บทคัดย่อ

ปัญหาของการนำน้ำกลับมาใช้ใหม่ในอุตสาหกรรมการผลิตเยื่อและกระดาษนั้นส่วนหนึ่งมาจากสีน้ำตาล เข้มของน้ำที่เกิดจากสารประกอบลิกนินของกระบวนการฟอกเยื่อกึ่งเคมี การใช้สารเคมีตกตะกอนเพื่อบำบัดนั้นมีใช้ กันอย่างแพร่หลาย แต่การเติมสารเคมีทำให้มีต้นทุนเพิ่มขึ้นและต้องมีการกำจัดตะกอนที่เกิดขึ้น โครงการวิจัยนี้จึง ทดลองใช้วิธีทางชีวภาพในการกำจัดสีของลิกนิน โดยการใช้ฟิล์มของ Phaenerochaete chrysosporium ซึ่งเป็น white rot fungi ที่สามารถสร้างเอนใชม์ในกลุ่มลิกนิโนใลติกที่สามารถสลายโมเลกุลของลิกนินให้เป็นโมเลกุลที่เล็กลงและ ถูกสลายได้ง่ายขึ้น

จากงานวิจัยพบว่าอาหาร GYE (Glucose Yeast Extract) เหมาะสมต่อการเจริญของเชื้อบนแผ่นใยขัดใน ล่อนรปทรงสี่เหลี่ยมลกบาศก์ในระดับ shake flask และเชื้อสามารถผลิตเอนไซม์ และลดสี CTMP (Chemical Thermal Mechanical Process) ลงใค้ประมาณ 1600 color unit (CU) ภายใน 3 วัน เมื่อสีเริ่มต้นประมาณ 2500 CU การหา สภาวะที่เหมาะสมต่อการเจริญ การสร้างเอนไซม์ และการลดสีของเชื้อราเมื่อเลี้ยงในอาหาร synthetic medium (Tien และ Kirk , 1983) บนแผ่นใยขัดในล่อนในถึงปฏิกรณ์ 5 ลิตร พบว่าปริมาณออกซิเจนที่เหมาะสมในการลดสีของเชื้อรา คือสงกว่า 30% (2.5 ppm) ความเข้มสีเริ่มต้นของน้ำทิ้ง CTMP ที่ทำให้อัตราการลดสีสงที่สดคือประมาณ 1200 CU และฟิล์มของเชื้อราสามารถถกนำกลับมาใช้ซ้ำได้ 2 รอบ นอกจากนั้นการทดลองใช้ตัวกระต้น (inducer) ช่วยให้เชื้อรา ลคสีได้ดีในวันแรกของการลคสีแต่การลคสีโดยรวมใกล้เคียงกับสภาวะที่ไม่เติมตัวกระตุ้น เมื่อทคลองใช้อาหาร GYE เลี้ยงเชื้อราในถังปฏิกรณ์ 5 ลิตร พบว่าเชื้อราลคสีได้ใกล้เคียงกับเมื่อเลี้ยงในฟลาส์ก และเมื่อเลี้ยงในอาหาร synthetic medium (Tien และ Kirk , 1983) อย่างไรก็ตามอาหารเลี้ยงเชื้อ GYE ราคาลิตรละ 15 บาท ซึ่งผู้ร่วมทนภาคเอกชนเห็น ว่าสงเกินไปจึงทคลองใช้อาหารกลโคสป์ยยเรีย-ฟอสเฟต และคีเกลือ (glucose- urea diammonium phosphate, GUP) แทนซึ่งราคาถิตรละ 80 สตางค์ ซึ่งให้ผลดีใกล้เคียงกับ GYE และ synthetic medium ในถังปฏิกรณ์ขนาด 5 ลิตร เมื่อ เลี้ยงเชื้อราในอาหาร GUP ในถังปฏิกรณ์ 500 ลิตร บนตัวกลางพลาสติกทรงกระบอก และได้ตรวจสอบการสร้าง เอนไซม์ และการลดสีของน้ำทิ้ง unbleaach พบว่า เชื้อราสามารถสร้างเอนไซม์ได้เช่นเดียวกับเมื่อเลี้ยงในฟลาส์กและ ถึงปฏิกรณ์ขนาค 5 ลิตร การผลิตเอ็นไซม์ในถึงปฏิกรณ์ขนาค 500 ลิตรของเชื้อรามีแนวโน้มในผลิตเอ็นไซม์ใกล้เคียง กับเมื่อเลี้ยงในฟลาส์กและถังปฏิกรณ์ขนาด 5 ลิตร ส่วนการลดสี unbleach ที่มีความเข้มสีเริ่มต้นเมื่อเติมลงในถัง ปฏิกรณ์ประมาณ 140-900 CU พบว่าเชื้อราสามารถลดสีได้ประมาณ 50-60% และลดค่า COD ลงได้ 15-45 % ภายใน เวลา 2 วัน แต่ค่า CODยังสูงกว่าค่า COD ที่โรงงานสามารถบำบัคได้โดยระบบที่ใช้ในปัจจุบัน (120 มิลิกรัมต่อลิตร) จึงได้นำน้ำไปบำบัดต่อด้วยระบบบำบัดน้ำเสียแอกทิเวเต็ดสลัดจ์ (Activated Sludge Process) แบบเอสบีอาร์ (Sequencing Batch Reactor) จึงทำให้ค่า COD ลดลงเป็น 130 มิลิกรัมต่อลิตรซึ่งใกล้เคียงกับ COD ของน้ำที่ผ่านระบบ ที่ผู้ร่วมทนใช้อยู่ในปัจจุบัน (120 มิลิกรัมต่อลิตร) การวิเคราะห์เชิงเศรษฐศาสตร์เมื่อใช้ถังเลี้ยงเชื้อขนาค 0.3 ลบ.ม. และถังปฏิกรณ์กำจัดสี ขนาด 5 ลบ.ม. (จุของเหลว 4 ลบ.ม.) เป็นถังปิดจำนวนอย่างละ 6 ถังเพื่อบำบัดน้ำทิ้ง unbleach 2 ลบ.ม.ต่อวันนั้น จะมีค่าใช้จ่ายในการก่อสร้างระบบกำจัด เป็นเงินทั้งสิ้นประมาณ 4.39 ล้านบาท เมื่อคิดระยะเวลา โครงการเป็น 15 ปี และรวมค่าใช้จ่ายต่าง ๆ เช่นค่าสารเคมี ค่าซ่อมบำรง ค่าสาธารณปโภค ค่าคอกเบี้ยแล้ว ค่าใช้จ่าย ในการคำเนินการ จะอย่ที่ 1,168.65 บาท/ลบ.ม. น้ำเสีย

Abstract

One problem of recycling of treated water in pulp and paper production is its brown color caused by lignin content. To overcome this problem, some chemicals, such as alum, have been widely used for precipitation and decolourization. However, this decolourization process is not a cost effective since the chemical would increase the wastewater treatment cost. The aims of this study is to develop a biological process employing a fixed *Phanerochaete chrysosporium* film bioreactor for decolorization of the effluents. *P. chrysosporium*, a white rot fungus, can produce ligninolytic enzymes which are extracellular oxidative and peroxidive enzymes to degrade lignin.

P. chrysosporium was grown on cubes of nylon sponge in the optimal GYE (glucose yeast-extract) medium in shake flasks, it produced ligninolytic enzymes and decolourize CTMP effluent, approximately 1600 CU after 3 days of incubation when the initial colour is 2500 CU. The optimization of fungal growth, enzyme production and decolourisation of P. chrysosporium in synthetic medium (Tien และ Kirk, 1983) was carried out in a 5L bioreactor. It was found that maximum decolourization rate was obtained when dissolved oxygen throughout the experiment was higher than 30% (2.5 ppm) and the initial colour of CTMP was about 1200 CU. Inducers used in this work did not increase the decolourization of the fungus. The cyclic batch experiments showed that 50% of decolourization rate of the fixed fungal film could be maintained for two repeated batches in the 5L reactor. The decolourization efficiency of the fungus in GYE is similar to that in synthetic medium when performed in 5L reactor. However, the cost of GYE (15 baht / litre) is not effective for the pulp industry, the decolourization of P. chrysosporium grown in glucose- urea diammonium phosphate (GUP) medium (0.8 baht/L) was studied in 5L reactor. There was no loss of P. chrysosporium growth, enzyme production and decolourization of unbleach wastewater in GUP medium. To scale up the process, the fungus was grown in the GUP medium in a 500L reactor. There was no significant difference in enzyme production and decolourization of fungal film produced in 500L reactor in the factory. The percentage of decolourization efficiency of unbleach waste water of P. chrysosporium was about 50% when the initial color ranging from 400 to 900 CU. The chemical oxygen demands (COD) of the fungal treated effluent were analysed. The COD value of the wastewater was removed from 15 to 45% in two-day treatment by the fungus. After secondary treatment by activated sludge process in sequencing batch reactor, COD value of about 130 mg/L was achieved. Based on the data in this experiment, the cost of this technology for fungal treatment of unbleach wastewater (2000 m³/day) was estimated. The invesment cost for construction and installation of culture seed preparation reactors (0.3 m³) and decolourization reactors (5 m³) and other necessary equipments will be 4.39 million baht. For a peroid of 15 years, the cost for this wastewater treatment process, including operation, maintenance, and chemicals will be 1,168.65 baht/ m³.