

บทคัดย่อ

รหัสโครงการ : RDG4950108

ชื่อโครงการ : การประเมินระบบบำบัดน้ำเสียแบบไร้อากาศที่เหมาะสมสำหรับโรงรีดควันย่างแผ่นสหกรณ์กองทุนส่วนย่าง

ชื่อนักวิจัย : สุเมธ ไชยประพัทช์¹ และ อิสรา รังงาน²

¹ ภาควิชาชีวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อ.หาดใหญ่ จ.สงขลา

² คณะกรรมการจัดการสิ่งแวดล้อม มหาวิทยาลัยสงขลานครินทร์ อ.หาดใหญ่ จ.สงขลา

E-mail address : sumate.ch@psu.ac.th

ระยะเวลาโครงการ : สิงหาคม 2549 – กุมภาพันธ์ 2552

น้ำเสียจากโรงรีดควันย่างแผ่นสหกรณ์กองทุนส่วนย่างเพื่อนำมลสารต่างๆ และมีความเป็นกรดเนื่องจากมีการใช้กรดฟอร์มิกในการจับตัวเนื้อยางซึ่งหากบำบัดน้ำเสียด้วยระบบแบบไร้อากาศจะได้ก๊าซชีวภาพที่ค่อนข้างสะอาดเนื่องจากไม่มีการใช้กรดซัลฟูริกในการผลิตซึ่งจะทำให้เกิดก๊าซไฮเดรตไฮเดรต (H_2S) ดังนั้นงานนี้จึงมีวัตถุประสงค์เพื่อประเมินประสิทธิภาพของระบบบำบัดประยุกต์และผลของสัดส่วนการสูบน้ำเสียย้อนกลับต่อระบบหมักไร้อากาศเพื่อผลิตเชื้อเพลิงก๊าซชีวภาพจากน้ำเสียของสหกรณ์โรงรีดควันย่างแผ่น พร้อมทั้งประเมินความคุ้มค่าในเชิงเศรษฐศาสตร์ในการประยุกต์ใช้ระบบบำบัดดังกล่าวสำหรับโรงรีดควันย่างแผ่นสหกรณ์กองทุนส่วนย่างเพื่อการผลิตพลังงานทดแทน โดยได้เลือกใช้ระบบบำบัดไร้อากาศแบบระบบบ่อหมักย่อยประยุกต์ (Modified Covered Lagoon Digester; MCL) ซึ่งระบบประกอบด้วยถังปฏิกริยา 2 ใบ เชื่อมต่อกัน มีปริมาตรใช้งานรวม 504 ลิตร เดินระบบที่ HRT 30 วัน ที่สัดส่วนการสูบน้ำเสียย้อนกลับ (Recycle period ratio; R_t) ระดับต่างๆ ได้แก่ 100% (สูบนำหุนเวียนตลอดเวลา) 75% 50% 25% และ 0% (ไม่มีการสูบนำหุนเวียน) ส่วนระบบถังปฏิกริยารีดอากาศแบบแผ่นกันประยุกต์ (Modified Anaerobic Baffled Reactor; MABR) ประกอบด้วยถังปฏิกริยาจำนวน 3 ใบเรียงต่อกัน มีปริมาตรใช้งานรวม 204 ลิตร เดินระบบที่ HRT 10 วัน (AD10) 5 วัน (AD5) และ 2.5 วัน (AD2.5) ด้วยสัดส่วนเวลาการสูบนำหุนที่ระดับ 100% 50% และ 0% ในแต่ละ HRT โดยนำน้ำเสียเข้าระบบมีค่า pH อยู่ในช่วง 5.09-6.58 และ COD เฉลี่ย $3,710 \pm 900$ mg/L

จากการศึกษาพบว่า ระบบ MCL มีประสิทธิภาพการบำบัด TCOD สูงสุดเฉลี่ย 97.2% 96.4% 96.3% 95.5% และ 95.0% ที่ R_t เท่ากับ 0% 75% 25% 50% และ 100% ตามลำดับ โดยไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p < 0.05$) ที่สัดส่วนการสูบน้ำเสียย้อนกลับต่างๆ ซึ่งพบว่าที่ R_t เท่ากับ 0% มีอัตราการผลิตก๊าซชีวภาพและองค์ประกอบก๊าซมีเทนสูงสุดเฉลี่ยเท่ากับ 3.92 L/d และ 70.56% ตามลำดับ ส่วนการทำงานของระบบ MABR ที่ HRT 10 5

และ 2.5 วัน พบร่วมกับมีประสิทธิภาพการบำบัด TCOD เนลี่ยสูงสุดเท่ากับ 97.7% (ที่ $R_t=0\%$) 97.3% (ที่ $R_t=0\%$) และ 95.4% (ที่ $R_t=50\%$) ตามลำดับ ซึ่งพบร่วมกับ R_t ในอัตราที่ทำการศึกษาไม่ทำให้เกิดความแตกต่างของประสิทธิภาพการกำจัด TCOD อย่างมีนัยสำคัญทางสถิติ ($p<0.05$) ที่ HRT ที่ทำการศึกษา อัตราการผลิตกําชีวภาพสูงสุดเกิดขึ้นที่ $R_t=50\%$ เนลี่ยเท่ากับ 22.5 44.9 และ 70.5 L/d ที่ HRT=10, 5 และ 2.5 วัน ตามลำดับ โดยพบร่วมกับ R_t ต่างกันว่าระบบจะมีอัตราการผลิตกําชีวภาพสูงกว่าที่ R_t สูงอย่างมีอย่างมีนัยสำคัญทางสถิติ ($p<0.05$) นอกจากนี้ยังพบร่วมกับค่าประกอบของมีเทนในกําชีวภาพในทุก HRT (10, 5, และ 2.5 วัน) จะสูงสุดที่ $R_t=0\%$ มีค่าเท่ากับ 63.7%, 72.8% และ 71.1% ตามลำดับ ดังนั้นผลการศึกษาชี้ให้เห็นว่าสภาวะการเดินระบบ MCL ที่ไม่มีการสูบน้ำเสียย้อนกลับ และระบบ MABR ที่ HRT 2.5 วัน ไม่มีการสูบน้ำเสียย้อนกลับเป็นสภาวะที่เหมาะสมสามารถกำจัด COD ได้สูงกว่า 90% สม่ำเสมอ และให้องค์ประกอบของมีเทนในกําชีวภาพสูงใกล้เคียงกับค่าที่สูงที่สุด การที่ไม่มีการสูบน้ำเสียย้อนกลับสำหรับการผสานจะช่วยประหยัดค่าใช้จ่ายในการเดินระบบและความยุ่งยากในการสร้างระบบ

คำหลัก : กําชีวภาพ; ย่างแ芬เอนรอมควัน; น้ำเสีย; พลังงานทดแทน; ระบบบำบัดน้ำเสีย;
สหกรณ์กองทุนสวนยาง

Abstract

Project code : RDG4950108
Project title : Evaluation of appropriate anaerobic wastewater treatment for Sheet Rubber Plantation Aid Fund Co-operation plant
Investigators : Chaiprapat, S.¹, Rukgham, E.²
¹Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla
²Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla
E-mail address : sumate.ch@psu.ac.th
Project duration : August 2006 – February 2009

Wastewater from the small cooperative rubber sheet factories (CRSFs) contains organic and inorganic pollutants and is acidic due to the use of formic acid in the production process. If this wastewater is treated anaerobically, it will yield the biogas which is rather clean (low H_2S concentration) because of the absence of sulfuric acid, normally used in rubber production in large scale factories. Thus, the objective of this study was to evaluate the effectiveness of the modified anaerobic systems and the effects of wastewater recycle period ratio for the production of biogas from CRSFs wastewater, as well as to assess the feasibility for the investment of anaerobic treatment system to produce this alternative energy. In the experiments, pilot-scale Modified Covered Lagoon Digester (MCL) each consisting of 2 connected rectangular boxes of 504 L working volume were operated at 30 days hydraulic retention time (HRT) under recycle period ratios (R_t) of 100% (continuous wastewater recycle mixing) 75% 50% 25% and 0% (no wastewater recycle mixing). As for the pilot-scale Modified Anaerobic Baffled Reactor (MABR), the system consisted of 3 cylindrical reactors connected in series with a total working volume of 204 L operated at HRT 10 (AD10), 5 (AD5), and 2.5 (AD2.5) days under recycle period ratios of 100%, 50% and 0% in order. The wastewater had pH of 5.09-6.58 and COD of $3,710 \pm 900$ mg/L.

Results showed that MCL systems could remove TCOD as high as 97.2%, 96.4%, 96.3%, 95.5% and 95.0% at $R_t = 0\%$, 75%, 25%, 50% and 100%, respectively, of which no statistical difference ($p < 0.05$) among the means was detected. Highest biogas production and methane content, 3.92 L/d and 70.56%, were obtained at $R_t = 0\%$.

In MABR systems, average TCOD removals were 97.7% (at $R_t=0\%$), 97.3% (at $R_t=0\%$), and 95.4% (at $R_t=50\%$) at HRT 10, 5, and 2.5 days, respectively. R_t in the experimented conditions did not cause significant difference in TCOD removal at each HRT tested. Maximum biogas production occurred at $R_t=50\%$ at the average of 22.5, 44.9, and 70.5 L/d under HRT=10, 5, and 2.5 days, respectively. It was found that lower R_t could statistically yield higher biogas production compared to system operated at higher R_t value. Moreover, methane composition was highest at $R_t=0\%$ at all tested HRTs; 63.7% (HRT 10d), 72.8% (HRT 5d), 71.1% (HRT 2.5d). Thus, the MCL system could be suitably run at HRT 2.5 days while both systems could be run at no recycle mixing ($R_t=0\%$) to achieve a comparable performance of consistent COD removal over 90% and high methane content in the biogas. This could be due to the inherited characteristics of the systems. No mixing requirement leads to a more economical operation and simplicity of the system construction.

Keywords : biogas; ribbed smoked sheets; wastewater; alternative energy; wastewater treatment; rubber plantation aid fund co-operation plants