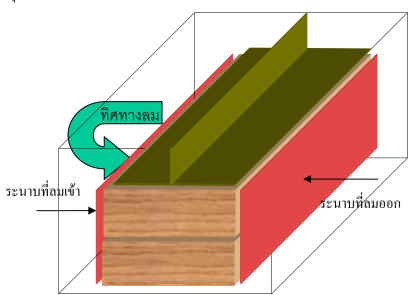
ในการทดลองแบ่งเป็น 3 ขั้นตอนคือการสำรวจโรงงานเพื่อเก็บข้อมูลของกระบวนการอบของ เตาอบในโรงงานเบื้องต้น การปรับปรุงลมและการปรับปรุงระบบควบคุม

7.2.1 การเก็บข้อมูลการอบของเตาอบในโรงงานเบื้องต้น

ได้ทำการสำรวจเก็บข้อมูลกระบวนการอบไม้ยางพาราในโรงงานไทยนครพาราวู๊ด อ.ฉวาง จ. นครศรีธรรมราช การเก็บข้อมูลแบ่งเป็น 2 ส่วนคือ

- 1. ลักษณะของเตาอบและการติดตั้งอุปกรณ์
- 2. กระบวนการคบไม้ยางพารา

7.2.1.1 ลักษณะของเตาอบและการติดตั้งอุปกรณ์


เก็บข้อมูลส่วนประกอบต่างๆของเตาอบที่โรงงาน ลักษณะและขนาดของเตาอบ อุปกรณ์ ประกอบเช่น พัดลม ท่อไอน้ำ ท่อสเปรย์ หม้อต้มไอน้ำ และระบบควบคุมการอบ

7.2.1.2 กระบวนการอบไม้ยางพารา

การเก็บข้อมูลในกระบวนการอบไม้ยางพาราแบ่งเป็น 2 ส่วนคือตรวจวัดอัตราเร็วลมใน เตาและการบันทึกผลการอบใน 1 รอบของการอบ

1) ตรวจวัดอัตราเร็วลมในเตา

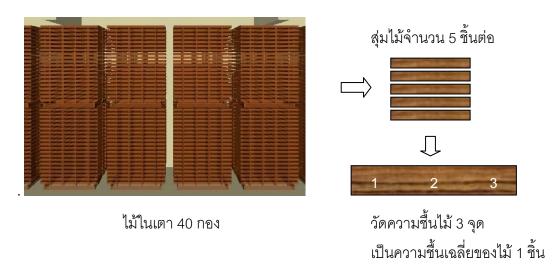
ในการทดลองได้วัดค่าอัตราเร็วลมจากเตาอบในโรงงานโดยการวัดอัตราเร็วลมที่ระนาบ ลมด้านเข้าและออกดังภาพที่ 7.1 ด้วยเครื่องวัดอัตราเร็วลม Testo 445 วัดค่าอัตราเร็วลม 7 ตำแหน่งในแต่ละแถวของกองไม้ จากกองไม้จำนวน 10 แถว ดังภาพที่ 3.9 จะได้อัตราเร็วลมที่ผ่าน กองไม้ทั้งหมด 85 จุด วัดซ้ำกัน 5 ครั้ง เฉพาะลมที่ผ่านกองในตำแหน่งที่ 6 และ 7 วัดอัตราเร็วลม เฉลี่ยจาก 5 จุดในการวัดแต่ละซ้ำ ในการวัดอัตราเร็วลมครั้งนี้ยังไม่มีแผ่นกั้นลม

ภาพที่ 7.1 แสดงระนาบที่ตรวจสอบอัตราเร็วลมภายในเตาอบ

2) การบันทึกผลการอบใน 1 รอบของการอบ

บันทึกผลการอบของโรงงานเป็นการอบไม้ขนาด 1.5 นิ้ว จำนวน 2 รอบของการอบ โดย มีการติดตั้งอุปกรณ์วัดอุณหภูมิกระเปาะแห้งและกระเปาะเปียกเป็นเทอร์โมคัปเปิลขนาด 5 x 6.5 mm. Type K(CA), JB-10 ติดตั้งที่ผนังด้านข้างเตาอบตามภาพที่ 7.2 ค่าอุณหภูมิที่เทอร์ โมคัปเปิลวัดได้แสดงด้วยเครื่องวัดและควบคุมอุณหภูมิ Shinko DCL-33A R/M,C5 ในภาพที่ 7.3 ซั่งน้ำหนักไม้ตัวอย่าง 3 ชิ้น บันทึกค่าอุณหภูมิกระเปาะแห้ง ค่าอุณหภูมิกระเปาะเปียกและน้ำหนัก ไม้ตัวอย่างทุกๆ 2 ชั่วโมง จนครบรอบของการอบ การติดตั้งอุปกรณ์ดังกล่าวเพื่อการเก็บข้อมูลใน เบื้องต้นยังไม่นำมาควบคุมสภาวะเตา โดยการควบคุมอุณหภูมิเตาวิธีเดิมของโรงงานคือติดตั้ง กระเปาะแห้งไว้ที่ห้องพัดลม ไม่มีอุณหภูมิกระเปาะเปียกและควบคุมการใช้ไอน้ำด้วยการเปิด-ปิด วาล์วไอน้ำ (manual) ในการอบครั้งนี้บันทึกผลการอบโดยใช้ตารางอบที่ค่าอุณหภูมิกระเปาะแห้ง เท่ากับ 75°C ในวันที่ 1-4 ต่อมาในวันที่ 4-7 ค่าอุณหภูมิกระเปาะแห้งเท่ากับ 80°C ไม่มีการ ควบคุมค่าอุณหภูมิกระเปาะเปียก และตั้งแต่วันที่ 7 จนสิ้นสุดการอบค่าอุณหภูมิกระเปาะแห้ง เท่ากับ 85°C หลังจากไม้แห้งแล้วนำไม้ออกจากเตามาวัดความชื้นไม้ด้วยเครื่องวัดความชื้นไม้ แบบสัมผัส GANN รุ่น Hydromette Compact A ดังภาพที่ 7.4 จำนวนไม้ที่วัดความชื้นสุ่มจาก กองไม้ทั้งหมด 40 กองกองละ 5 ค่าโดยที่ในแต่ละค่าเป็นค่าความชื้นเฉลี่ยจากการวัดที่ 3 ตำแหน่ง ของไม้ 1 ท่อนดังภาพที่ 7.5

ภาพที่ 7.2 อุปกรณ์วัดอุณหภูมิกระเปาะแห้งและกระเปาะเปียกเป็นเทอร์โมคัปเปิลขนาด 5 x 6.5 mm. Type K(CA), JB-10



ภาพที่ 7.3 การติดตั้งเครื่องวัดและควบคุมอุณหภูมิ Shinko DCL-33A R/M,C5 และเครื่องนับ เวลาการใช้ไอน้ำ NaiS TH648

ภาพที่ 7.4 เครื่องวัดความชื้นไม้แบบสัมผัส GANN รุ่น Hydromette Compact A

ภาพที่ 7 5 วิลีการวัดความซื้นไม้เมื่คคบเสร็จ

7.2.2 การปรับปรุงลม

จากข้อมูลสภาวะเดิมของเตาอบในโรงงานที่ได้สำรวจในหัวข้อ 7.2.1 พบว่าสามารถปรับปรุง ประสิทธิภาพของกระบวนการอบให้สูงขึ้นได้จึงได้เสนอวิธีการปรับปรุงดังนี้

- 1. การเรียงไม้ที่ถูกต้อง โดยแนะนำให้ใช้ฐานรองรับไม้ (pallet) ที่มีขนาดเท่ากับกองไม้เพื่อ รองรับน้ำหนักของไม้ได้ทั้งกอง ไม้คั่น (sticker) ควรมีความยาวเท่ากับฐานหรือเท่ากับความ ยาวของกองไม้ เรียงไม้คั่น (sticker) ในชั้นแรกให้ตรงกับคานของ pallet และเรียงไม้คั่นในชั้น ต่อๆไปให้ตรงกันในแนวดิ่งเพื่อให้น้ำหนักของไม้ถ่ายลงบนไม้คั่นเท่านั้นจะลดการโก่งงอของ ไม้ ดังภาพที่ 7.6 เรียงไม้ในแต่ละชั้นให้ขอบเสมอกันเพื่อง่ายต่อการกองไม้
- 2. การกองไม้ที่ถูกต้อง โดยจัดกองไม้ให้ชิดกับผนังด้านในและชิดกันกองต่อกองเพื่อลดช่องว่าง ระหว่างกองช่วยบังคับลมให้ผ่านกองไม้เท่านั้น พร้อมกำหนดเส้นด้านข้างเตาอบดังภาพที่ 7.7 ให้ตรงกับช่องลมและเป็นแนวเพื่อวางกองไม้ให้ตรงกันทุกกอง
- 3. ติดตั้งแผ่นกั้นลมทั้งด้านบนและด้านหน้า เพื่อลดช่องว่างเป็นการบังคับลมให้ผ่านกองไม้ ได้มากที่สุดดังภาพที่ 7.7

ตรวจสอบผลการเรียงไม้การกองไม้ที่ถูกต้องและติดตั้งแผ่นกั้นลมทั้งด้านบนและด้านหน้า โดยการตรวจวัดอัตราเร็วลมในเตาที่ระนาบลมเข้าและลมออก วัดค่าอัตราเร็วลม 7 ตำแหน่งในแต่ ละแถวของกองไม้ จากกองไม้จำนวน 10 แถว ดังภาพที่ 3.9 จะได้อัตราเร็วลมที่ผ่านกองไม้ทั้งหมด 85 จุด วัดซ้ำกัน 5 ครั้ง เฉพาะลมที่ผ่านกองในตำแหน่งที่ 6 และ 7 วัดอัตราเร็วลมเฉลี่ยจาก 5 จุด ในการวัดแต่ละซ้ำ

ภาพที่ 7.6 แสดงการเรียงไม้ของโรงงานกับการเรียงไม้ที่ถูกต้อง

ภาพที่ 7.7 แสดงการติดตั้งแผ่นกั้นลมด้านหน้าและด้านบน

7.2.3 การปรับปรุงระบบควบคุม

การเพิ่มประสิทธิภาพของกระบวนการอบจำเป็นต้องมีระบบควบคุมการอบที่ดีสามารถ ควบคุมสภาวะของอากาศภายในเตาให้เป็นไปตามตารางอบ ระบบควบคุมการอบของโรงงานยัง ไม่เป็นไปตามมาตรฐานจึงต้องมีการปรับปรุงดังนี้

1. ติดตั้งเครื่องวัดอุณหภูมิของอากาศภายในเตา (อุปกรณ์วัดอุณหภูมิกระเปาะแห้งและกระเปาะ เปียก) เป็นเทอร์โมคัปเปิลขนาด 5 x 6.5 mm. Type K(CA), JB-10 ติดตั้งที่ผนังด้านข้างเตา อบตามภาพที่ 7.2 ค่าอุณหภูมิที่เทอร์โมคัปเปิลวัดได้แสดงด้วยเครื่องวัดและควบคุมอุณหภูมิ Shinko DCL-33A R/M,C5โดยสามารถเก็บข้อมูลไว้ในคอมพิวเตอร์ด้วยโปรแกรมเก็บข้อมูล JC-300(DCL-300) Monitoring Software รุ่น SWM-JC001M ดังภาพที่ 7.3

- 2. ติดตั้งโซลินอยด์วาล์วที่ท่อคอยล์ร้อนและท่อสเปรย์เพื่อควบคุมการใช้ไอน้ำตามความต้องการ จริงๆตามตารางอบดังภาพที่ 7.8 และติดตั้งมิเตอร์นับเวลาการใช้ไอน้ำ (Hour Meter NaiS TH648) ที่ท่อคอยล์ร้อนและท่อสเปรย์
- 3. ติดตั้งหัววัดความชื้นไม้โดยตอกหัววัดเข้าไปในเนื้อไม้จำนวน 6 จุดที่กระจายตำแหน่งวัดทั่วทั้ง เตา วัดความชื้นไม้ด้านนอกเตาด้วยเครื่องวัดความชื้นไม้แบบตอก GANN รุ่น Hydromette HT 85 T ดังภาพที่ 7.9 และติดตั้งเครื่องวัดอุณหภูมิไม้ด้วยการฝังในไม้จำนวน 2 จุดในเตาดัง ภาพที่ 7.10
- 4. แนะนำให้ตากไม้ฟืนให้แห้งก่อนใส่ในเครื่องกำเนิดไอน้ำ

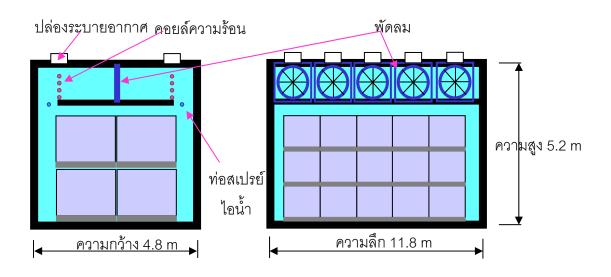
บันทึกผลการอบของโรงงานเป็นการอบไม้ขนาด 1.5 นิ้ว โดยมีการติดตั้งอุปกรณ์วัดอุณหภูมิ กระเปาะแห้งและกระเปาะเปียกเป็นเทอร์โมคัปเปิลขนาด 5 x 6.5 mm. Type K(CA), JB-10 ติดตั้งที่ผนังด้านข้างเตาอบตามภาพที่ 7.2 ค่าอุณหภูมิที่เทอร์โมคัปเปิลวัดได้แสดงด้วยเครื่องวัด และควบคุมอุณหภูมิ Shinko DCL-33A R/M,C5 ติดตั้งหัววัดความชื้นไม้จำนวน 6 จุด บันทึกค่า อุณหภูมิกระเปาะแห้ง ค่าอุณหภูมิกระเปาะเปียกและวัดอุณหภูมิไม้ 2 ชั่วโมง จนครบรอบของการ อบ บันทึกผลการอบโดยใช้ตารางอบที่ค่าอุณหภูมิกระเปาะแห้งเท่ากับ 90°C อุณหภูมิกระเปาะ เปียกเท่ากับ 60°C จนสิ้นสุดการอบ หลังจากไม้แห้งแล้วนำไม้ออกจากเตามาวัดความชื้นไม้ด้วย เครื่องวัดความชื้นไม้แบบสัมผัส GANN รุ่น Hydromette Compact A ในภาพที่ 7.4 จำนวนไม้ที่ วัดความชื้นสุ่มจากกองไม้ทั้งหมด 40 กองกองละ 5 ค่าโดยที่ในแต่ละค่าเป็นค่าความชื้นเฉลี่ยจาก การวัดที่ 3 ตำแหน่งของไม้ 1 ท่อนดังภาพที่ 7.5

ภาพที่ 7.8 การติดตั้งโซลินอยด์วาล์วที่ท่อคอยล์ร้อนและท่อสเปรย์

ภาพที่ 7.9 เครื่องวัดความชื้นไม้ การติดตั้งหัดวัดความชื้นไม้และจุดวัดความชื้นไม้นอกเตา

ภาพที่ 7.10 การติดตั้งหัววัดอุณหภูมิไม้

7.3 ผลการทดลองและวิเคราะห์ผลการทดลอง


7.3.1 การเก็บข้อมูลการอบของเตาอบในโรงงานเบื้องต้น ผลการเก็บข้อมูลของเตาอบในโรงงาน

7.3.1.1 ลักษณะของเตาอบและการติดตั้งอุปกรณ์

1) ลักษณะเตาอบ

ลักษณะเตาอบเป็นรูปแบบทั่วไปที่ใช้อยู่ในภาคใต้ ขนาดกว้าง 4.8 เมตร สูง 5.2 เมตร ลึก 11.8 เมตร ภายในเตาแบ่งเป็นสองส่วนคือห้องพัดลมมีความสูง 1.4 เมตร ติดตั้งพัดลมขนาด เส้นผ่าศูนย์กลาง 1.2 เมตร ใบพัด 8 ใบ มีอัตราการไหล 8.0 m³/s(ค่าจากการทดลองที่ 3.2.2) ท่อ คอยล์ร้อน 2 ด้าน เป็นท่อขนาด 1.5 นิ้ว 11 แถว ท่อสเปรย์ไอน้ำขนาด 1 นิ้ว 2 ด้าน ปล่องระบาย

อากาศขนาด 0.4 x 0.4 เมตร 6 ชุดอยู่ด้านบนเตา ผนังเตาเป็นอิฐสองชั้นฉาบผิวหนาประมาณ 0.2 เมตร

ภาพที่ 7.11 ลักษณะของเตาอบและการติดตั้งอุปกรณ์

2) ลักษณะของการติดตั้งพัดลม

ลักษณะของการติดตั้งพัดลมโดยมอเตอร์ติดตั้งอยู่ภายนอกเตาอบขับด้วยสายพาน พัด ลมหมุนที่อัตราเร็วรอบต่ำ ศูนย์ถ่วงพัดลมและเพลาค่อนข้างดี ทำให้ช่วยลดความเสียหายของ ตลับลูกปืนและพัดลมได้เป็นอย่างดี แต่ควรอัดจารบีลูกปืนทุกครั้งของการอบ จะทำให้อายุการใช้ งานของพัดลมยาวนานขึ้น

ภาพที่ 7.12 ลักษณะของการติดตั้งพัดลม

3) ลักษณะของการติดตั้งคอยล์ร้อนและหม้อต้มไอน้ำ

คอยส์ร้อนจำนวน 11 แถววางในแนวดิ่งครีบค่อนข้างสกปรกเนื่องจากไม่มีการทำ
ความสะอาดแต่ไม่พบรอยรั่ว สภาพปัจจุบันหม้อต้มไอน้ำอยู่ในตำแหน่งกลางระหว่างเตาอบ 2
กลุ่ม อันเป็นตำแหน่งที่เหมาะสมและใกล้ที่สุดทำให้เกิดการสูญเสียไอน้ำเนื่องจากความยาวของ
ท่อส่งน้อย แต่จากการตรวจสอบพบว่าไม่สามารถรักษาความดันไอน้ำได้ที่ 5 บาร์ ถ้ามีการอบใน
เตาอบทุกเตาความดันไอน้ำจะลดลงมาอยู่ที่ 2-3 บาร์ ได้เสนอแนวทางแก้ไขด้วยการตรวจสอบ
และแก้ไขการรั่วของไอน้ำที่ข้อต่อต่างๆ ตรวจสอบประสิทธิภาพของหม้อต้มไอน้ำซึ่งอาจไม่
เหมาะสมกับจำนวนเตา ควรติดตั้งโชลินอยด์วาล์วเพื่อควบคุมการใช้ไอน้ำตามความต้องการจริงๆ
ซึ่งในปัจจุบันใช้คนเปิด-ปิดไอน้ำในคอยล์ร้อน ก่อนการอบทุกรอบต้องไล่น้ำในคอยล์ร้อนทุกครั้ง
และควรตากฟืนให้แห้งก่อนนำไปใช้

ภาพที่ 7.13 ลักษณะของคอยล์ให้ความร้อน

ภาพที่ 7.14 หม้อต้มไอน้ำที่ใช้ในโรงงาน

4) ระบบควบคุมการอบของเตา

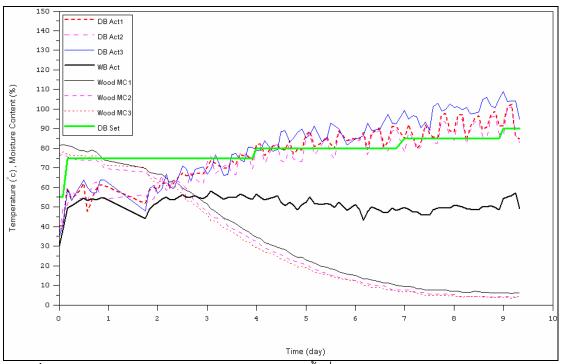
การควบคุมความร้อนภายในเตาอบดำเนินการโดยใช้คนควบคุมการเปิด-ปิดไอน้ำ ในคอยล์ร้อนให้ได้ตามค่าที่ตั้งไว้ กระเปาะแห้งก็อยู่บนห้องพัดลมไม่ได้วัดอุณหภูมิของลมที่เข้า หรือออกจากกองไม้และไม่มีการตรวจวัดและควบคุมความชื้นอากาศภายในเตาอบระหว่างการอบ ทำให้ไม่สามารถเร่งการอบโดยที่รักษาคุณภาพไม้ไม่ให้เกิดการเสียหาย เช่นจากการแตกได้ การ เปิด-ปิดปล่องระบายอากาศและสเปรย์ไอน้ำเป็นการควบคุมโดยคน นอกจากนี้เป็นการยากที่จะ ทำการ Equalizing และ Conditioning ในช่วงท้ายของการอบ ซึ่งในการอบอย่างมีประสิทธิภาพ ควรติดตั้งอุปกรณ์วัดและควบคุมความชื้นภายในเตาอบให้สมบูรณ์

ตารางที่ 7.1 แสดงระบบควบคุมการอบของเตาในโรงงาน

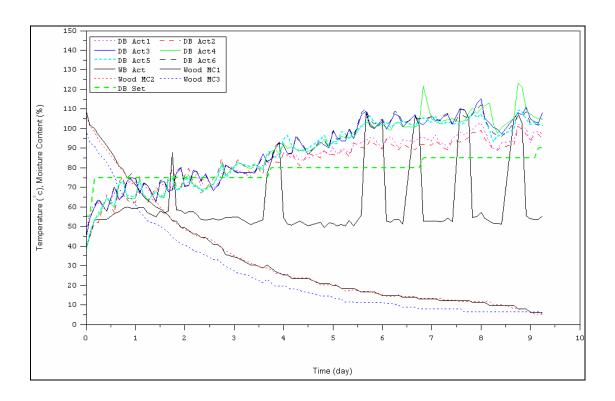
ลักษณะ	โรงงาน	รูปแบบมาตรฐาน
อุณหภูมิกระเปาะแห้ง	มีการวัด	มีการวัด
อุณหภูมิกระเปาะเปียก	ไม่มีการวัด	มีการวัด
คอยล์ให้ความร้อน(ตั้งค่าอุณหภูมิกระเปาะ	ควบคุมโดยคน	ควบคุมอัตในมัติ
แห้งในการควบคุมการปล่อยไอ)		
ปล่องระบายอากาศ(ตั้งค่าอุณหภูมิ	ควบคุมโดยคน	ควบคุมอัตโนมัติ
กระเปาะเปียกในการควบคุมการเปิดปิด)		
การสเปรย์ใอน้ำ(ตั้งค่าอุณหภูมิกระเปาะ	ควบคุมโดยคน	ควบคุมอัตโนมัติ
เปียกในการควบคุมการปล่อยไอน้ำ)		
การทำ Equalizing/Conditioning	ไม่มีการทำ	มีการทำ

ภาพที่ 7.15 ระบบควบคุมการอบ

7.3.1.2 กระบวนการอบไม้ยางพารา 1) ตรวจวัดอัตราเร็วลมในเตา

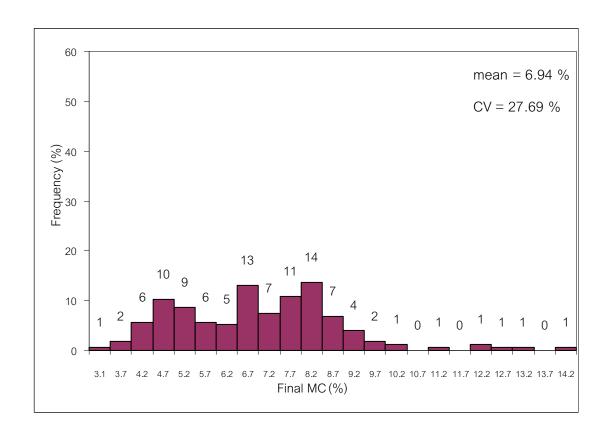

จากการวัดอัตราเร็วระนาบลมเข้าและระนาบลมออกในภาพที่ 7.1 อัตราเร็วลมเฉลี่ยที่ ผ่านกองไม้จากระนาบลมเข้าและระนาบลมออกเป็น 1.54 เมตร/วินาที จากตารางที่ 7.2 จะเห็นได้ ว่าค่าอัตราเร็วลมต่ำสุดมีค่าเพียง 0.28 m/s แสดงว่ายังมีจุดอับลมที่เกิดจากการเรียงไม้ไม่ดี อัตราเร็วลมเฉลี่ยที่ผ่านกองไม้จากระนาบลมเข้าไปยังระนาบลมออกเปลี่ยนแปลงจาก 2.26 m/s เป็น 0.82 m/s ซึ่งลดลง 64 % ค่าอัตราเร็วลมที่เปลี่ยนแปลงไปก่อนเข้ากองไม้และหลังออกจาก กองไม้เป็นดัชนีชี้ประสิทธิภาพการจัดเรียงไม้ในกองและการจัดวางกองไม้ในเตาอบควรมีค่า ใกล้เคียงกัน โดย การอบที่อุณหภูมิสูงขึ้นต้องให้มีอัตราเร็วลมที่มากขึ้นเพื่อการพาความชื้นออก จากไม้ได้ปริมาณมากขึ้น

ตารางที่ 7.2 แสดงอัตราเร็วลมเฉลี่ยที่ผ่านหน้ากองไม้เมื่อไม่มีแผ่นกั้นลม


ตำแหน่ง	ระนาบที่ลมเข้า(m/s)				ระนาบที่ลมออก(m/s)				
	Mean	SD	max	min	Mean	SD	max	min	
ผ่านกองไม้	2.26	0.89	3.94	0.81	0.82	0.24	1.26	0.82	
ผ่านช่องว่าง	2.01	1.14	4.86	0.46	1.42	0.81	4.21	0.28	
ทั้งระนาบ	2.07	1.09	4.86	0.46	1.28	0.76	4.21	0.28	

7.3.1.3 การบันทึกผลการอบใน 1 รอบของการอบ

ข้อมูลจากการอบไม้ยางพาราชนาด 1.5 นิ้ว ตามตารางอบและวิธีการวัดของโรงงานโดย ค่าอุณหภูมิกระเปาะแห้งที่ตั้งไว้เท่ากับ 75°C ในวันที่ 1-4 จะเห็นว่าไม่สามารถรักษาอุณหภูมิของ เตาให้เป็นไปตามตารางอบได้โดยในช่วงแรกปริมาณไอน้ำไม่เพียงพอ ค่าอุณหภูมิกระเปาะเปียก ซึ่งไม่มีการควบคุมอยู่ที่ประมาณ 50-55°C และคงที่ตลอดการอบ อัตราการแห้งของไม้ไม่เท่ากัน เนื่องจากความชื้นเริ่มต้นไม่เท่ากัน ต่อมาในวันที่ 4-7 ค่าอุณหภูมิกระเปาะแห้งที่ตั้งไว้เท่ากับ 80°C ค่าอุณหภูมิที่วัดได้ขณะนี้เริ่มสูงกว่าค่าที่ตั้งไว้เนื่องจากโรงงานติดตั้งกระเปาะแห้งไว้บนห้องพัดลม ไม่มีการทำ Equalizing และ Conditioning ใช้เวลาในการอบประมาณ 9-10 วัน



ภาพที่ 7.16 แสดงผลการอบไม้ยางพาราของโรงงานครั้งที่ 1

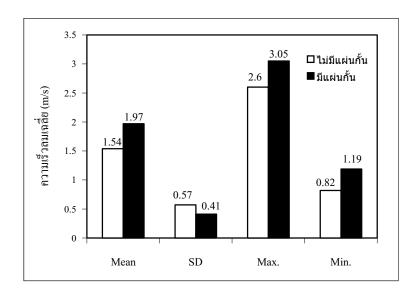
ภาพที่ 7.17 แสดงผลการอบไม้ยางพาราของโรงงานครั้งที่ 2

การตรวจสอบคุณภาพไม้หลังการอบโดยการวัดความขึ้นสุดท้ายของไม้แสดงให้เห็น ประสิทธิภาพของการอบที่เป็นผลมาจากการเรียงไม้ การกองไม้ การกระจายของลมและการ เลือกใช้พัดลม

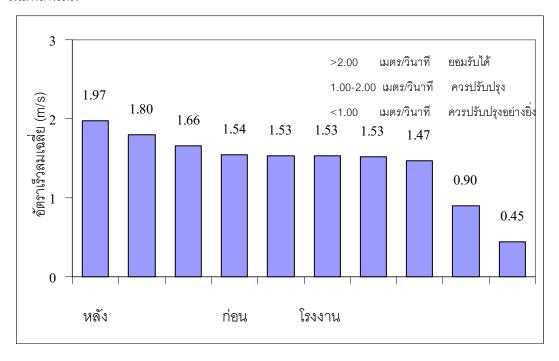
ภาพที่ 7.18 แสดงความชื้นเฉลี่ยสุดท้ายของไม้หลังการอบ

ภาพที่ 7.18 แสดงความชื้นเฉลี่ยสุดท้ายของไม้หลังการอบพบว่าความชื้นเฉลี่ยสุดท้าย หลังการอบมีการกระจายตัวสูงลักษณะการกระจายเป็นแบบเกาซ์เซียน (Gaussian distribution) ซ้อนกันอยู่ 2 การกระจาย ซึ่งบอกถึงการกระจายของลมในเตาอบที่ไม่สม่ำเสมอ ความชื้นสุดท้าย เฉลี่ยเท่ากับ 6.94% ค่าสัมประสิทธิ์การกระจาย (Coefficient of Variation, CV) 27.69% ทั้งนี้ เพราะการกระจายของลมในเตาไม่ดีมีช่องว่างที่ทำให้ลมไม่ผ่านกองไม้และการเรียงไม้ในแต่ละ กองไม่ดี นอกจากนี้ควรมีการทำ Equalizing ในช่วงท้ายของการอบเพื่อให้ไม้มีค่าความชื้นสุดท้าย ใกล้เคียงกัน

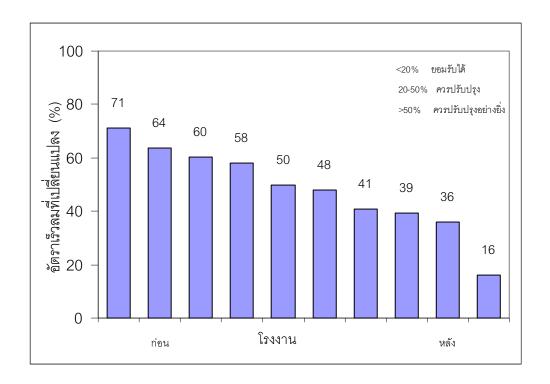
7.3.2 การปรับปรุงลม


ในส่วนของอัตราเร็วลมพบว่าพัดลมมีประสิทธิภาพสูงเพียงพอแต่อัตราเร็วลมที่ผ่านเข้า แล้วออกจากกองไม้แตกต่างกันมาก เนื่องจากการจัดเรียงไม้และการกองไม้ไม่มีประสิทธิภาพมี ช่องว่างให้ลมผ่านไปโดยที่ไม่ผ่านกองไม้ในปริมาณเท่าๆกับลมที่ผ่านกองไม้ โดยมีผลจากการ ปรับปรุงดังต่อไปนี้

1 การเรียงไม้ หลังจากการแนะนำการเรียงไม้ทางผู้ปฏิบัติยังไม่สามารถจัดเรียงได้ดี เท่าที่ควรเนื่องจากข้อจำกัดด้านแรงงานและไม่ได้เปลี่ยนฐาน (pallet) และไม้คั่น (sticker) ตาม ข้อเสนอแนะเนื่องจากต้องลงทุนสูงและใช้เวลานาน

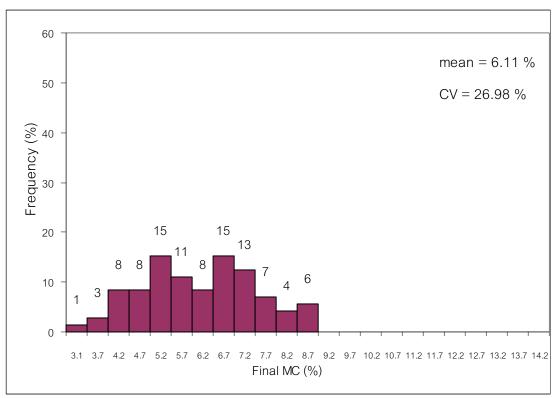

- 2 การกองไม้ เมื่อได้ปฏิบัติตามข้อแนะนำโดยเรียงให้ชิดและเรียงตามแนวเส้นทำให้ สามารถวางกองไม้ได้เพิ่มขึ้นอีก 4 กองใน 1 เตา
- 3 การติดตั้งแผ่นกั้นลมทั้งด้านบนและด้านหน้าช่วยให้การกระจายลมดีขึ้น ทำให้อัตราเร็ว ลมเฉลี่ยผ่านกองไม้ด้านเข้าและออกเพิ่มขึ้นจาก 1.54 m/s เป็น 1.97 m/s ค่าเบี่ยงเบนมาตรฐาน ลดลงจาก 0.57 เป็น 0.41 m/s ทั้งนี้การเปลี่ยนแปลงเกิดขึ้นโดยไม่มีการปรับเปลี่ยนพัดลม ในภาพ ที่ 7.20 จากการเก็บข้อมูลในโรงงานไม้ยางพาราอีก 8 โรงที่ร่วมโครงการสำรวจเพื่อลดการสูญเสีย ในกระบวนการผลิตไม้ยางพาราแปรรูปในจังหวัดสุราษฎร์ธานี เปรียบเทียบอัตราเร็วลมเฉลี่ยเข้า และออกกองไม้ก่อนและหลังการปรับปรุงพบว่ามีอัตราเร็วลมเฉลี่ยดีที่สุด และพบว่าอัตราเร็วลมที่ เปลี่ยนแปลงจากระนาบลมเข้าไประนาบลมออกจากเดิมที่แตกต่างกันถึง 64% มาเป็น 36% โดย ยังสามารถลดการสูญเสียได้อีกหากมีการเรียงไม้ที่ดีและการปิดกั้นลมที่ดีขึ้น

ตารางที่ 7.3 แสดงอัตราเร็วลมเฉลี่ยที่ผ่านหน้ากองไม้เมื่อมีแผ่นกั้นลม

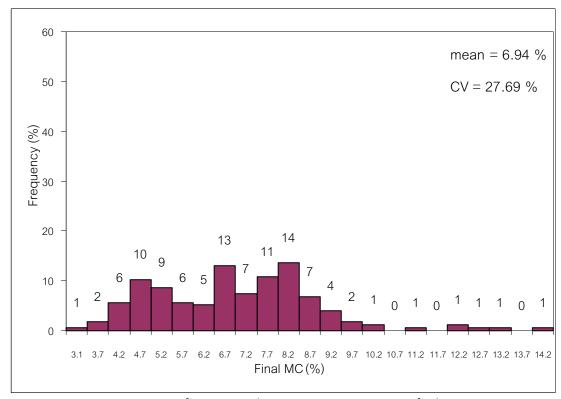

ตำแหน่ง	ระนาบลมเข้า(m/s)				ระนาบลมออก(m/s)				ค่าเฉลี่ย 2 ระนาบ	
	Mean	SD	max	min	Mean	SD	max	min	Mean	SD
ผ่านกองไม้	2.40	0.55	4.05	1.26	1.54	0.27	2.05	1.12	1.97	0.41
ผ่านช่องว่าง	2.58	1.75	6.57	0.51	2.16	2.10	4.82	0.36	2.37	1.90
ทั้งระนาบ	2.52	1.56	6.57	0.51	2.01	1.09	4.82	0.36	2.27	1.33

ภาพที่ 7.19 กราฟแสดงการเปรียบเทียบค่าอัตราเร็วลมเฉลี่ยของ 2 ระนาบเมื่อมีแผ่นกั้นลมกับไม่ มีแผ่นกั้นลม

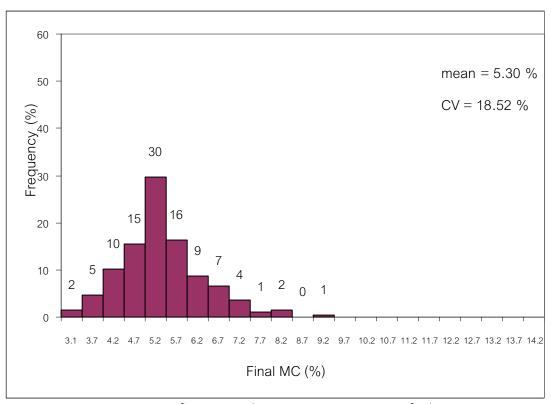
ภาพที่ 7.20 อัตราเร็วลมเฉลี่ยก่อน-หลังการปรับปรุงและเปรียบเทียบกับโรงงานอื่นอีก 8 โรงงาน

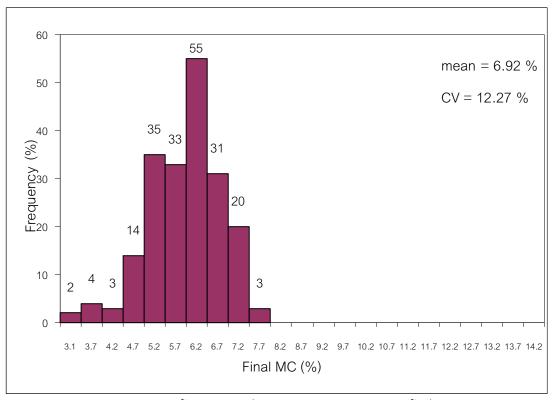

ภาพที่ 7.21 แสดงอัตราเร็วลมที่เปลี่ยนแปลงจากระนาบลมเข้าไประนาบลมออก ก่อน-หลังการ ปรับปรุงและเปรียบเทียบกับโรงงานอื่นอีก 8 โรงงาน

7.3.3 การปรับปรุงระบบควบคุม


จากการปรับปรุงระบบควบคุมการอบของเตาให้เป็นไปตามรูปแบบมาตรฐาน ทำให้วัด อุณหภูมิอากาศในเตาได้แม่นยำขึ้นและทำให้สามารถควบคุมสภาวะในเตาได้ตรงตามตารางอบ การติดตั้งโซลินอยด์วาล์วที่ท่อคอยล์ร้อนและท่อสเปรย์รวมทั้งการตากฟืนให้แห้งก่อนใส่ในเครื่อง กำเนิดไอน้ำทำให้ใช้ไอน้ำตามความต้องการจริงๆช่วยลดภาระการใช้ไอน้ำจากเครื่องกำเนิดไอน้ำ จากความดันปกติที่ใช้งานอยู่ในช่วง 2-3 บาร์ก่อนการปรับปรุง สามารถรักษาความดันไอน้ำได้ที่ 5 บาร์ขึ้นไป

เมื่อการกระจายลมดีขึ้นความชื้นไม้เฉลี่ยสุดท้ายหลังการปรับปรุง ในภาพที่ 7.22 ถึงภาพ ที่ 7.25 ค่าสัมประสิทธิ์การกระจาย (Coefficient of Variation, CV) ลดลงจาก 26.98% และ 27.69% เป็น18.52% และ 12.27% ตามลำดับแม้ยังไม่มีการทำ Equalizing


จากภาพที่ 7.26 แสดงการบันทึกผลการอบไม้ขนาด 1.5 นิ้วที่มีการเพิ่มระบบควบคุมการ อบ ติดตั้งเครื่องวัดความชื้นไม้ ติดตั้งเครื่องวัดอุณหภูมิไม้ในเตาและทำการอบโดยใช้ตารางอบที่ ค่าอุณหภูมิกระเปาะแห้งเท่ากับ 90°C อุณหภูมิกระเปาะเปียกเท่ากับ 60°C และมีการสเปรย์ใน ช่วงแรกของการอบ ทำให้อุณหภูมิกระเปาะแห้งและอุณหภูมิกระเปาะเปียกเพิ่มขึ้นในอัตรา 3.5 °C ต่อชั่วโมง อุณหภูมิของไม้ที่วัดทั้ง 2 จุดเพิ่มขึ้นตามไปด้วยในช่วงนี้ไม้ร้อนแล้วทำให้โอกาสเกิดเชื้อ ราที่ไม้มีน้อยมาก แต่อัตราการแห้งของไม้ยังต่ำอยู่ที่ 0.42% MC ต่อชั่วโมง ต่อมาอัตราการเพิ่ม อุณหภูมิของเตาลดลง เนื่องจากความดันไอน้ำจากเครื่องกำเนิดไอน้ำมีไม่เพียงพอ ในช่วงนี้แม้ อุณหภูมิของไม้จะสูงแต่ความชื้นในเตายังสูงด้วยอัตราการแห้งของไม้จึงยังต่ำและไม้ไม่เกิดการ แตกปลาย จนอุณหภูมิกระเปาะแห้งเพิ่มขึ้นถึง 85°C จึงลดอุณหภูมิกระเปาะเปียกลงมาที่ 65°C เพื่อเริ่มการอบ จะสังเกตได้ว่าอุณหภูมิกระเปาะแห้งและอุณหภูมิของไม้จะลดลงด้วย จากนั้น อุณหภูมิกระเปาะแห้งจะเพิ่มขึ้นเข้าสู่ค่าที่ตั้งไว้ อุณหภูมิของไม้จะสูงขึ้นเรื่อยๆและค่าอุณหภูมิ กระเปาะเปียกจะอยู่ที่ 60°C ไปตลอดการอบ ความชื้นของไม้ทั้งหมดจะลดลงแต่ค่าทั้ง 6 จุดไม่ เท่ากันเนื่องจากการถ่ายเทความร้อนจากลมร้อนไปยังไม้ไม่สม่ำเสมอ อนึ่งการวัดค่าความชื้นโดย ใช้เทคนิควัดค่าความต้านทานของไม้เมื่อไม้มีความต้านทานสูง (>30%) ค่าที่อ่านได้จะไม่ตรงกับ ความชื้นจริงของไม้ จนเมื่อถึงระยะสุดท้ายของการอบความชื้นของไม้จะใกล้เคียงกันอีกครั้ง ใน การอบครั้งนี้ไม่สามารถทำ Equalizing และ Conditioning ได้เนื่องจากความดันไอน้ำไม่เพียงพอ เวลาที่ใช้ในการอบลดจาก 9-10 วันลงมาเหลือ 7 วัน ทั้งนี้น่าจะลดลงมาที่ 5-6 วันได้หากใน ช่วงแรกความดันของไอน้ำจากเครื่องกำเนิดไอน้ำเพียงพอและสังเกตได้ว่าไม้ส่วนหนึ่งแห้งแล้ว ์ ตั้งแต่วันที่ 5 ของการอบ ค่าพลังงานที่ใช้ในการอบเกิดจาก 2 ส่วนคือท่อคอยล์ร้อนและท่อสเปรย์ ไอน้ำ พบว่าอัตราการใช้ไอน้ำจากคอยล์ร้อนเพื่อรักษาอุณหภูมิเตาค่อนข้างคงที่เท่ากับ 0.89 ชั่วโมงต่อ 1 ชั่วโมงของการอบ อัตราการใช้ไอน้ำจากท่อสเปรย์ไอน้ำในการให้ความชื้นเตาใน ช่วงแรกเท่ากับ 1.04 ชั่วโมงต่อ 1 ชั่วโมงของการอบ และลดลงเป็น 0.27 ชั่วโมงต่อ 1 ชั่วโมงของ การอบ และอัตราการใช้ไอน้ำจากคอยล์ร้อนเป็นปริมาณ 2 เท่าของการใช้ไอน้ำจากท่อสเปรย์ไอน้ำ



ภาพที่ 7.22 การกระจายความชื้นของไม้เฉลี่ยสุดท้ายก่อนการปรับปรุงครั้งที่ 1



ภาพที่ 7.23 การกระจายความชื้นของไม้เฉลี่ยสุดท้ายก่อนการปรับปรุงครั้งที่ 2

ภาพที่ 7.25 การกระจายความชื้นของไม้เฉลี่ยสุดท้ายหลังการปรับปรุงครั้งที่2

ภาพที่ 7.26 ผลการอบใม้ยางพาราของโรงงานหลังการปรับปรุง

7.4 สรุปผลการทดลองข้อเสนอแนะเพื่อการปรับปรุง

7.4.1 การเก็บข้อมูลการอบของเตาอบในโรงงานเบื้องต้น

ลักษณะของเตาอบและการติดตั้งอุปกรณ์จัดได้ว่าอยู่ในเกณฑ์ที่ดี ทั้งการติดตั้งพัดลม การติดตั้งหม้อต้มไอน้ำและการติดตั้งคอยล์ร้อน การติดตั้งอุปกรณ์ควบคุมยังไม่เป็นไปตาม รูปแบบมาตรฐานซึ่งควรปรับปรุงเพิ่มเติมเช่นอุปกรณ์วัดอุณหภูมิและความชื้นสัมพัทธ์ของอากาศ เพื่อให้สามารถควบคุมการอบให้เป็นไปตามตารางอบ

ในส่วนของอัตราเร็วลมพบว่าพัดลมให้อัตราเร็วลมในปริมาณที่เพียงพอแล้วแต่การ จัดเรียงไม้และการกองไม้ยังไม่ดีพอจึงทำให้อัตราเร็วลมที่ผ่านเข้าแล้วออกจากกองไม้แตกต่างกัน มาก ค่าประสิทธิภาพการปิดกั้นลมต่ำมากเนื่องจากมีช่องว่างให้ลมผ่านไปโดยที่ไม่ผ่านกองไม้ใน ปริมาณเท่าๆกับลมที่ผ่านกอง

จากการบันทึกผลการอบจะเห็นว่าไม่สามารถรักษาอุณหภูมิของเตาให้เป็นไปตามตาราง อบได้โดยในช่วงแรกปริมาณไอน้ำมีไม่เพียงพอ ไม่มีการทำEqualizing และ Conditioning ใช้เวลา ในการอบไม้ขนาด 1.5 นิ้ว ประมาณ 9-10 วัน

คุณภาพไม้ยางพาราจากการวัดความชื้นเฉลี่ยสุดท้ายของไม้มีการกระจายตัวสูง อัน เนื่องมาจากการกระจายของลมในเตาไม่ดียังมีช่องว่างให้ลมผ่านไปโดยที่ไม่ผ่านกองไม้และมีการ จัดเรียงไม้และการกองไม้ไม่ดี รวมทั้งควรมีการทำ Equalizing เพื่อให้ไม้มีความชื้นสุดท้าย ใกล้เคียงกัน

7.4.2 การปรับปรุงลม

การเรียงไม้ของโรงงานยังทำได้ไม่ดีเนื่องมาจากต้นทุนและความชำนาญของผู้ปฏิบัติงาน แต่การกองไม้ที่ดีทำให้กองไม้ได้เพิ่มขึ้นอีก 4 กองใน 1 เตา เมื่อติดตั้งแผ่นกั้นลมทั้งด้านบนและ ด้านหน้าทำให้อัตราเร็วลมเฉลี่ยผ่านกองไม้ด้านเข้าและออกเพิ่มขึ้นจาก 1.54 m/s เป็น 1.97 m/s การกระจายตัวของลมสม่ำเสมอขึ้นค่าเบี่ยงเบนมาตรฐานลดลงจาก 0.57 m/s เป็น 0.41 m/s อัตราเร็วลมที่ลดลงเมื่อลมไหลเข้าและออกจากกองไม้เพียง 36 % จากเดิมที่แตกต่างกันถึง 64 % หลังการปรับปรงประสิทธิภาพของลมดีมากเมื่อเปรียบเทียบกับโรงงานอื่นอีก 8 โรงงาน

7.4.3 การปรับปรุงระบบควบคุม

การติดตั้งระบบควบคุมการอบของเตาตามรูปแบบมาตรฐานสามารถควบคุมสภาวะใน เตาได้ตรงตามตารางอบ การติดตั้งโซลินอยด์วาล์วที่ท่อคอยล์ร้อนและท่อสเปรย์รวมทั้งการตาก ฟืนให้แห้งก่อนใส่ในเครื่องกำเนิดไอน้ำทำให้สามารถรักษาความดันไอน้ำไว้ได้ที่ 5 บาร์ การปรับปรุงเตาอบไม้ยางพาราในโรงงานสามารถเพิ่มประสิทธิภาพของกระบวนการอบ ได้ โดยลดเวลาในการอบลงมากกว่า 2 วัน ลดการใช้ไอน้ำที่ไม่จำเป็น สามารถเพิ่มอัตราเร็วลม ภายในเตาได้ ทำให้ไม้แห้งอย่างสม่ำเสมอขึ้น อนึ่งยังสามารถลดเวลาอบได้อีกหากสามารถรักษา ความดันไอน้ำเพียงพอและอบที่อุณหภูมิสูงขึ้นและมีการทำ conditioning ในตอนท้ายของการอบ

บทที่ 8

สรุปผลการทดลอง

การลดความชื้นในไม้ยางพาราก่อนการอบ

สภาพอากาศในพื้นที่ภาคใต้ซึ่งมีอุณหภูมิเปลี่ยนแปลงในระหว่างกลางวันและกลางคืน ในช่วง 25-35 องศาเซลเซียสและมีความชื้นในอากาศสูงถึงประมาณ 80%RH ทำให้ไม้ยางพารา ขนาดความหนา 1นิ้ว 2 นิ้ว และ 3 นิ้วมีความชื้นลดลงจากประมาณ 100% เหลือ 20% ภายใน ระยะเวลาประมาณ 60 วัน 90วัน และ 120วัน ตามลำดับ อนึ่งการให้ลมเคลื่อนตัวอย่างสม่ำเสมอ ผ่านหน้าไม้ด้วยอัตราเร็ว 3 เมตร/วินาที่ สามารถลดระยะเวลาดังกล่าวข้างต้นลงได้ประมาณ 50% นอกจากนี้ลมสามารถป้องกันการเกิดราบนผิวไม้ได้ตลอดระยะเวลาการลดความชื้น (เปรียบเทียบ กับกรณีที่ไม่มีลมเชื้อราเกิดที่ผิวไม้อย่างรวดเร็วตั้งแต่วันที่ 3-7 ของการทดลอง) และลมช่วยทำให้ การแห้งตัวของไม้ที่มีความหนาแตกต่างกันมีการแห้งของความชื้นในอัตราที่ใกล้เคียงกันมากขึ้น ลมธรรมชาติภายนคกคาคารสามารถนำมาช่วยในการลดความชื้นและป้องกันการเกิดราได้ใน ระดับหนึ่งในลักษณะเดียวกับลมซึ่งมีการควบคุมภายในอาคาร อย่างไรก็ตามในการทดลองนี้ไม้ที่ ทำการลดความชื้นภายนอกอาคารถูกเข้าทำลายโดยมอด เนื่องจากการแห้งตัวที่ค่อนข้างช้าเมื่อ เปรียบเทียบกับการอบในเตาอบและการเปลี่ยนแปลงของอุณหภูมิและความชื้นในช่วงกลางวัน และกลางคืนทำให้ความเค้นตกค้างที่เกิดจากการแห้งตัวของไม้มีค่าน้อยมากทั้งสามความหนา ของไม้ที่ใช้ทดลอง และไม้ที่มีลมเคลื่อนที่ผ่านจะมีสีเข้มกว่าไม้ที่ไม่มีลมเคลื่อนผ่านทั้งที่ผิวและที่ แกนกลางของไม้ จากความรู้ดังกล่าวข้างต้นผู้ประกอบการสามารถนำความรู้ไปประยุกต์ใช้ในช่วง ที่ไม้รอการอบโดยหลายโรงงานพบว่าประสบกับปัญหาการเกิดราบนผิวไม้ก่อนเข้าเตาอบ ซึ่ง สามารถป้องกันได้โดยอาศัยลมธรรมชาติ นอกจากนี้ลมยงทำให้น้ำเคลื่อนตัวออกจากไม้ได้เร็วขึ้น คีกด้วย

การอบไม้ยางพาราความหนา 1 นิ้ว

เทคนิคการอบไม้ยางพาราแบบ ACT ที่อุณหภูมิกะเปาะแห้ง 90°C และอุณหภูมิกระเปาะ เปียก 65°C สามารถนำมาใช้ในการอบไม้ยางพาราขนาดความหนา 3 เซนติเมตรได้ โดยมี ระยะเวลาการอบ (ในห้องปฏิบัติการ) ประมาณ 60 ชั่วโมงที่ความเร็วลมผ่านหน้าไม้เท่ากับ 4 เมตร/วินาที่ โดยระยะเวลาดังกล่าวลดลงจากการอบแบบ CT (ที่อุณหภูมิกะเปาะแห้ง 60°C และ อุณหภูมิกระเปาะเปียก 45°C ซึ่งใช้เวลาประมาณ 120 ชั่วโมง) ประมาณ 50% อย่างไรก็ตามการ อบแบบ ACT ใช้พลังงานในการอบมากกว่าแบบ CT ประมาณ 20% การบิดตัวของไม้ยางพารา แบบ Bow Crook และ Twist เนื่องจากการอบของแบบ ACT และ CT ไม่แตกต่างกันอย่างมี นัยสำคัญ การวางน้ำหนักกดทับประมาณ 300 kg/m² ไม่ได้ทำให้การบิดตัวแบบ Bow และ Crook เปลี่ยนแปลงไปแต่สามารถลดการบิดตัวแบบ Twist ลงได้เล็กน้อย การสเปรย์ไอน้ำในช่วงเริ่มต้น ของการอบสามารถลดการแตกที่ปลายของไม้ลงได้ สีของไม้ยางพาราที่ผ่านการอบแบบ ACT และ CT ไม่แตกต่างกันทั้งที่ผิวนอกและที่ใจกลางไม้ ความเค้นตกค้างในไม้ยางพาราหลังการอบแบบ ACT มีค่ามากกว่าความเค้นตกค้างในไม้หลังผ่านการอบแบบ CT แต่ประสิทธิภาพการคลาย ความเค้นที่สภาวะการอบแบบ ACT จะสูงกว่าแบบ CT ทำให้สามารถคลายความเค้นได้รวดเร็ว กว่า ดังนั้นการอบแบบ ACT จึงเป็นอีกทางเลือกหนึ่งที่ผู้ประกอบการอาจสนใจนำมาประยุกต์ใช้ ในการอบไม้ยางพาราความหนา 1 นิ้ว ในโรงงานแปรรูปไม้ยางพาราด้วยเตาอบที่มีใช้อยู่แล้วโดยที่ ไม่จำเป็นต้องมีการดัดแปลงเตาอบและอปกรณ์ประกอบมากนัก

การอบไม้ยางพาราความหนา 2 นิ้ว

เทคนิคการอบแบบ ACT ซึ่งอบที่อุณหภูมิ 90°C และอุณหภูมิกระเปาะเปียก 50°C (RH=14.1%) สามารถอบไม้ยางพาราความหนา 2 นิ้วได้โดยที่คุณภาพของไม้ไม่ต่างกัน เมื่อเทียบ กับการอบแบบ CT ซึ่งอบที่อุณหภูมิ 70°C และอุณหภูมิกระเปาะเปียก 50°C (RH=35.6%) โดย การอบแบบ ACT สามารถลดระยะเวลาของการอบและการใช้พลังงานในระหว่างการอบลงได้ ประมาณ 47% และ 20% ตามลำดับเมื่อเทียบกับการอบแบบ CT โดยที่สีไม้และการบิดตัวของไม้ ในรูปของ BOW และCROOK มีค่าไม่ต่างกันเมื่อเทียบกับไม้ก่อนอบ มากไปกว่านั้นพบว่าไม่มีการ แตกของไม้ที่เกิดจาการอบแบบ ACTเลย ส่วนค่าความเค้นตกค้างในเนื้อไม้ของการอบทั้งสองมีค่า ใกล้เคียง ดังนั้นการอบแบบ ACT จึงเป็นอีกทางเลือกหนึ่งที่ผู้ประกอบการอาจสนใจนำมา ประยุกต์ใช้ในการอบไม้ยางพาราความหนา 2 นิ้ว ในโรงงานแปรรูปไม้ยางพาราด้วยเตาอบที่มีใช้ อยู่แล้วโดยที่ไม่จำเป็นต้องมีการดัดแปลงเตาอบและอุปกรณ์ประกอบมากนัก

เทคนิคการคลายความเค้นในไม้ยางพาราที่ผ่านการอบ

การคลายความเค้นในไม้ที่เกิดขึ้นเนื่องจากการอบอย่างมีประสิทธิภาพกระทำโดยการทำ ให้ลดอุณหภูมิของไม้ในเตาลงมา ก่อนที่จะมีการเพิ่มอุณหภูมิและความชื้นภายในเตาอย่าง รวดเร็วเพื่อให้สอดคล้องกับค่าความชื้นไม้หลังการอบที่ต้องการ ไม้ที่ผ่านการทำการคลายความ เค้นด้วยวิธีดังกล่าวไม่มีความเค้นตกค้างภายในเนื้อไม้ทั้งยังมีความชื้นสม่ำเสมอทั่วทั้งท่อนอีก ด้วย

การปรับปรุงเตาอบไม้ยางพาราโดยใช้แบบจำลองคอมพิวเตอร์

การศึกษาการกระจายตัวของลมด้วยการใช้แบบจำลองด้วยคอมพิวเตอร์จำลองเตาอบไม้ ยางพาราทั้งในห้องปฏิบัติการและเตาอบในโรงงานสามารถอธิบายการใหลของอากาศในเตาได้ทั้ง ในเชิงคุณภาพที่สามารถเห็นรูปแบบและทิศทางการใหลของลมในเตา และเชิงปริมาณโดยผลจาก แบบจำลองเตาอบในห้องปฏิบัติการได้ค่าอัตราเร็วลมที่ผ่านช่องไม้ 8.22±0.28 m/s มีค่า ใกล้เคียงกับค่าอัตราเร็วลมเฉลี่ยจากการวัด 7.92±0.51 m/s ส่วนผลจากการจำลองการใหลของ อากาศในเตาอบเมื่อไม่มีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจากการวัดเท่ากับ 2.06±1.16 m/s ค่า อัตราเร็วลมเฉลี่ยจากการจำลอง 2.20±1.28 m/s การจำลองเตาอบในโรงงานที่มีแผ่นกั้นลม อัตราเร็วลมเฉลี่ยจากการวัดเท่ากับ 2.56±1.07 m/s ในขณะที่ค่าอัตราเร็วลมเฉลี่ยจากการจำลองเท่ากับ 2.34±1.08 m/s นอกจากนี้การใช้แผ่นกั้นลมสามารถลดการหมุนวนลงมากและ เพิ่มอัตราเร็วลมในเตาอบที่โรงงานทำให้การกระจายตัวของลมกระจายตัวได้ดีขึ้นซึ่งจะช่วยให้ไม้ แห้งอย่างสม่ำเสมอ เมื่อมีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจากการวัดในเตาอบที่โรงงานเพิ่มขึ้น 24.27% ค่าเบี่ยงเบนมาตรฐานลดลง 8.41 % ซึ่งสอดคล้องกับอัตราเร็วลมเฉลี่ยจากการจำลอง ดังนั้นการจำลองเตาอบไม้ยางพารามีความน่าเชื่อถือสามารถนำมาออกแบบเตาอบไม้ยางพาราได้

เมื่อใช้แบบจำลองด้วยคอมพิวเตอร์มาปรับปรุงลักษณะเตาอบที่มีประสิทธิภาพสูงโดยการ ปรับเปลี่ยนขนาดช่องลมและห้องพัดลมแล้ววัดการกระจายตัวของอัตราเร็วลมพบว่าที่ขนาดช่อง ลมตั้งแต่ 0.70 ถึง 0.80 เมตรให้ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 3.00±0.90 m/s ส่วนความสูง ของห้องพัดลมพบว่าที่ความสูง 1.40 เมตรให้ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 2.90±0.90 m/s ซึ่ง เป็นขนาดความสูงของการติดตั้งพัดลมถ้าขนาดความสูงห้องพัดลมมากกว่า 1.40 เมตร จะได้ค่า ค่าเบี่ยงเบนมาตรฐานไม่เปลี่ยนแปลงแต่อัตราเร็วลมเฉลี่ยจะลดลง

การปรับปรุงเตาอบไม้ยางพาราในโรงงานไม้ยางพาราแปรรูป

จากการสำรวจกระบวนการอบไม้ยางพาราของโรงงานพบว่าการติดตั้งพัดลม การติดตั้ง หม้อต้มไอน้ำและการติดตั้งคอยล์ร้อนจัดได้ว่าอยู่ในเกณฑ์ที่ดี แต่การติดตั้งอุปกรณ์ควบคุมยังไม่ เป็นไปตามรูปแบบมาตรฐานซึ่งควรปรับปรุงเช่น อุปกรณ์วัดอุณหภูมิและความชื้นสัมพัทธ์ของ อากาศ เพื่อให้สามารถควบคุมการอบให้เป็นไปตามตารางอบ

ในส่วนของความเร็วลมพบว่าพัดลมให้ความเร็วลมในปริมาณที่เพียงพอแล้ว แต่ความเร็ว ลมที่ผ่านเข้าแล้วออกจากกองไม้แตกต่างกันมาก ค่าประสิทธิภาพการปิดกั้นลมต่ำมากเนื่องจากมี ช่องว่างให้ลมผ่านไปโดยที่ไม่ผ่านกองไม้ในปริมาณเท่าๆกับลมที่ผ่านกอง และการจัดเรียงไม้ และการกองไม้ยังไม่ดีพอ

จากการบันทึกผลการอบจะเห็นว่าไม่มีการทำEqualizing และ Conditioning ไม่สามารถ รักษาอุณหภูมิของเตาให้เป็นไปตามตารางอบได้โดยในช่วงแรกปริมาณไอน้ำมีไม่เพียงพอ ใช้เวลา ในการอบไม้ขนาด 1.5 นิ้ว ประมาณ 9-10 วัน

คุณภาพไม้ยางพาราจากการวัดความชื้นเฉลี่ยสุดท้ายของไม้มีการกระจายตัวสูง อัน เนื่องมาจากการกระจายของลมในเตาไม่ดียังมีช่องว่างให้ลมผ่านไปโดยที่ไม่ผ่านกองไม้และมีการ จัดเรียงไม้และการกองไม้ไม่ดี รวมทั้งควรมีการทำ Equalizing เพื่อให้ไม้มีความชื้นสุดท้าย ใกล้เคียงกัน

การปรับปรุงลม

การเรียงไม้ของโรงงานยังทำได้ไม่ดีเนื่องมาจากต้นทุนและความชำนาญของผู้ปฏิบัติงาน แต่การกองไม้ที่ดีทำให้กองไม้ได้เพิ่มขึ้นอีก 4 กองใน 1 เตา เมื่อติดตั้งแผ่นกั้นลมทั้งด้านบนและ ด้านหน้าทำให้อัตราเร็วลมเฉลี่ยผ่านกองไม้ด้านเข้าและออกเพิ่มขึ้นจาก 1.54 m/s เป็น 1.97 m/s การกระจายตัวของลมสม่ำเสมอขึ้นค่าเบี่ยงเบนมาตรฐานลดลงจาก 0.57 m/s เป็น 0.41 m/s หลัง การปรับปรุงประสิทธิภาพของลมดีมากเมื่อเปรียบเทียบกับโรงงานอื่นอีก 8 โรงงาน อัตราเร็วลมที่ ลดลงเมื่อลมใหลเข้าและออกจากกองไม้เพียง 36 % จากเดิมที่แตกต่างกันถึง 64 %

การปรับปรุงระบบควบคุม

การติดตั้งระบบควบคุมการอบของเตาตามรูปแบบมาตรฐานสามารถควบคุมสภาวะใน เตาได้ตรงตามตารางอบ การติดตั้งโซลินอยด์วาล์วที่ท่อคอยล์ร้อนและท่อสเปรย์รวมทั้งการตาก ฟืนให้แห้งก่อนใส่ในเครื่องกำเนิดไอน้ำทำให้สามารถรักษาความดันไอน้ำไว้ได้ที่ 5 บาร์ การปรับปรุงเตาอบไม้ยางพาราในโรงงานสามารถเพิ่มประสิทธิภาพของกระบวนการอบได้ลดการ ใช้ไอน้ำที่ไม่จำเป็น โดยลดเวลาในการอบลงมากกว่า 2 วัน สามารถเพิ่มอัตราเร็วลมภายในเตาได้ ทำให้ไม้แห้งอย่างสม่ำเสมอขึ้น อนึ่งยังสามารถลดเวลาอบได้อีกหากสามารถรักษาความดันไอน้ำ เพียงพอและอบที่อุณหภูมิสูงขึ้นและมีการทำ conditioning ในตอนท้ายของการอบ

บทที่ 9 รายการอ้างอิง

- 1. กรมป่าไม้. 2542. สถิติการป่าไม้ของประเทศไทย ปี 2542.
- 2. ฐานันศักดิ์ เทพญา.2541.รายงานโครงการวิจัยนำร่องเรื่องข้อกำหนดเทคนิคที่ดีในการอบไม้ยางพารา แปรรูป.ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขต หาดใหญ่.
- 3. สัณฐิติ สิริเชี่ยวสกุล 2546 Private communication บริษัท เอส ดับบลิว ดี แมชชินเนอรี จำกัด, กรุงเทพ.
- 4. หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้และJICA.2549.โครงการวิจัยการปรับปรุงกระบวนการผลิตไม้ ยางพาราแปรรูปเพื่อให้คำปรึกษากับกลุ่มอุตสาหกรรมในพื้นที่จังหวัดสุราษฎร์ธานี มหาวิทยาลัยวลัย ลักษณ์ 1 มิถุนายน 2549.นครศรีธรรมราช.
- 5. หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้.2549.โครงการเพิ่มชีดความสามารถวิสาหกิจขนาดกลางและ ขนาดย่อมกลุ่มอุตสาหกรรมแปรรูปไม้ยางพาราในพื้นที่จังหวัดสุราษฎร์ธานี .มหาวิทยาลัยวลัยลักษณ์. นครศรีธรรมราช
- 6. Antti, A.L. 1995. Microwave drying of pine and spruce. Holz als Roh-und Werkstoff 53, pp333-338.
- 7. Bibeau, E. 2000. *Modelling of airflow in wood kilns*. Forest Product Journal, 51(6), 74-81.
- 8. Boone, R.S., Kozlik, C.J., Bois, P.J. and Wengert, E.M. 1993. Dry Kiln Schedules For Commercial Woods Temperate and Tropical. United States Department of Agricultural (USDA), USA.
- 9. Forest Products Laboratory. 1999. *Air drying of lumber*. Gen. Tech. Rep. FPL–GTR–117. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
- 10. Fuller, J. 1995. Conditioning stress development and factors that influence the prong-test. Res. Pap. FPL-RP-537. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
- 11. Harris, R.A., Schroeder, J.G. and Addis, S.C. 1989. Steaming of red oak prior to kiln-drying: effects on moisture movement. Forest Prod. J. 39(11/12) pp70-72.
- 12. Haslett, A.N. 1998. Drying radiata pine in New Zealand. FRI-bul-. letin. No.206.
- 13. Haygreen, J.G. and Bowyer, J.L. 1996."Forest Products and Wood Science." Iowa state Univ.Press, Ames.
- 14. Hunt, R.W.G. 1991. Measuring Colour. 2nd ed. Ellis Hor Wood Limited, London, UK.

- 15. Jai, S.Y. and Lee, M.C. 1987. High-temperature drying of 3cm rubberwood. Bull., Taiwan For.Res.Inst. New Series 2(1) pp 31-42. (in Chinese with English abstract)
- 16. Jai, S.Y., Hsiung, J.C. and Hwang, C.Y. 1990. Kiln Schedule for 10 x 10 cm Rubber Wood. Bull., Taiwan For.Res.Inst. New Series 5(3) pp 175-186. (in Chinese with English abstract)
- 17. Jai, S.Y., Hwang, C.Y. and Hsiung, J.C. 1992. Kiln Schedule for Preventing Brown-stain in Rubber Wood. Bull., Taiwan For.Res.Inst. New Series 7(1) pp 73-91. (in Chinese with English abstract)
- 18. Nijdam, J.J. and Keey, R.B. 2002. An experimental study of airflow in lumber kilns. Wood Science and Technology 36 pp 19-26.
- 19. OPEL 2001. Vacuum-drying of lumber today. OPEL Vacudry Gmbh, Stuttgart, Germany.
- 20. Pang.S, Simpson.I.G and Haslett.A.N. 2001. Cooling and steam conditioning after high-temperature drying of Pinus Radiata board:experimental investigation mathematical modelling. Wood Science and Technology., 35, 487-502.
- 21. Perre, P. 1999. How to get a revelant material model for wood drying simulation. Cost action E15 "Advances in drying of wood (1999-2003)" 1st workshop "State of the art for kiln drying" in Edinburgh 13/14 th, Oct 1999.
- 22. Plumptre, R.A. and Jayanetti, D.L. 1996. Solar heated timber drying kilns. TRADA Technology Limited for the Oversea Development Administration (ODA), London, UK.
- 23. Pordage, L.J. and Langrish, T.A.G. 1999. Simulation of the effect of air velocity in the drying of hardwood timber. Drying technology 17(1&2) pp237-256.
- 24. Pougatch, K., Salcudean, M. and Gartshore, I. 2002. *Modelling of airflow and wood drying inside a kiln*. Forest Product Journal, 53(5), 46-54.
- 25. Riepen, M. and Paarhuis, B. 1999. *Analysis and optimisation of the airflow distribution in convection kilns*: 1st Workshop State of Art for Kiln Drying. Edingurgh: Netherlands.
- 26. Simpson, W.T., ed. 1991. Dry Kiln Operator's Manual. Agric. Handbook AH-188. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, USA.
- 27. Simpson, W.T. 1997. Effect of air velocity on the drying rate of single eastern white pine boards. Research Note FPL-RN-266. United States Department of Agricultural (USDA), USA.
- 28. Simpson, W.T. and Liu, J.Y. 1997. An optimization technique to determine red oak surface and internal moisture transfer coefficients during drying. Wood and Fiber Science, 29(4), pp. 312-318.
- 29. Siau, J.F. 1984. Basic wood–moisture relationships. In: J.F. Siau, Editor, *Transport Process in Wood*, Springer-Verlag, Berlin.
- 30. Spalding, D.B. and Launder, B.E. 1974. *The numerical computation of turbulent flows*. Comp. Meth. Appl. Mech. Energy, 3, 269-289

- 31. Theppaya, T. and Prasertsan, S. 2002. Parameters influencing drying behavior of rubber wood as determined from desorption experiment. Drying technology 20(2).
- 32. Wengert, E. 1992. Techniques for equalizing and conditioning lumber. Department of forest, University of Wisconsin, Madison, WI: coorperative extension programs. No.65
- 33. Wiberg, P. 2001. X-ray CT-scanning of wood during drying. PhD thesis Lulea University of Technology, Sweden.
- 34. Wiberg, P. and Moren, T.J. 1999. Moisture flux determination in wood during drying above fiber saturation point using CT-scanning and digital image processing. Holz als Roh-und Werkstoff, pp. 137-144.
- 35. Viitaniemi, P., Ranta-Maunus, A., Jamsa, S. and Ek, P. 1994 Pat. Ep-0759137, Method for processing of wood at elevated temperature. VTT, Appl. EP95918005, 11.5.1994. Publ.11.9.1995.12p.

บทที่ 10

ภาคผนวก

บทความสำหรับเผยแพร่

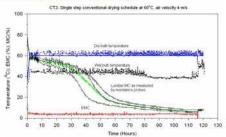
หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์ การปรับปรุงประสิทธิภาพการอบไม้ยางพาราความหนา 1 นิ้ว

สุธม ศรีวะโร, ประเวศร์ เดี๋ยววานิช, ทวีศิลป์ วงศ์พรด, ณัฐพล วิทยานุภากร, นิรันดร มาแทน, บุญน้ำ เกี๋ยวข้อง

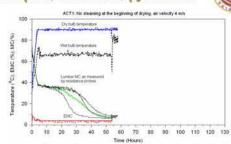
กระบวนการอบไม้สามารถแบ่งออกได้เป็น 3 ประเภทตามอุณหภูมิของการอบ ดังนี้ คือ 1. Conventional temperature drying (CT) เป็นการอบไม้ที่อุณหภูมิระหว่าง 50-80°C 2. Accelerated Conventional temperature drying (ACT) เป็นการอบไม้ที่ อุณหภูมิระหว่าง 80-100°C และ 3. High temperature drying (HT) ซึ่งเป็นการอบไม้ ที่อุณหภูมิชุงกว่า 100°C

การอบไม้ที่ใช้อยู่ในโรงงานแปรรูปไม้อางพาราในประเทศไทอส่วนใหญ่เป็น การอบแบบ CT ออ่างไรก็ตามเตาอบไม้ที่ใช้อยู่ในโรงงานแปรรูปไม้อางพาราสามารถ ที่จะทำการอบแบบ ACT ได้โดยที่ไม่ด้องมีการสร้างเตาอบใหม่หรือปรับแต่งเตาอบ มากนัก ส่วนการอบที่อุณหภูมิสูงแบบ HT เหมาะสำหรับใช้อบไม้เพื่อใช้ในงาน โดรงสร้างมากกว่าไม้ที่ใช้ในงานเพ่อร์นีเจอร์ เช่น ไม้อางพารา

งานวิจัยนี้ศึกษาความเป็นไปได้ในการนำรูปแบบการอบไม้แบบ ACT มา ประชุกด์ใช้กับการอบไม้ยางพาราเปรียบเทียบกับการอบไม้ในช่วงอุณหภูมิแบบ CT โดยเปรียบเทียบประสิทธิภาพทั้งในแง่ของเวลาการอบ คุณภาพไม้หลังการอบ และ พลังงานการอบประกอบกัน


วิธีดำเนินการ

ในงานวิจัยนี้ได้ทุดถองโดยใช้ไม้ยางพาราแปรรูปขนาด หนา 3 เชนติเมตร กว้าง 10 เชนติเมตร แถะยาว 1 เมตร ที่ผ่านกระบวนการอัดน้ำยาจนมีความขึ้น ประมาณ100% จำนวน 50 ท่อนถ้ำหรับแต่ละสภาวะของการทุดถอง เตาอบที่ใช้ใน การทุดถองสามารถควบคุมอุณหภูมิแถะความขึ้นของอากาสแบบอัต ในมัติและ สามารถปรับอัตราเร็วรอบของพัดถมได้ มีหัววัดความขึ้นในไม้แบบความด้านทาน ใอน้ำที่ใช้ในการอบผถิตจากเครื่องกำเนิดใอน้ำค้วยใฟฟ้า ได้คิดตั้งมิเตอร์วัดพถังงาน ใฟฟ้าที่ใช้โดยเครื่องกำเนิดใอน้ำและพัดถม



รปที่ 1 เตาอบไม้ขางพาราแสดงการจัดไม้สำหรับการพลลอง(ข้าย) และเครื่องกำเนิดใอน้ำล้วยใฟฟ้า (ขวา)

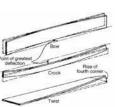
ระยะเวลาและพลังงานที่ใช้ในการอบ

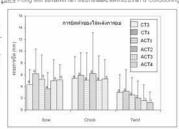
รูบที่ 2 ข้อมูลสภาระการขบไม้ขางพาชาที่คุณหภูมิ DBWB 600/450 ซึ่งใช้ระยะเวลาการขบประมาณ 120 ชั่วโมง สำหรับคุณหภูมิเละความขึ้นเส้นทียงยืนค่าที่ตั้งไว้ ส่วนเล้นประเป็นค่าที่อ่านได้ ค่าความขึ้นไม้ที่อ่านได้ จากทัววัดแบบความล้านทานซึ่งถือได้เป็นค่าที่ช่วงท้ายของการขบและที่ความขึ้นล้อยกว่า 30 เปอร์เซ็นต์

<u>รูปที่ 3</u> ข้อมูลมาระการอบไม้ยางพาราที่คุณหภูมิ DB/WB 90C/65C ซึ่งใช้ระอะเวลาการอบประมาณ 60 ชั่วโมง

อน (°C)	เครื่องกำเนิดไอน้ำ			พัดลม		
	พลังงาน ไฟฟ้า (kWh)	izan (hrs)	อัตราการใช้ พลังงาน (kW)	พลังงาน ไฟฟ้า (kWh)	(hrs)	อัตราการใช้ พลังงาน (kW)
60	1298	121	10.8	54	121	0.45
75	1356	83	16.2	39	83	0.47
90	1578	58	27.1	28	58	0.48

การอบที่อุณหภูมิสูงขึ้นมีการใช้พลังงานในการอบเพิ่มขึ้นประมาณ 20% แต่ใน ขณะเดียวกันสามารถลดระยะเวลาการอบลงใด้ถึง 50% อัดราการใช้พลังงานของพัดลม ที่ 740 rpm มีค่าประมาณ 0.4 kW


คุณภาพไม้ยางพาราหลังการอบ 60°C


ใม้ที่ผ่านการอบทั้งสอง อุณหภูมิมีคำความเค้น ตกล้างในเนื้อใม้ซึ่งสามารถ คถายความเค้นตังกถ่าวได้ โดยการทำ conditioning ในช่วงสุดท้ายของการอบ

<u>รูปที่ 4</u> Prong test ของไม้ที่ผ่านการอบก่อนและหลังกระบวนการ Conditionin

guil a การแกลงทั้งสนอนการนักคิวของไม่ที่กามการขบ จากกราพจะเห็นจากกระบทั้งสองถูกแหน่มีมีคาการนักคิวของไม่ใน ทั้งสนอะท่างๆไม่แบกคำสาน สิวนชก

<u>รูปที่ 6</u> ระบบการวัคดี CIE L'arb[,] ของถึวด้านนอกและโจกลางได้ยางพระร ในขณะที่โจกลางได้มีค่าความสว่างลูงกว่า การขบ ทั้งลองถุณหภูมิให้ค่าสิของในยางพระที่ไม่แตกต่างกัน

สรุปผลงานวิจัย

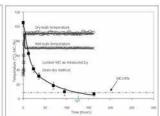
การอบไม้ที่อุณหภูมิสูง 90C/65C สามารถตคระชะเวลาการอบถงได้ 50% เทียบการการอบที่ อุณหภูมิ 60C/45C โดยที่ใช้พถังงานเพิ่มขึ้น 20% และมีสบบัติของไม้หลังการอบไม่แตกค่างกัน ผู้ประกอบการจึงอาจพิจารณานำไปปรับใช้เพื่อเพิ่มกำลังการผลิตในส่วนนี้ได้

หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์ การปรับปรงประสิทธิภาพการอบไม้ยางพาราความหนา 2 นิ้ว

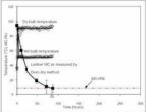
สุธน ศรีวะโร, ประเวศร์ เดี๋ยววานิช, ทวีศิลป์ วงศ์พรต, ณัฐพล วิทยานุภากร, นิรันดร มาแทน, บุญนำ เกี่ยวข้อง

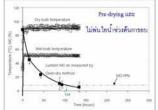
กระบวนการอบไม้สามารถแบ่งออกได้เป็น 3 ประเภทตามอุณหภูมิของการอบดังนี้ คือ 1. Conventional temperature drying (CT) เป็นการอบไม้ที่อุณหภูมิระหว่าง 50-80°C 2. Accelerated Conventional temperature drying (ACT) เป็นการอบใน้ที่อุณหภูมิระหว่าง 80-100°C และ 3. High temperature drying (HT) ซึ่งเป็นการอบไม้ที่อุณหภูมิสูงกว่า 100°C

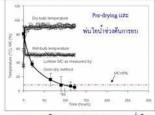

จากผลการสำรวจการอบไม้ขางพาราพบว่าโรงงานแปรรูปไม้ขางพาราไม่มีตาราง การอบไม้ยางพาราที่เป็นมาตรฐานและขาคข้อมูลด้านงานวิจัยเกี่ยวกับผลของปัจจัยด่างๆใน ระหว่างการอบต่อคุณภาพของไม้ที่ได้ โดยเทคนิคการอบไม้ที่ใช้ในโรงงานแปรรูปไม้ ยางพาราเป็นการอบแบบ CT ซึ่งพบว่าการอบไม้หนา 2 นิ้ว ใช้เวลาในการอบประมาณ 10-12 วัน จึงจำเป็นด้องหาเทคนิคการอบที่มีประสิทธิภาพที่สามารถลดด้นทุนการผลิตใน ขณะที่ยังคงรักษาคุณภาพของให้ไว้


คังนั้นในงานวิจัยนี้จึงมุ่งเน้นพัฒนากระบวนการอบไม้ยางพาราโดยใช้เทคนิคการ อบแบบ ACT โดยเปรียบเทียบกับการอบแบบ CT ทั้งในแง่ของ เวลาการอบ พลังงานที่ใช้ใน การอบและคุณภาพของใช้หลังการอบ

วิธีดำเนินการ

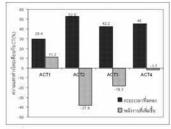

งานวิจัยนี้ทดลองการอบไม้ขางพาราความหนา 2 นิ้ว กว้าง 3 นิ้ว และยาว 1 เมตร จำนวน 42 ท่อน โดยก่อนการอบใม้ยางพาราทุกท่อนจะผ่านการอัดน้ำยาจนมีความชื้นประมาณ 100% เตาอบที่ใช้ในการทดลองสามารถควบคุมอุณหภูมิและความชื้นของอากาศแบบอัตโนมัติและ สามารถปรับอัตราเร็วรอบของพัดลมได้ การหาค่าความขึ้นในไม้ระหว่างการอบใช้หัววัด ความขึ้นในไม้แบบความด้านทานและใช้วิธีการอบแท้งผสมผสานกัน ใอน้ำที่ใช้ในการอบ ผลิตจากเครื่องกำเนิดใอน้ำด้วยไฟฟ้าพร้อมกันนี้ได้ติดตั้งมิเตอร์ไฟฟ้าเพื่อวัดพลังงานไฟฟ้าที่ ใช้โดยเครื่องกำเนิดไอน้ำและพัดสม


ระยะเวลาที่ใช้ในการอบ


CT: สุนหภูมิ DB 70C / WBD 20C เวลา 180 ชั่วโมง ACT1: ขุนหภูมิ DB 90C / WBD 20C เวลา 127 ชั่วไมง

ACT2: อุณหภูมิ DB 90C / WBD 40C เวตา 85 ชั่วไม่จ

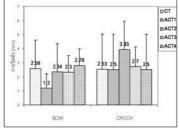
ACT3: ชุณหภูมิ DB 90C / WBD 40C เวลา 104 ชั่วโมง



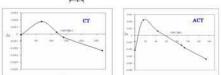
ACT4: ชุณหภูมิ DB 90C / WBD 40C เวลา 99 ชั่วโมง

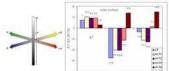
พลังงานที่ใช้ในการอบ

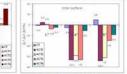
anni: Yanni	หลือคัมใชน้ำ			- West		
	าหลังอาน ให้เห็ว (MM)	steri (hrs.)	พัพธ์ละาน เมษาการ เมษาการ	พลังงาน ไฟฟ้า pwng	inen (hrs)	อัตรากวร ใช้พลังงาน (เพรษกร)
CT	2296	180	12.7	72	180	0.4
ACT1	2946	127	23.4	50.8	127	0.4
ACT2	1437	85	169	34	85	0.4
AUT3	1893	104	18.2	42	104	0.4
ACTA	2287	99	23.1	40	99	0.4


พลังงานไฟฟ้าที่ใช้สำหรับการผลิต ใอน้ำร้อนโดยหม้อดัมใอน้ำและ สำหรับการทำให้เกิดการใหลเวียน ของอากาศภายในเตาโดยพัดลม ของสภาวะการอบในรูปแบบคำงๆ สำหรับเคาอบในห้องปฏิบัติการ ขนาด 15 m³ และพัดลมขนาดเส้น ผ่านศูนย์กลาง 1 เมตร 1ตัว

เวลาและพลังงานของการอบแบบต่างๆโดยเทียนกับการอบแบบ CT


คุณภาพใม้ยางพาราหลังการอบ




กราฟแสดงการบิดตัวของไม้ยางพาราชนิด Ba ook หลังการอบแบบค่างๆ ซึ่งมีค่าใกล้เคียงกัน

ความเค้นตกค้างในเนื้อใช้ซึ่งวัดค่าในรูปของค่าความเครือคพบว่ามีค่าใกล้เคียงกัน

ระบบการวัคสี CIE L *=*b* ของผิวค้านนอกและใชกลางใช้ขางพาราหลังอบเปรียบเทียบกับก่อนอบ การ เปลี่ยนแปลงความเริ่มของไม้ยางพาราก่อนอบและหลังอนมีค่าไม่แตกต่างกันสำหรับการอบแบบต่างๆ

สรุปผลการวิจัย

การอบไม้ยางพาราความหนา 2 นิ้วที่อุณหภูมิ 90C/ 65 C สามารถลคระยะเวลาของการ อบและพลังงานที่ใช้ในระหว่างการอบลงใต้ประมาณ 50% และ 20% ตามลำดับเมื่อ เทียบกับการอบที่อุณหภูมิ 70C/50C โดยไม้ที่ผ่านกระบวนการอบมีสมบัติไม่ต่างกัน

หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์ อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160 Tel: 66-75-673671 Fax: 66-75-673203 Email:wood@wu.ac.th Website:http://webhost.wu.ac.th/woodscience

หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์

การปรับปรุงประสิทธิภาพการไหลของอากาศในเตาอบไม้ยางพาราด้วยแบบจำลองพลศาสตร์ของของไหล Airflow Efficiency improvement of Parawood Drying Kilns using Computational Fluid Dynamics Modelling

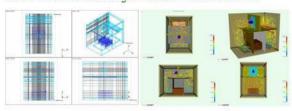
ณัฐพล วิทยานุภากร, ประเวศร์ เดี๋ยววานิช, สุธน ศรีวะโร, ทวีศิลป์ วงศ์พรต, นิรันดร มาแทน, บุญนำ เกี๋ยวข้อง

บทน้ำ

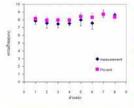
การแห้งของไม้ขึ้นอยู่กับปัจจัยร่วม 3 ปัจจัยคือ อุณหภูมิ ความขึ้นสัมพัทธ์ และ อัตราเร็วลม ในระหว่างการอบอากาศร้อนเคลื่อนที่ผ่านกองไม้น้ำพลังงานความร้อน ถ่ายเทใหักับไม้ น้ำในไม้จึงเคลื่อนที่ออกมาเนื่องจากความร้อน การกระจายของ อัตราเร็วลมสง้ามีผลต่อคุณภาพไม้ถ้าการกระจายของอัตราเร็วลมสง้าเสมอจะข่าย ให้ไม้แห้งได้อย่างสง่าเสมอ ดังนั้นเตาที่ดีอัตราเร็วลมควรมีค่าที่สูงและมีค่า เบี่ยงเบนมาตรฐานต่ำ จากการสำรวจเตาอบไม้ยางพาราในภาคใต้พบว่าโดยทั่วไป จะกองไม้สองแถว แถวละสองชั้น ความกว้างของเตาประมาณ 3.5 ถึง 5.0 เมตร ความสูงเตาประมาณ 5.5 เมตรและความสูงห้องพัดลมประมาณ 1.40 เมตร อัตราเร็วลมเฉลี่ยผ่านกองไม้ไม่เกิน 2 m/s ขนาดเตาอบไม้แตกต่างกันขึ้นอยู่กับการได้รับการกำยทอดต่อๆกันมาจากประสบการณ์ การวิจัยเพื่อออกแบบเตาอบไม้ ยางพาราที่มีประสิทธิภาพสูงเพื่อให้สามารถนำไปประยุกต์ใช้งานได้จริงจึงควรเริ่ม จากการพัฒนาตามพื้นฐานเดิมของเตาอบไม้ยางพาราที่ใช้งานอยู่ทั่วไป ในการศึกษาครั้งนี้ใช้วิธีการจำลองการใหลของของไหลด้วยคอมพิวเตอร์ เพื่อจำลอง การใหลของอากาศในเตาอบไม้ยางพารา นำมาออกแบบเตาที่มีประสิทธิภาพสูง

วัตถุประสงค์ของการวิจัย

- 1. สามารถสร้างแบบจำลองด้วยคอมพิวเตอร์ที่อธิบายรูปแบบการไหลและค่าการ กระจายตัวของลมในเตาอบไม้ยางพารา
- สามารถออกแบบเตาอบที่มีประสิทธิภาพสูงที่เหมาะสมสำหรับโรงงานไม้ ยางพาราทั่วไป

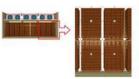

วิธีการทดลอง

ในการศึกษาครั้งนี้ได้ทำการปรับปรุงเตาอบไม้ยางพาราโดยใช้แบบจำลองด้วย
คอมพิวเตอร์ความถูกต้องของแบบจำลองได้รับการทดสอบกับเตาอบใน
ห้องปฏิบัติการและกับเตาอบในโรงงานแล้วจึงใช้แบบจำลองเพื่อหาลักษณะของ
เตาอบไม้ยางพาราที่มีประสิทธิภาพสูงโดยการเปรียบเทียบอัตราเร็วลมที่ระนาบ
ลมก่อนเข้าช่องไม้ที่ได้จากการวัดที่เตาอบกับผลจากการจำลอง

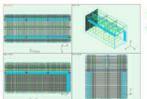

1. การจำลองการไหลของอากาศภายในเตาอบในห้องปฏิบัติการ

วัดค่าอัตราเร็วลมจากเตาอบในห้องปฏิบัติการและผลการจำลองด้วยคอมพิวเตอร์

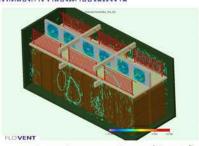
การแบ่งจำนวนเซลของระบบด้วย โปรแกรม Flovent version 6.1 ของเตา อบไม้ในห้องปฏิบัติการ ผลการจำลองเตาอบที่ห้องปฏิบัติการ



ผลการเปรียบเทียบอัตราเร็วลมจาก การวัดและการคำนวณต่อตำแหน่ง ช่องไม้ ผลจากแบบจำลองได้ค่า อัตราเร็วลมเฉลี่ยจากการคำนวณ 8.22 ± 0.28 m/s มีคำใกล้เคียงกับ ค่าอัตราเร็วลมเฉลี่ยจากการวัด 7.92± 0.51 m/s


2. การจำลองการใหลของอากาศภายในเตาอบในโรงงาน

วัดค่าอัตราเร็วลมจากเตาอบในโรงงาน ทดลองวัดอัตราเร็วลม 2 กรณี คือ วัด อัตราเร็วลมเมื่อไม่มีแผ่นกั้นลมและมี แผ่นกั้นลม



วิธีวัดค่าอัตราเร็วลมจากเตาอบ ในโรงงาน วัดค่าอัตราเร็วลม 7 ตำแหน่งในแต่ละแถวของกอง ไม้จากกองไม้จำนวน 10 แถว



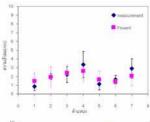
การแบ่งจำนวนเซลของ อากาศในเตาอบโรงงาน

ผลการทดลองการจำลองเตาอบในโรงงาน

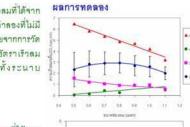
ผลจากการจำลองการใหลของอากาศในเตาอบเมื่อไม่มีแผ่นกั้นลม

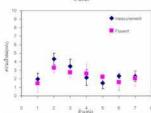
ผลจากการจำลองการใหลของอากาศในเตาอบเมื่อมีแผ่นกั้น

102


หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์

การปรับปรุงประสิทธิภาพการไหลของอากาศในเตาอบไม้ยางพาราด้วยแบบจำลองพลศาสตร์ของของไหล


Airflow Efficiency improvement of Parawood Drying Kilns using Computational Fluid Dynamics Modelling



กราฟเปรียบเทียบอัตราเร็วลมที่ได้จาก การวัดกับค่าที่ได้จากการจำลองที่ไม่มี แผ่นกั้นลม อัตราเร็วลมเฉลี่ยจากการวัด ทั้งระนาบ 2.1±1.2 m/s อัตราเร็วลม เฉลี่ยจากการคำนวณทั้งระนาบ 2.2±1.3 m/s

กราฟแสดงการเปรียบเทียบค่า ชัตราเร็วลมตามขนาดช่องลม ผลการทดลองพบว่าที่ขนาดช่อง ลมตั้งแต่ 0.70 ถึง 0.80 เมตร์ให้ ค่าชัตราเร็วลมเฉลี่ยสูงที่สุดเป็น 3.0 ± 0.9 m/s

กราฟเปรียบเทียบอัตราเร็วลมที่ได้จาก การวัดกับค่าที่ได้จากการจำลองที่มีแผ่น กันลม อัตราเร็วลมเฉลี่ยจากการวัดทั้ง ระนาบ 2.6±1.1 m/s ค่าอัตราเร็วลม เฉลี่ยจากการคำนวณทั้งระนาบ 2.3±1.0 m/s 3 2 1 13 14 10 10 20 22 24 26 28 30

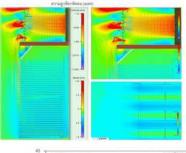
กราฟแสดงการเปรียบเทียบค่า ชัตราเร็วลมตามขนาดความสูง ห้องพัดลม

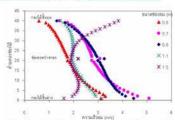
พบว่าที่ความสูงห้องพัดลม 1.40 m ให้ค่าอัตราเร็วลมเจลี่ยสูงที่สุด เป็น 2.9 ± 0.9 m/s

การกระจายของ

กว้างช่องลม 0.8

เมตร และความสูง ห้องพัดลม 1.4 เมตร


จัตราเร็วลมที่ความ -

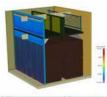

เมื่อมีแผ่นกั้นลมอัตราเร็วลมเฉลี่ยจากการวัดในเตาอบที่โรงงานเพิ่มขึ้น 24.27% ค่า เบียงเบนมาตรฐานลดลง 8.41 % สอดคล้องกับอัตราเร็วลมเฉลี่ยจากการจำลองที่เพิ่มขึ้น 6.36 % ค่าเบี่ยงเบนมาตรฐานลดลง 18.52 %

3. การออกแบบเตาที่มีประสิทธิภาพสูงโดยใช้แบบจำลองด้วยคอมพิวเตอร์ วิธีการทดลอง

ลักษณะเตาที่ออกแบบ ความกว้าง 4.9 เมตร ความสูง 5.35 เมตร ความสูงห้อง พัคลม 1.40 เมตร โดยให้ความลึกเตา คงที่ที่ 5.80 เมตร ติดตั้งแผ่นกั้นลมทั้ง สองด้าน

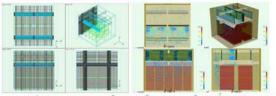
การเปรียบเทียบอัตราเร็วลมตามขนาดช่องลมกับตำแหน่งช่องไม้

ตัวแปร 2 ค่า


1. ความกว้างของช่องลมด้านข้างกองไม้ มีค่าที่ ทำการทดสอบคือ 0.5, 0.6, 0.7, 0.8 และ 1.1 เมตรที่ความสูงของห้องพัดลม 1.4 เมตร 2. ความสูงของห้องพัดลม มีค่าที่ทำการ ทดสอบคือ 1.4, 1.7, 2.0 และ 2.8 เมตรที่ความ กว้างของช่องลมด้านข้างกองไม้ 0.8 เมตร

สรุปผลการทดลอง

การใช้แบบจำลองด้วยคอมพิวเตอร์เพื่อศึกษาการกระจายตัวของลมในแบบเตาอบ ไม้ยางพาราทั้งในห้องปฏิบัติการและเตาอบในโรงงานสามารถอธิบายการไหล ของอากาศในเตาได้ทั้งในเชิงคุณภาพที่สามารถเห็นรูปแบบและทิศทางการใหล ของลมในเตา และเชิงปริมาณเมื่อทดสอบความถูกต้องของแบบจำลองกับการ วัดอัตราเร็วลมจากการทดลองพบว่ามีค่าอัตราเร็วลมเฉลี่ยใกล้เคียงกันและมี แนวโน้มที่สอดคล้องกัน


การใช้แผ่นกั้นลมจะลดการหมุนวนลงมากและ สามารถเพิ่มอัตราเร็วลมในเตา อบที่โรงงานและทำให้การกระจายตัวของลมกระจายตัวได้ดีขึ้นซึ่งจะช่วยให้ไม้ แห้งอย่างสม่ำเสมอจึงลดเวลาอบลงได้

เมื่อใช้แบบจำลองด้วยคอมพิวเตอร์มาปรับปรุงเตาอบที่มีประสิทธิภาพสูงโดย การปรับเปลี่ยนขนาดช่องลมและห้องพัดลมแล้ววัดการกระจายตัวของอัตราเร็ว ลมพบว่าที่ขนาดช่องลมตั้งแต่ 0.70 ถึง 0.80 เมตรให้คำอัตราเร็วลมเฉลี่ยสูงที่สุด เป็น $3.0\pm0.9\,\mathrm{m/s}$ ส่วนความสูงของห้องพัดลมพบว่าที่ความสูง 1.40 เมตรให้ ค่าอัตราเร็วลมเฉลี่ยสูงที่สุดเป็น $2.9\pm0.9\,\mathrm{m/s}$ ซึ่งเป็นขนาดความสูงของการ ติดตั้งพัดลม ถ้าขนาดความสูงห้องพัดลมมากกว่า 1.40 เมตร จะได้ค่าอัตราเร็ว ลมเฉลี่ยจะลดลง ในขณะที่ค่าเบี่ยงเบนมาตรฐานไม่เปลี่ยนแปลง

ระนาบด้านลมเข้าที่ใช้วัด ค่าขัตราเร็วลม

การแบ่งจำนวนเซลของอากาศใน เตาอบที่ออกแบบ การใหลวนของลมในเตาที่ขนาดช่องลม 0.80 เมตรและความสูงห้องพัดลม 1.40 เมตร

1

บริษัทใกเมเกรพารารู้ล อ. ยวเล ย. มกาศวิทรรมราช

หน่วยวิจัยวิทยาศาสตร์และวิศวกรรมไม้ มหาวิทยาลัยวลัยลักษณ์ อำเภอท่าศาลา จังหวัดนครศรีธรรมราช 80160 Tel: 66-75-673671 Fax: 66-75-673203 Email:wood@wu.ac.th Website:http://webhost.wu.ac.th/woodscience