

**อิทธิพลของน้ำมันและสารตัวเติมต่อสมบัติของเทอร์โมพลาสติกอิลาสโตร์จากการเบลนด์ย่าง
ธรรมชาติกับพอลิเอทิลีน**

บทคัดย่อ

เตรียมเทอร์โมพลาสติกอิลาสโตร์โดยการเบลนด์ย่างธรรมชาติกับพอลิเอทิลีน 2 ชนิด คือ พอลิเอทิลีนชนิดความหนาแน่นสูง (HDPE) และ พอลิเอทิลีนชนิดความหนาแน่นต่ำเชิงเส้น (LLDPE) โดยใช้เทคนิคการเบลนด์ 2 เทคนิค คือ เทคนิคการเบลนด์แบบปกติ และการเบลนด์ผ่านกระบวนการร้อนวัลภาในเชิงแบบไนามิกส์ เพื่อเตรียมเทอร์โมพลาสติกวัลภาในชั้น การเตรียมเทอร์โมพลาสติกอิลาสโตร์โดยวิธีการเบลนด์แบบปกติ โดยใช้อัตราส่วน NR/PE = 60/40 เนื่องจากให้สัมฐานวิทยาแบบเฟสร่วมหลังจากนั้นศึกษาอิทธิพลของสารเพิ่มความเข้ากันได้ต่อสมบัติ พบว่าการใช้ฟินอลิกเรชิน (HRJ-10518) จะให้เทอร์โมพลาสติกอิลาสโตร์ที่มีสมบัติดีที่สุด หลังจากนั้นศึกษาอิทธิพลของชนิดน้ำมันโดยการแปรชันด้น้ำมัน คือ white oil น้ำมันพาราฟินิก น้ำมันแคนฟานิก น้ำมันอิพอกซิไดซ์ และไคออกทิลฟาราเลต พบว่า white oil ให้เทอร์โมพลาสติกอิลาสโตร์ที่มีสมบัติดีที่สุดจึงศึกษาอิทธิพลของปริมาณ white oil ต่อสมบัติเทอร์โมพลาสติกอิลาสโตร์พบว่าการเพิ่มปริมาณน้ำมันจะส่งผลให้ค่าความด้านทานต่อแรงดึง ความหนืด ความแข็งมีแนวโน้มลดลง แต่ให้ความสามารถในการยึดและความเป็นอิลาสโตร์สูงขึ้น หลังจากนั้นทำการศึกษาอิทธิพลของสารตัวเติมสองชนิดคือ เบม่าค่า และซิลิกาพบว่าการเพิ่มปริมาณสารตัวเติมทึ้งสองจะส่งผลให้ค่าความด้านทานต่อแรงดึง ความหนืดเนื่อง และค่าความแข็งเพิ่มขึ้น แต่ทำให้ความสามารถในการยึดจันขาดและความเป็นอิลาสโตร์ลดลง หลังจากนั้นเตรียมเทอร์โมพลาสติกวัลภาในชั้นโดยการเบลนด์ย่างธรรมชาติกับพอลิเอทิลีนที่อัตราส่วนการเบลนด์ NR/PE = 60/40 โดยใช้กระบวนการร้อนวัลภาในชั้นแบบไนามิกส์ โดยศึกษาอิทธิพลของกระบวนการร้อนวัลภาในเชิงชั้น โดยแบรร์รับ คือระบบกำมะถัน ระบบเบอร์ร์ออกไซด์ ระบบผสม (กำมะถันและเบอร์ร์ออกไซด์) และระบบฟินอลิก (SP-1045 และ HRJ-10518) พบว่าระบบฟินอลิก (HRJ-10518) ให้เทอร์โมพลาสติกวัลภาในชั้นที่มีสมบัติดีที่สุด หลังจากนั้นทำการศึกษาอิทธิพลปริมาณน้ำมัน white oil ต่อสมบัติของเทอร์โมพลาสติกวัลภาในชั้น ซึ่งจะให้ผลในทำนองเดียวกับกรณีเทอร์โมพลาสติกอิลาสโตร์โดยเทคนิคจากการเบลนด์แบบปกติ กล่าวคือเมื่อเพิ่มปริมาณน้ำมันจะส่งผลต่อแนวโน้มการลดความด้านทานต่อแรงดึง ความหนืดเนื่อง และความแข็ง หลังจากนั้นศึกษาอิทธิพลของสารตัวเติมสองชนิด คือซิลิกาและเบม่าค่า ต่อสมบัติของเทอร์โมพลาสติกวัลภาในชั้น พบว่าการเพิ่มปริมาณสารตัวเติมทึ้งสองจะส่งผลให้เพิ่มค่าความด้านทานต่อแรงดึง ความเก็บเนื่อง ความหนืดเนื่อง และความแข็งเพิ่มขึ้น แต่ลดค่าความสามารถในการยึดของเทอร์โมพลาสติกวัลภาในชั้น

Influence of Oil and Fillers on Properties of Thermoplastic Elastomer Based on Natural Rubber-Polyethylene Blends

Abstract

Thermoplastic elastomer based on natural rubber blended with two types of polyethylene (i.e., HDPE and LLDPE) was prepared. Two types of techniques were exploited: a simple blend and dynamic vulcanization technique. The simple blend technique of NR/PE blend at a blend ratio of 60/40 was studied. This is because at this blend ratio, co-continuous phase morphology of the blend was observed. Influence of various blend compatibilizers was then studied. We found that HRJ-10518 exhibited the most appropriate blend compatibilizer. It was later used throughout this work. Effect of types of process oils (i.e., white oil, paraffinic oil, naphthenic oil, epoxidized oil and plasticizer (dioctyl phthalate, DOP) on properties of the TPE was later investigated. It was found that white oil gave the TPE with superior properties. Influence of concentration of white oil on properties of the TPE was later studied. We found that increasing level of white oil caused decreasing trend of tensile strength, shear viscosity, and hardness but increasing elongation at break and elastomeric properties (based on tension set results). Two types of fillers (i.e., carbon black and silica) were used in the TPE based on OENR/HDPE and OENR/LLDPE blends. It was found that increasing loading level of fillers caused increasing level of tensile strength, shear viscosity, and hardness but decreasing elongation at break and elastomeric properties. Thermoplastic vulcanizates (TPVs) were later prepared based on NR/PE blend at a blend ratio of 60/40. Influence of vulcanization system was first investigated using various vulcanization systems: sulphur, peroxide, mixed system (sulphur and peroxide) and phenolic system using two types of phenolic resins (SP-1045 and HRJ-10518). We found that the phenolic system using HRJ-10518 provided the TPVs with the best properties. Influence of loading level of white oil and fillers (i.e., carbon black and silica) on properties of the TPVs was also studied. We found that the oil and fillers showed similar affect on the TPEs based on a simple blend technique.