บทคัดย่อ

งานวิจัยนี้ได้ศึกษาการปรับปรุงประสิทธิภาพการกำจัดฟืนอลที่ปนเปื้อนในน้ำโดยใช้ชิ้นยางธรรมชาติ โดยแบ่งการศึกษาออกเป็น 2 ส่วนคือ การทดสอบการดูดซับสารฟีนอลของชิ้นยางในระบบ batch โดยใช้การ แกว่งชิ้นยางในน้ำปนเปื้อน และส่วนที่สองเป็นการศึกษาการดูดซับโดยใช้หอดูดซับขนาดเล็ก การศึกษาแบบ batch adsorption แบ่งการศึกษาออกเป็น 2 ส่วนย่อยคือ การศึกษาจลนศาสตร์ของการดูดซับและการศึกษา สมดุลของการดูดซับ ในการศึกษาจลนศาสตร์นั้นใช้ชิ้นยางขนาด 0.5 x 0.5 cm² และ 1.0 x 1.0 cm² พบว่าชิ้น ยางขนาดเล็กมีอัตราการดูดจับฟืนอลได้เร็วกว่าชิ้นยางขนาดใหญ่ และสามารถอธิบายได้ด้วยแบบจำลอง จลนศาสตร์อันดับหนึ่ง ดังนั้นการศึกษาสมดุลของการดูดซับจึงใช้ชิ้นยางขนาด 0.5 x 0.5 cm² โดยตลอด และ ได้ศึกษาผลของการปรับสภาพผิวยางด้วยกรดและอบที่อุณหภูมิ 150 °C ที่ความดัน 800 mbar พบว่าชิ้นยางที่ ผ่านการปรับสภาพผิวด้วยกรดในตริกและความร้อนมีค่าปริมาณการดูดซับสูงที่สุด รองลงมาคือชิ้นยางที่ผ่าน การปรับสภาพผิวด้วยกรดซัลฟิวริกและความร้อน และชิ้นยางที่ไม่ได้ผ่านการปรับสภาพผิวใด สำหรับการศึกษาพฤติกรรมการดูดซับในระบบที่มีการไหลของสารละลายฟีนอลโดยใช้หอดูดซับขนาดเล็กนั้น ได้ศึกษาผลของอัตราการใหลของสารฟีนอลและการเพิ่มจำนวนหอดูดซับโดยต่อเพิ่มจากหอดูดซับเดิมแบบ อนุกรมอีกหนึ่งหอ ในการทดลองส่วนแรกใช้ชิ้นยางขนาด 0.5 x 0.5 cm² ที่ปรับสภาพผิวโดยกรดในตริกและ ความร้อน และเปรียบเทียบกับยางที่มิได้ปรับสภาพผิว ส่วนการทดลองส่วนที่สองใช้เพียงยางที่ปรับสภาพผิว แล้ว พบว่าชิ้นยางที่ผ่านการปรับสภาพผิวด้วยกรดในตริกกับความร้อนมีความสามารถในการดูดซับสารฟีนอล ได้ดีกว่าชิ้นยางที่ไม่ผ่านการปรับสภาพผิว และเมื่อเปรียบเทียบอัตราการไหลของสารละลายต่างกันคือที่ ประมาณ 4.5 ml/min และ 10 ml/min พบว่าอัตราการใหลของสารละลายที่มากกว่าสามารถดูดซับสารฟินอลได้ และเมื่อใช้จำนวนหอดูดซับเพิ่มขึ้นอีกหนึ่งหอพบว่าไม่ทำให้ประสิทธิภาพของการดูดซับเพิ่มขึ้นแต่ อย่างใด การดูดซับของฟีนอลจากการทดลองการไหลผ่านหอดูดซับแสดงให้เห็นว่าการดูดซับเป็นแบบไม่ถาวร มีการหลุดออกและดูดซับใหม่ตลอดเวลา ชิ้นยางในหอดูดซับช่วยขัดขวางการเคลื่อนที่ของสารฟีนอลให้หลุด ออกไปกับกระแสการไหลช้าลง

ABSTRACT

In this work we improved the efficiency of rubber chips in order to treat phenol-contaminated The experiment was divided into two parts using batch system and adsorption columns. Kinetics and equilibrium of adsorption were investigated in batch test. The rubber chips of size 0.5 x 0.5 cm² and 1.0 x1.0 cm² were compared and proved with kinetic models. It was found that the smaller chips had higher rate of adsorption and followed the first order kinetic model so the chips of size 0.5 x 0.5 cm² were used throughout the rest of the experiment. In order to increase effective surface area of the chips, they were subsequently treated with either nitric acid and heated at 150 °C and 800 mbar or treated with sulfuric acid and heated at the same temperature and pressure. It was found that the adsorption capacity was most improved for nitric-treated chips, which is more than sulfuric-treated and untreated chips, respectively. For dynamic adsorption, mini-column packed with gravels and chips were used. The comparison was made for nitric-treated and untreated chips and the flow rate of the phenol solution was varied to be 4.5 ml/min and 10 ml/min. The results showed that treated chips could remove phenol better than the untreated chips and the removal of phenol at higher flow rate was more efficient. When connecting one more column and using the same flow rate of 4.5 ml/min as for the single column, the removal efficiency did not improve. The adsorption of phenol in the column did not follow the typical breakthrough curve but showed the non-permanent attraction between phenol and rubber chips so chips could be used to retard the flow of the phenol.