รหัสโครงการ: RDG 4850069

ชื่อโครงการ: การหาสาเหตุ และการป้องกันการเจริญของเชื้อราบนยางแผ่น ชื่อนักวิจัย: รศ.คร.อรัญ หันพงศ์กิตติกูล¹ รศ.คร.เสาวลักษณ์ พงษ์ไพจิตร²

คร.จริยา สากยโรจน์ 3 น.ส.สุพรรษา ชาญด้วยกิจ 1 นายไกรยศ แซ่ลิ้ม 1

น.ส.ศิรินุช ด้วงสุข²

¹ คณะอุตสาหกรรมเกษตร และ ² คณะวิทยาศาสตร์

มหาวิทยาลัยสงขลานครินทร์

³ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ

กระทรวงวิทยาศาสตร์และเทคโนโลยี

Email address: <u>aran.h@psu.ac.th</u>

ระยะเวลาโครงการ: กันยายน 2549 – กรกฎาคม 2552

าเทคัดย่อ

การเก็บตัวอย่างขางแผ่นที่มีเชื้อราปนเปื้อนที่ผลิต โดยเกษตรกรจาก 13 แหล่งในภาคใต้ของ ประเทศไทยทั้งชายฝั่งทะเลตะวันออกและตะวันตก สามารถแยกเชื้อราจากขางแผ่นได้ 150 ไอโซ เลต อยู่ใน 9 จีนัส คือ Aspergillus (31.3%), Penicillium (23.3%), Cladosporium (5.3%), Rhizopus (2.7%), Mucor (1.3%), Geotrichum (1.3%), Trichoderma (1.3%) และ Tritirachium (0.7%) และ กลุ่มเชื้อราที่จำแนกโดยการวิเคราะห์ระดับดีเอ็นเอ คือ Daldinia eschscholzii และ Schizophyllum commune สามารถแยกเชื้อราจากบริเวณที่เก็บหรือตากขางแผ่นได้ 81 ไอโซเลต ประกอบด้วย Aspergillus (23.5%), Fusarium (25.9%), Penicillium (17.3%), Rhizopus (9.9%) และ Cladosporium (6.2%) บริเวณที่เก็บขางแผ่นมีความชื้นสัมพัทธ์ 52.1-83.2% มีอุณหภูมิ 26.9-32.70 องศาเซลเซียส และความเร็วลม 0–5.0 กิโลเมตรต่อชั่วโมง โดยขางแผ่นที่เก็บมามีความชื้น 1.0-9.5% มีโปรตีน 0.032-1.225 มิลลิกรัมต่อกรัม และมีน้ำตาลทั้งหมด 0.127–1.130 มิลลิกรัมต่อกรัม และมีพีเอชอยู่ในช่วง 6.0–8.0 ตัวอย่างขางแผ่นที่เก็บมานอกจากจะมีเชื้อราแล้ว ยังพบยีสต์ 31 ไอโซ เลต อยู่ใน 5 จีนัส คือ Candida, Cryptococcus, Pichia, Rhodotorula และ Trichosporon และยีสต์ที่ พบมากคือ Pichia ohmeri, Candida ciferri และ Trichosporon asahii

การทคสอบฤทธิ์ด้านราของสารเคมี 13 ชนิคคือ กรคอะซิติก แอมโมเนียมคาร์บอเนต แคลเซียมโพรพิโอเนต แคลเซียมไฮครอกไซค์ โปแตสเซียมซอร์เบต โปแตสเซียมเบนโซเอต โซเคียมเมตาไบซัลไฟต์ โซเคียมไนเตรต โซเคียมอะซิเตต น้ำส้มควันไม้ 3 ชนิค และพาราไนโตร ฟีนอลกับเชื้อรา 27 ชนิค ที่แยกได้จากยางแผ่น พบว่า กรคอะซิติก โปแตสเซียมซอร์เบต โป แตสเซียมเบนโซเอต โซเดียมเมตาใบซัลไฟต์ และน้ำส้มควันไม้จากไม้ไผ่ สามารถยับยั้งการเจริญ ของเชื้อราได้ โดยมีค่าการยับยั้งที่ความเข้มข้นต่ำสุด (MIC) ของสารเคมี 5 ชนิคนี้ ต่อ Aspergillus ที่ แยกได้ 10 ใอโซเลต คือ 0.313, 10, 5, 5 และ 6.25% ตามลำดับ โดย Aspergillus SR09 จะเป็นเชื้อรา ที่ทนต่อสารเคมีดีที่สุด สำหรับค่า MIC ของสารเคมีทั้ง 5 ชนิค ในการยับยั้งการเจริญ Fusarium 4 ใอโซเลต มีค่า MIC เท่ากับ 1.5, 0.625, 2.5, 0.156 และ 1.5% ตามลำดับ และในการยับยั้ง Penicilium 6 ใอโซเลต พบว่ามีค่า MIC เท่ากับ 0.156, 1.25, 5.0, 0.156 และ 3.125% ตามลำดับ

เมื่อนำ Aspergillus SR09, Penicillium TT04 และ Fusarium MT05 มาศึกษาปัจจัยที่มีผลต่อ การเจริญบนยางแผ่น พบว่าเชื้อราเจริญได้ดีที่ 25 องศาเซลเซียส ที่ความชื้นสัมพัทธ์ 85% และเจริญ ได้เล็กน้อยที่ 37 องศาเซลเซียส ความชื้นสัมพัทธ์ 62.7% ไม่มีการเจริญที่ 45 และ 65 องศาเซลเซียส เมื่อศึกษาผลของความชื้นสัมพัทธ์ (57-90%) ที่อุณหภูมิ 25 องศาเซลเซียส ต่อการเจริญของเชื้อราทั้ง 3 ชนิดบนยางแผ่นพบว่า ความชื้นสัมพัทธ์ 57-67% เชื้อราเจริญได้เล็กน้อย แต่ที่ 80-90% เชื้อราจะเจริญได้มาก

เมื่อนำยางแผ่นดิบที่ตาก 1 วัน มาจุ่มโซเคียมเมตา ใบซัล ไฟต์ กรคอะซิติก และน้ำส้มควัน ไม้ แล้วจึงเพาะเชื้อ Aspergillus SR09, Pennicillium TT04 และ Fusarium MT05 ลง ไป แล้วเก็บยาง แผ่นไว้ที่ความชื้นสัมพัทธ์ห้อง (70.7%) และ 80% ที่อุณหภูมิห้อง พบว่าโซเคียมเมตา ใบซัล ไฟต์ 5% สามารถยับยั้งการเจริญของเชื้อราทั้ง 3 ชนิด และยังทำให้ยางแผ่นมีสีขาวขึ้น เมื่อศึกษาการจุ่ม ยางแผ่นในโซเคียมเมตา ใบซัล ไฟต์ 10% เทียบกับการจุ่มสารเคมีทางการค้า แล้วเก็บไว้ใน บรรยากาศห้อง (ความชื้นสัมพัทธ์ 73.4%) พบว่าจะสังเกตเห็นการเจริญของเชื้อราในวันที่ 5 แต่ชุด ควบกุมและชุดที่เติมสารทางการค้าจะเห็นการเจริญของเชื้อราในวันที่ 4 ในขณะที่การทดลองที่เก็บ ไว้ที่ความชื้นสัมพัทธ์ 80% ไม่พบการเจริญของเชื้อราบนยางแผ่นที่จุ่มโซเคียมเมตา ใบซัล ไฟต์ แม้ จะเก็บไว้ 30 วัน ในขณะที่ยางแผ่นที่จุ่มสารทางการค้าจะมีการเจริญของเชื้อราใน 2 วัน

ในการตกตะกอนยาง โดยใช้กรด 5 ชนิด คือ กรดฟอร์มิก กรดอะซิติก กรดแลกติก กรดซัล ฟูริก และกรดฟอสฟอริก แล้วตากยางแผ่นไว้ที่อุณหภูมิห้อง (ความชื้นสัมพัทธ์ 65%) พบว่า การใช้ กรดอะซิติกพบการเจริญของเชื้อราบนยางแผ่นในวันที่ 5 ขณะที่การใช้กรดฟอร์มิก กรดแลกติก และกรดซัลฟูริก พบเจริญในวันที่ 4 และการใช้กรดฟอสฟอริกพบเจริญในวันที่ 3

เมื่อทำการผลิตยางตามวิธีของเกษตรกร และทำการล้างแผ่นยางก่อนตาก โดยการล้างแบบ ถู และเขย่า พบว่า การล้างแบบเขย่าจะลดโปรตีนและน้ำตาลในยางแผ่น และช่วยชะลอการเจริญ ของเชื้อราบนยางแผ่นได้ การตากยางแผ่น 1 วัน แล้วนำเข้ารมควันเป็นระยะเวลา 1-4 วัน พบว่าการ รมควันที่อุณหภูมิ 50 องศาเซลเซียส จะช่วยลดความชื้นของยางแผ่น และชะลอการเจริญของเชื้อรา Project Code: RDG 4850069

Project Title: Causes and Prevention of Fungal Growth on Rubber Sheets

Investigator: Assoc. Prof. Dr. Aran H-Kittikun¹, Assoc. Prof. Dr. Saowaluk Pongpaijit², Dr.

Jariya Sakayaroj³, Miss Supansa Chanduakit¹, Mr. Kraiyot Saelim¹ and Miss

Sirinut Duangthong².

¹Faculty of Agro-Industry and ²Faculty of Science, Prince of Songkla University,

³The Center for Genetic Engineering and Biotechnology, Ministry of Science and

Technology.

Abstract

The contaminated rubber sheets were collected from east and west coasts of the southern Thailand (13 places). There were 150 fungal isolates from these rubber sheetes in 9 genus including Aspergillus (31.3%), Penicillium (23.3%), Cladosporium (5.3%), Rhizopus (2.7%), Mucor (1.3%), Geotrichum (1.3%), Trichoderma (1.3%) and Tritirachium (0.7%) and two species indentified by DNA sequencing, Daldinia eschscholzii and Schizophyllum commune. Eighty fungal isolates were obtained from the areas for drying and storaging of rubber sheets. They were Aspergillus (23.5%), Fusarium (25.9%), Penicillium (17.3%), Rhizopus (9.9%) and Cladosporium (6.2%). Those areas had the relative humidity of 52.1-83.2%, temperature 26.9-32.7 °C with the wind velocity of 0-5.0 km/h and the rubber sheets contained 1.0-9.5% moisture, 0.032-1.225 mg/g protein and pH 6.0-8.0. In addition to molds 5 genus of yeasts (Candida, Cryptococcus, Pichia, Rhodotorula and Trichosporon) were found on contaminated rubber sheets. The most frequently found yeasts were Pichia ohmeri, Candida ciferri and Trichosporon asahii.

Thirteen chemicals (acetic acid, ammonium carbonate, calcium propionate, calcium hydroxide, potassium sorbate, potassium benzoate, sodium metabisulfite, sodium nitrate, sodium acetate, smoked acid and ρ-nitrophenol were tested against 27 fungal isolates from contaminated rubber sheets. Five chemicals, acetic acid, potassium sorbate, potassium benzoate, sodium metabisulfite and smoked acid from bamboo showed good inhibition. The minimum inhibitory concentrations (MIC) of these 5 chemicals against *Aspergillus* (10 isolates) were 0.313, 10, 5, 5 and 6.25%, respectively. *Aspergillus* SR09 was the most tolerant to these chemicals. The MIC of

these 5 chemicals against *Fusarium* spp. (4 isolates) were 1.5, 0.625, 2.5, 0.156 and 1.5%, respectively, and *Penicillium* spp. (6 isolates) were 0.156, 1.25, 5.0, 0.156 and 3.125%, respectively.

The effect of relative humidity (RH) and temperature on the growth of *Aspergillus* SR09, *Penicillium* TT04 and *Fusarium* MT05 on rubber sheets were investigated. These three molds grew very well at 25 °C with 80%RH and showed slight growth at 37 °C with 62.7%RH. No growth was observed at 45 and 65 °C. At 25 °C with the RH 57-67% the molds showed slightly growth on the rubber sheets but at 80-90%RH, the growth was very high.

One day air-dried rubber sheets were dipped in sodium metabisulfite, acetic acid and smoked acid. Then the sheets were inoculated with *Aspergillus* SR09, *Penicillium* TT04 and *Fusarium* MT05 and kept at room temperature with the RH 70.7% and 80%. The results showed that sodium metabisulfite 5% could inhibit all three molds and the rubber sheets had whiter color than control. When the rubber sheets were dipped in 10% sodium metabisulfite and kept in the air atmosphere (73.4%RH) and 80%RH compared to the used of commercial substance. The results showed that 10% sodium metabisulfite could delay fungal growth to 5 days but the commercial substance 4 days, However, at 80%RH rubber sheets with 10% sodium metabisulfite showed no fungal growth for 30 days but with commercial substance the growth occurred at day 2.

Five kinds of acids, formic acid, acetic acid, lactic acid, sulfuric acid and phosphoric acid were used to coagulate rubber particles to make rubber sheets. The rubber sheets prepared by coagulation with acetic acid showed mold growth on day 5 while the sheets prepared from formic acid, lactic acid and sulfuric acid showed mold growth on day 4 and phosphoric on day 3. After preparing the rubber sheets according to the method of farmers by coagulating with formic acid, the sheets were washed by rubbing and shaking in water. The results showed that protein and sugar in the sheets were reduced and could delay the growth of molds on the sheets. After air drying rubber sheets one day, they were smoked for 1-4 days at 50 °C. This process certainly could reduce the moisture and the mold growth on the sheets.