

บทคัดย่อ

เยื่อเลือกผ่านแบบเมทริกพสมจากยางธรรมชาติและพอลิไวนิลแอลกอฮอล์ที่เข้มขางพสมกับซีโอลิตชนิด 4A เทคนิค FT-IR ถูกนำมาใช้ขึ้นยัการเกิดการเข้มขางของพอลิไวนิลแอลกอฮอล์ในเยื่อเลือกผ่าน ผลการบรวมตัวของเยื่อเลือกผ่านทั้งในน้ำและอุทานอลพบว่าค่าการบรวมตัวของเยื่อเลือกผ่านเพิ่มขึ้นตามปริมาณของ PVA ในเยื่อเลือกผ่านที่เพิ่มขึ้น อย่างไรก็ตามการบรวมตัวของเยื่อเลือกผ่านลดลง เมื่อทำการเติมซีโอลิตที่ปริมาณมากกว่า 10% โดยน้ำหนัก จากการศึกษาสภาวะของน้ำในเยื่อเลือกผ่านด้วยเทคนิค Differential Scanning Calorimetry (DSC) พบว่าสภาวะของน้ำในเยื่อเลือกผ่านเป็นแบบ free water และ non-freezing bound water ซึ่งปริมาณของ bound water เพิ่มขึ้นตามปริมาณของ PVA ในเยื่อเลือกผ่านที่เพิ่มขึ้น แต่ลดลงตามปริมาณของซีโอลิตที่เพิ่มขึ้น การศึกษาถ่ายตัวเชิงความร้อนของเยื่อเลือกผ่านด้วยเทคนิค Thermal Gravimetry (TG) พบว่าเยื่อเลือกผ่านแบบเมทริกพสมมีความเสถียรต่อความร้อนมากกว่ายางธรรมชาติและ PVA ที่เกิดการเข้มขาง จากการตรวจสอบด้วยเทคนิค Scanning Electron Microscopy (SEM) พบว่าการกระจายตัวของอนุภาคซีโอลิตมีการกระจายตัวได้ดีในเยื่อเลือกผ่าน การศึกษาด้วยเทคนิค Transmission Electron Microscopy (TEM) พบว่าเกิดการแยกเฟสของ PVA กับยางธรรมชาติอย่างชัดเจน การศึกษาการหักต่อแรงดึงของเยื่อเลือกผ่าน พบว่าค่าการยืดออกจนขาด (Elongation at break) มีค่าลดลงตามปริมาณของซีโอลิตที่เพิ่มขึ้นแต่ค่ามอคูลัสมีค่าเพิ่มขึ้น การศึกษาประสิทธิภาพการดูดซับน้ำของเยื่อเลือกผ่าน พบว่าการเติมซีโอลิตในเยื่อเลือกผ่านทำให้ประสิทธิภาพของการดูดซับน้ำเพิ่มขึ้นเมื่อปริมาณของน้ำน้อย และจะลดลงเมื่อปริมาณของน้ำในของพสมอุทานอลกับน้ำที่เพิ่มขึ้น การศึกษาการแยกน้ำออกจากของพสมของน้ำกับอุทานอลโดยเยื่อเลือกผ่านที่สังเคราะห์ขึ้นด้วยเทคนิคเพอร์เรซชัน ศึกษาผลของปริมาณซีโอลิต สารละลายน้ำ สารละลายน้ำป้อน และอุณหภูมิของสารป้อนที่มีต่อค่าเพอมิเอกฟลักซ์และการแยก จากการทดลองพบว่าเพอมิเอกฟลักซ์ มีค่าเพิ่มขึ้นเมื่อปริมาณซีโอลิต และปริมาณน้ำในสารละลายน้ำป้อนเพิ่มขึ้น แต่ค่าการแยกมีค่าลดลง เมื่อเพิ่มอุณหภูมิของสารละลายน้ำป้อนค่าเพอมิเอกฟลักซ์จะมีค่าเพิ่มขึ้น ส่วนค่าประสิทธิภาพการแยกมีค่าลดลง เนื่องจากสายโซ่พอลิเมอร์มีการเคลื่อนที่มากขึ้นที่อุณหภูมิสูง และเยื่อเลือกผ่านเมทริกพสมที่สัดส่วนของ NR ต่อ PVA เท่ากับ 90:10 โดยน้ำหนัก และปริมาณซีโอลิต 20 wt.% สามารถเพิ่มความเข้มข้นของอุทานอลได้สูงถึง 99.9%v/v เมื่อใช้ความเข้มข้นของอุทานอลในสารละลายน้ำป้อนเท่ากับ 95%v/v

Abstract

The mixed matrix membranes (MMM) were prepared from blend of crosslinked poly(vinyl alcohol)(PVA) and natural rubber (NR) form semi-IPN and incorporated with zeolite 4A. FT-IR spectroscopy confirmed the crosslinking of PVA in the MM membrane. Swelling measurements were carried out in both water and absolute ethanol. It was found that the degree of swelling in both water and ethanol increased with increasing PVA content in the membranes, however adding zeolite more than 10 wt.% leaded to the decrease of membrane swelling. The states of water in the membranes were investigated using differential scanning calorimeter (DSC). It was observed that water absorbed in the membranes was appeared as free water and non-freezing bound water. The amount of bound water in the membranes increased with increasing PVA content but decreased with the amount of zeolite. The thermal degradation of the MM membranes was studies using thermal gravimetry (TG). The MM membranes showed higher thermal stability compared with pure NR and crosslinked PVA due to the incorporation of zeolite. The disperstion of zeolite particles in the MM membrane was observed by Scanning Electron Microscopy (SEM) which showed a well dispersing of zeolite particles in the semi-IPN matrix. Transmission Electron Microscopy (TEM) analysis showed the distinct phase separate of crosslinked PVA and NR. The mechanical property of MM membranes was investigated by tensile testing. It was observed the elongation at break decreased with increasing zeolite content in membranes but the modulus was found to increase. The sorption selectivities of MM membranes were enhanced with zeolite content especially, at low water concentration of ethanol-water mixtures. However the selectivities decreased when water content in the mixtures increased. The pervaporation dehydration of ethanol-water mixtures using MM membranes was studies. The permeation flux and separation factor were examined as a function of zeolite content, feed concentration and feed temperature. It was found that the permeate flux increased with increasing zeolite content and water content in the feed. However the separation factor decreased with increasing water content in the feed. The total permeates flux increased with increasing temperature in feed with the expense of the separation factor because of the increasing mobility of polymer chains. The MM membrane with NR:PVA 90:10 and 20 wt.% zeolite can be purified ethanol up to 99.9 %v/v using 95%v/v ethanol feed concentration.