

ชื่อเรื่อง (ภาษาไทย) การวิจัยและพัฒนาการผลิตส้มโอมถ่ายยังปีนเพื่อการส่งออกของเกษตรกรในเขตภาคเหนือตอนล่าง

ชื่อเรื่อง (ภาษาอังกฤษ) Research and Development on Sustainable Production of Pummelo For Export in Lower Northern Part of Thailand

**ผู้ศึกษา ผศ.ดร.พิระศักดิ์ ฉายประสาท ผศ.ดร.ชนิดา หันสวัสดิ์
และว่าที่ร้อยตรีจตุรภัทร รัตนวิสาณนท์**

บทคัดย่อ

จากการศึกษาปัจจัยก่อนการเก็บเกี่ยวที่มีผลต่อคุณภาพหลังการเก็บเกี่ยวส้มโอมพันธุ์ ท่าข้ออยและขาวแตงกว่า โดยใช้ต้นส้มโอมอายุ 6 ปี มีเส้นผ่าศูนย์กลางทรงพุ่ม 2.5-2.7 เมตร และเส้นรอบวงโคนต้นประมาณ 0.4 - 0.5 เมตร และนำมาตรวจสอบคุณภาพทางเคมีภysis ในการศึกษาครั้งนี้ได้แบ่งการทดลองเป็น 4 การทดลอง โดยวางแผนการทดลองแบบ randomized complete block design (RCB) ดังนี้ การทดลองที่ 1 การศึกษาเปรียบเทียบคุณภาพผลส้มโอมที่ได้รับใบรับรองมาตรฐาน GAP และไม่ได้รับใบรับรองมาตรฐาน GAP ในเขตภาคเหนือตอนล่าง จากการตรวจวิเคราะห์สารเคมีติดตัวในส้มโอมพันธุ์ท่าข้ออยและขาวแตงกว่าที่ได้รับรองมาตรฐาน GAP และไม่ได้รับรองมาตรฐาน GAP พบสารเคมีในกลุ่ม Organophosphate และ Pyrethroids ส่วนคุณภาพส้มโอมพันธุ์ท่าข้ออยและส้มโอมพันธุ์ขาวแตงกว่าที่ได้รับรองมาตรฐาน GAP และไม่ได้รับรองมาตรฐาน GAP ได้แก่ น้ำหนักผล ความสูง เส้นรอบวง น้ำหนักเปลือก ความหนาเปลือก ปริมาณกรดที่ไทเรตได้ ปริมาณของแข็งที่ละลายน้ำได้ วิตามินซี ความแน่นเนื้อของเปลือกและเนื้อ และการเปลี่ยนแปลงสีผิว มีค่าเฉลี่ยใกล้เคียงกัน การทดลองที่ 2 การศึกษาจำนวนผลต่อต้นที่เหมาะสมในการผลิตส้มโอมคุณภาพดี แบ่งเป็น 4 กรรมวิธี ดังนี้ กรรมวิธีที่ 1 Control (ไม่มีการไว้ผล) กรรมวิธีที่ 2 ไว้ผลที่ระดับ 60 ผล/ต้น กรรมวิธีที่ 3 ไว้ผลที่ระดับ 80 ผล/ต้น และกรรมวิธีที่ 4 ไว้ผลที่ระดับ 100 ผล/ต้น จากการตรวจคุณภาพส้มโอมพันธุ์ท่าข้ออยพบว่า การไว้ผลที่ 60 ผล/ต้น มีผลทำให้น้ำหนักผล (1.48 กิโลกรัม) เส้นรอบวงของผล (52.48 เซนติเมตร) ปริมาณของแข็งที่ละลายน้ำได้ (8.73 องศบริกซ์) และปริมาณ SS/TA (11.86) มีค่ามากกว่ากรรมวิธีอื่นๆ ส่วนการไว้ผลที่ 80 ผล/ต้น มีผลทำให้ความสูงของผล (16.08 เซนติเมตร) และน้ำหนักเปลือก (0.69 กิโลกรัม) มีค่ามากกว่าทุก ๆ กรรมวิธี นอกจากนี้ยังพบว่าการไว้ผลที่ 100 ผล/ต้น มีผลทำให้ปริมาณกรดที่ไทเรตได้ (0.84 %) และปริมาณวิตามินซี (43.62 mg/100ml) มากกว่ากรรมวิธีอื่น ๆ ในส่วนของการเปลี่ยนแปลงสีผิว และความแน่นเนื้อในทุก ๆ กรรมวิธีไม่มีความแตกต่างกันทางสถิติ จากการตรวจคุณภาพส้มโอมพันธุ์ขาวแตงกว่า การไว้ผลที่ 60 ผล/ต้น มีผลทำให้น้ำหนักผล (1.26 กิโลกรัม) และความแน่นเนื้อของเนื้อส้มโอม (3.21 kg/cm²)

มีค่ามากกว่ากรัมวิธีอื่น ๆ ส่วนการไว้ผลที่ 80 ผล/ตัน มีผลทำให้ ปริมาณของแข็งที่ละลายน้ำได้ ปริมาณ SS/TA และปริมาณวิตามินซีมีค่ามากกว่า control แต่พบว่าการไว้ผลที่ 100 ผล/ตัน มีผลทำให้ความสูง (15.72 เซนติเมตร) เส้นรอบวง(54.33 เซนติเมตร) และน้ำหนักเปลือก(0.54 กิโลกรัม) มีค่ามากกว่ากรัมวิธีอื่น ๆ ในส่วนของค่าการเปลี่ยนแปลงสีผิวไม่มีความแตกต่างกันในทุกร่วมวิธีไม่มีความแตกต่างกันทางสถิติ การทดลองที่ 3 การศึกษาผลของสาร Ca-B และจิบเบอเรลลิน (GA₃) ที่มีต่อการพัฒนาของผลส้มโคลและคุณภาพของส้มโคลพันธุ์ท่าข่อย พบว่า ในเดือนที่ 7 พบร้า การฉีดพ่นสาร Ca (200 ppm) - B (1.5 ppm) + GA₃ 25 ppm มีผลทำให้คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้ (9.00 องศาบริกซ์) ความแน่นเนื้อ (เนื้อ) (3.02 kg/cm²) และอัตราส่วนระหว่างSS/TA (13.10) มีค่ามากกว่ากรัมวิธีอื่น ๆ คุณภาพทางกายภาพ พบร้า เมื่อฉีดพ่นสารตาม Ca (800 ppm) -B (6 ppm) + GA₃ 25 ppm มีผลทำให้น้ำหนักผล(1.49 กิโลกรัม) ความสูง (14.33 เซนติเมตร) มีค่ามากกว่ากรัมวิธีอื่น ๆ ในเดือนที่ 8 พบร้า การฉีดพ่นสาร Ca (200 ppm) -B (1.5 ppm) และ Ca (200 ppm) -B (1.5 ppm) + GA3 25 ppm มีผลทำให้คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้ (9.06 องศาบริกซ์) อัตราส่วนระหว่าง SS/TA(11.22) มีค่ามากกว่าชุดควบคุม คุณภาพทางกายภาพ พบร้า ความสูง (16.30 เซนติเมตร) น้ำหนักผล (1.66 กิโลกรัม) น้ำหนักเปลือก (0.70 กิโลกรัม) และเส้นรอบวง (54.66 เซนติเมตร) เมื่อฉีดสาร Ca (800 ppm) - B (6 ppm) + GA3 25 ppm มีค่ามากกว่าชุดควบคุม ในเดือนที่ 9 พบร้า ฉีดพ่นด้วยสาร Ca (400 ppm) – B (3 ppm), Ca(800 ppm)-B(6 ppm) และ Ca (400 ppm) - B (3 ppm) +GA3 25 ppm มีผลทำให้คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้ (8.46 องศาบริกซ์) อัตราส่วนระหว่าง SS/TA (11.22) และปริมาณวิตามินซี (43.57 mg/100ml) มีค่ามากกว่ากรัมวิธีอื่น คุณภาพทางกายภาพ พบร้า การฉีดพ่นสาร Ca (200 ppm)- B(1.5 ppm) มีผลให้ ความสูง(15.25 เซนติเมตร) เส้นรอบวง (53.95 เซนติเมตร) และน้ำหนักผล (1.59 กิโลกรัม) มีค่ามากกว่าชุดควบคุม คุณภาพของส้มโคลพันธุ์ข่าวแตงกวาพบว่า ในช่วงเดือนที่ 7 พบร้า การฉีดพ่นด้วยสาร Ca (200 ppm) -B (1.5 ppm) + GA₃, Ca (400 ppm) – B (3 ppm)+ GA₃ Ca (800 ppm)- B (6 ppm) และ Ca (400 ppm) – B (3 ppm) มีผลทำให้คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้ (10 องศาบริกซ์) ปริมาณกรดที่ไทยเกรตได้ (0.69 %) ปริมาณวิตามินซี (44.16 mg/100ml) และสีเปลือก (L*) (46.36) มีค่ามากกว่าชุดควบคุม ตามลำดับ และยังพบว่าการฉีดพ่นด้วยสาร Ca (400 ppm) – B (3 ppm) + GA₃ 25 มีค่าความแน่นเนื้อของเนื้อมากกว่าชุดควบคุม ในส่วนของคุณภาพทางกายภาพ พบร้า เมื่อฉีดพ่นสาร Ca (400 ppm) – B (3 ppm) + GA₃ 25 มีผลทำให้น้ำหนักผล (1.50 กิโลกรัม) เส้นรอบวง (51.31 เซนติเมตร) ความสูง (15.83 เซนติเมตร) มีค่ามากกว่าชุดควบคุม แต่การฉีดพ่นด้วยสาร Ca (800 ppm) – B (6 ppm) มีผลทำให้ความหนาของเปลือก (2.26 เซนติเมตร) มีค่ามากกว่ากรัมวิธีอื่น ๆ ในช่วงเดือนที่ 8 พบร้า การฉีดพ่นด้วยสาร Ca (200 ppm) – B (1.5 ppm) + GA₃ 25, Ca (400 ppm) – B (3 ppm) + GA₃ 25 ppm และ Ca (400 ppm) – B (3 ppm) มีผลทำให้

คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้ (9.80 องศาบริกซ์) ปริมาณวิตามินซี (40.03 mg/100ml) ความแน่นเนื้อ (เนื้อ) (3.08 kg/cm^2) และสีเนื้อ (L^*) เท่ากับ 41.58 มีค่ามากกว่ามาตรฐาน ส่วนคุณภาพทางกายภาพ พบว่า เมื่อฉีดสาร Ca(400 ppm)-B(3 ppm) + GA₃ 25 ppm และ Ca(400 ppm)-B(3 ppm) มีผลทำให้เส้นรอบวง(53.13 เซนติเมตร) น้ำหนักเปลือก(0.58 กิโลกรัม) น้ำหนักผล(1.55 กิโลกรัม) มีค่ามากกว่ามาตรฐาน ในช่วงเดือนที่ 9 พบว่า ฉีดพ่นด้วยสาร Ca(400 ppm)-B(3 ppm) และ Ca(400 ppm)-B(3 ppm)+GA₃ 25 ppm มีผลทำให้คุณภาพทางเคมี ได้แก่ ปริมาณของแข็งที่ละลายน้ำได้(8.46 องศาบริกซ์) สีเนื้อ(L^*) เท่ากับ 46.25 มีค่ามากกว่ามาตรฐาน และยังพบว่า การฉีดพ่นด้วยสาร Ca(400 ppm)-B(3 ppm) + GA₃ 25 และ Ca(800 ppm)-B(6 ppm) มีค่าปริมาณกรดที่ไทเทเรตได้(0.68 %) ปริมาณวิตามินซี (50.52 mg/100ml) ความแน่นเนื้อ (2.31 kg/cm^2) มากกว่ามาตรฐาน ส่วนคุณภาพทางกายภาพ พบว่า การฉีดพ่นด้วยสาร Ca(400 ppm)-B(3 ppm)+ GA₃ 25 มีผลให้ ความสูง (17.58 เซนติเมตร) เส้นรอบวง(55.13 เซนติเมตร) น้ำหนักเปลือก (0.78 กิโลกรัม) เปลือกหนา (2.26 เซนติเมตร) มีค่ามากกว่ามาตรฐาน และยังพบว่าในเดือนที่ 9 อาการข้าวสารจะเกิดมากที่สุดภายหลังการฉีดพ่นสาร Ca-B 400 ppm ซึ่งมากกว่ากรรmovิธีอื่น ๆ การทดลองที่ 4 ผลของการห่อผลที่มีต่อการคุณภาพของผลส้มโอ คุณภาพของผลส้มโอพันธุ์ท่าข่อยกรรmovิธีที่ห่อผลด้วยถุงสีฟ้ามีผลทำให้ น้ำหนักผล (1.77 กิโลกรัม) ความสูง (15.44 เซนติเมตร) เส้นรอบวง (54.65 เซนติเมตร) และน้ำหนักเปลือก (0.67 กิโลกรัม) มีค่ามากกว่ากรรmovิธีอื่น ๆ และยังพบว่า กรรmovิธีที่ห่อผลด้วยถุงสีขาวมีผลทำให้ ความหนาเปลือก (1.98 เซนติเมตร) และความแน่นเนื้อของเนื้อ ส้มโอ (2.81 kg/cm^2) มีค่ามากที่สุด และพบว่ากรรmovิธีที่ไม่ห่อผลมีผลทำให้ ปริมาณของแข็งที่ละลายน้ำได้ (9.53 องศาบริกซ์) และปริมาณกรดที่ไทเทเรตได้(0.69 %)มีค่าสูงที่สุด การเปลี่ยนแปลงสีเปลือก กรรmovิธีที่ห่อผลด้วยถุงสีขาวมีผลทำให้สีเปลือก ($L^* a^* b^*$ และ H^*) มีค่ามากกว่ากรรmovิธีอื่น ๆ คุณภาพของผลส้มโอพันธุ์ขาวแต่งกรากรรmovิธีที่ห่อผลด้วยถุงสีขาวมีผลทำให้ น้ำหนักผล (1.60 กิโลกรัม) ความสูง (16.05 เซนติเมตร) ความหนาเปลือก (2 เซนติเมตร) และอาการข้าวสาร มีค่ามากกว่ากรรmovิธีอื่น ๆ และกรรmovิธีที่ไม่ห่อผลมีผลทำให้ น้ำหนักเปลือก (0.15 กิโลกรัม) และความแน่นเนื้อของเปลือก (0.81 kg/cm^2) ปริมาณของแข็งที่ละลายน้ำได้ (9.53 องศาบริกซ์) และปริมาณกรดที่ไทเทเรตได้ (0.65 %) มีค่ามากที่สุด ในส่วนของการเปลี่ยนแปลงสีเปลือก พบว่ากรรmovิธีที่ห่อผลด้วยถุงสีขาวมีผลทำให้สีเปลือก ($L^* a^* b^*$ และ H^*) มีค่ามากกว่ากรรmovิธีอื่น ๆ

การศึกษาผลของสารเคลือบผิวไครโടิชาน ควรนำไปเนื้อวัล[®] และสารรวม 1-MCP ที่มีต่อคุณภาพ และอายุการเก็บรักษาของผลส้มโอ 2 สายพันธุ์ ได้แก่ พันธุ์ขาวแต่งกรา และท่าข่อยภายหลังการเก็บเกี่ยว โดยวางแผนการทดลองแบบ Factorial in Completely Randomized Design (CRD) พบว่าการศึกษาผลของสารเคลือบผิวไครโടิชานความเข้มข้น 0 0.5 และ 1.0 % (น้ำหนัก/ปริมาตร) เก็บรักษาเป็นเวลา 56 วันที่อุณหภูมิ 5 10 15 และ 30 องศาเซลเซียส ผลส้มโอขาวแต่งกรา ที่เคลือบผิวด้วยไครโടิชานความเข้มข้น 0.5 % (น้ำหนัก/

ปริมาณ) เก็บรักษาที่ 10 องศาเซลเซียส มีคุณภาพดีที่สุด สามารถลดการเปลี่ยนแปลงปริมาณกรดที่ไทยเหตุได้ ปริมาณของแข็งที่ละลายน้ำได้ต่อปริมาณกรดที่ไทยเหตุได้ อัตราการหายใจ ความแน่นเนื้อ และมีค่าแนนความชอบโดยรวมสูงที่สุดเมื่อเปรียบเทียบกับกรัมวิธีอื่นๆ ($p \leq 0.05$) ผลสัมโภที่เคลือบผิวด้วย ไอโคโตชานความเข้มข้น 1.0 % (น้ำหนัก/ปริมาตร) เก็บรักษาที่ 10 องศาเซลเซียสสามารถลดการเปลี่ยนแปลงสีผิวได้ดีที่สุด แต่ผลสัมโภที่เคลือบผิวด้วยไอโคโตชานความเข้มข้น 1.0 % (น้ำหนัก/ปริมาตร) เก็บรักษาที่ 10 องศาเซลเซียสมีปริมาณเอทานอลสูงที่สุด (1,115 ppm) ในส่วนของผลสัมโภท่าข้อการศึกษาผลสารเคลือบผิวไอโคโตชานความเข้มข้น 0.5 และ 1.0 % (น้ำหนัก/ปริมาตร) เก็บรักษาเป็นเวลา 56 วันที่อุณหภูมิ 5 10 15 และ 30 องศาเซลเซียส พบร่วมผลสัมโภท่าข้อที่เคลือบผิวด้วยไอโคโตชานความเข้มข้น 0.5 % (น้ำหนัก/ปริมาตร) เก็บรักษาที่ 10 องศาเซลเซียส สามารถลดการเปลี่ยนแปลงของสีผิว ค่าความแน่นเนื้อ ปริมาณเอทานอลปริมาณของแข็งที่ละลายน้ำได้ต่อปริมาณกรดที่ไทยเหตุได้ และมีค่าแนนความชอบโดยรวมสูงที่สุดเมื่อเปรียบเทียบกับกรัมวิธีอื่นๆ ($p \leq 0.05$) ผลสัมโภที่เก็บรักษาที่อุณหภูมิ 5 องศาเซลเซียสทั้ง 2 ความเข้มข้น ช่วยลดการสูญเสียน้ำหนักได้ดีที่สุด แต่ผลสัมโภที่เก็บรักษาที่อุณหภูมิ 5 องศาเซลเซียสมีปริมาณเอทานอลสูงกว่ากรัมวิธีอื่นๆ ($p \leq 0.05$) การศึกษาผลสัมโภขางแต่งกาวที่เคลือบผิวด้วยสารเคลือบผิวคาร์บอนบานาเรอัล[®] ความเข้มข้น 50 และ 100 % (ปริมาตร/ปริมาตร) เก็บรักษาเป็นเวลา 56 วันที่อุณหภูมิ 5 10 15 และ 30 องศาเซลเซียส พบร่วมผลสัมโภขางแต่งกาวที่เคลือบผิวสารบานาเรอัล[®] ความเข้มข้น 50 % (ปริมาตร/ปริมาตร) เก็บรักษาที่ 10 องศาเซลเซียสตีที่สุด มีการเปลี่ยนแปลงความแน่นเนื้อเล็กน้อยเมื่อระยะเวลานานขึ้น มีค่าแนนความชอบโดยรวมสูงที่สุด และลดการเกิดกลินพิดปกติได้ดีกว่ากรัมวิธีอื่นๆ ($p \leq 0.05$) ส่วนของผลสัมโภท่าข้อที่เคลือบผิวด้วยสารเคลือบผิว สารบานาเรอัล[®] ความเข้มข้น 50 และ 100 % (ปริมาตร/ปริมาตร) เก็บรักษาเป็นเวลา 56 วันที่อุณหภูมิ 5 10 15 และ 30 องศาเซลเซียส พบร่วมการเคลือบผิวสัมโภด้วยสารเคลือบผิว สารบานาเรอัล[®] ความเข้มข้น 100 % (ปริมาตร/ปริมาตร) เก็บรักษาที่อุณหภูมิ 10 องศาเซลเซียสให้ผลดีที่สุด สามารถลดการเปลี่ยนแปลงของสีผิว ช่วยลดการเปลี่ยนแปลงสีผิวจากสีเขียวเป็นสีเหลือง ลดการสูญเสียน้ำหนัก และมีค่าแนนความชอบโดยรวมสูงที่สุด มีการเปลี่ยนแปลงปริมาณของแข็งที่ละลายน้ำได้ ปริมาณกรดที่ไทยเหตุได้ ปริมาณของแข็งที่ละลายน้ำได้ต่อปริมาณกรดที่ไทยเหตุได้ และปริมาณวิตามินซีเพียงเล็กน้อย การศึกษาผลของ 1-MCP ที่มีต่อคุณภาพและอายุการเก็บรักษาของสัมโภขางแต่งกาวภายหลังการเก็บเกี่ยว โดยวางแผนการทดลองแบบ factorial in completely randomized design (CRD) ประกอบด้วย ปัจจัยที่ 1 ความเข้มข้น 0.01 0.1 และ 1 ppm ปัจจัยที่ 2 ระยะเวลา 1 2 3 และ 4 ชั่วโมง เปรียบเทียบกับชุดควบคุมที่ไม่ได้รับ และวัดนำไปเก็บรักษาที่อุณหภูมิ 10 องศาเซลเซียส เป็นเวลา 56 วัน จากการทดลองพบร่วมผลสัมโภขางแต่งกาวที่รرمด้วย 1-MCP ความเข้มข้น 0.01 ppm เป็นเวลา 4 ชั่วโมง ช่วยลดการเปลี่ยนแปลงสีผิวของผลสัมโภที่สุด ช่วยลดการเปลี่ยนแปลงปริมาณของแข็งที่ละลายน้ำได้ อัตราการหายใจ ความแน่นเนื้อ และมีค่าแนนความชอบโดยรวมสูงที่สุด การรวมผลสัมโภด้วยสาร 1-MCP ความเข้มข้น 0.01 และ 0.1

ppm ทุกระยะเวลาไม่ทำให้เกิดเปลือกสีน้ำตาล ผลสัมโภขาวแต่งกวนที่รวมสาร 1-MCP ด้วยความเข้มข้นสูง หรือใช้เวลาในการรวมสารนาน ได้แก่ การรวมผลสัมโภด้วยสาร 1-MCP ความเข้มข้น 1.0 ppm ทุกระยะเวลาการรวม ซักนำให้เกิดเปลือกเป็นสีน้ำตาล ในกรณีของสัมโภท่าข้อของการศึกษาความเข้มข้นและระยะเวลาที่เหมาะสมในการรวมผลสัมโภท่าข้อด้วยสาร 1-MCP พบว่า การรวม 1-MCP ความเข้มข้น 0.1 ppm เป็นเวลา 3 ชั่วโมง ดีที่สุดมี SS/TA สูงที่สุด ขณะความแน่นเนื้อ และมีความชอบโดยรวมสูงที่สุดซึ่งมีความสัมพันธ์กับปริมาณความหวาน ($p \leq 0.05$) การรวมผลสัมโภด้วยสาร 1-MCP ความเข้มข้น 0.01 ทุกร่วมวิธี และ 0.1 ppm ที่รวมด้วยเวลา 1 2 และ 3 ชั่วโมงไม่ทำให้เกิดเปลือกสีน้ำตาล แต่ผลสัมโภท่าข้อที่รวมสาร 1-MCP ด้วยความเข้มข้นสูง และใช้เวลาในการรวมสารนานได้แก่ การรวมผลสัมโภด้วยสาร 1-MCP ความเข้มข้น 0.1 ppm เป็นเวลา 4 ชั่วโมง และการรวม 1-MCP ความเข้มข้น 1.0 ppm เป็นเวลา มากกว่าชั่วโมง ซักนำให้เกิดเปลือกเป็นสีน้ำตาล

การวิจัยครั้งนี้มีจุดมุ่งหมายเพื่อทำการศึกษาวิธีการเก็บรักษาสัมโภตัดแต่งโดยใช้ฟิล์มห่อหุ้มและสารเคลือบผิวนิคบิโนคได้ชนิดต่าง ๆ ที่เหมาะสมต่อการยืดอายุการเก็บรักษาของสัมโภตัดแต่ง 2 สายพันธุ์ ได้แก่ พันธุ์ท่าข้ออย และพันธุ์ขาวแต่งกวนและทำการบรรจุแบบดัดแปลงสภาพบรรจุภัณฑ์โดยใช้ฟิล์ม 2 ชนิด ได้แก่ ฟิล์ม Polyethylene (PE) และฟิล์ม Polyvinylchloride (PVC) และสารเคลือบผิวนิคบิโนคได้ 3 ชนิด ได้แก่ 1.0 % Carboxy Methyl Cellulose (CMC), 0.5 % Chitosan และ 1.0 % Alginato เก็บรักษาที่อุณหภูมิ 5 °C, 15 °C และ 37 °C จากนั้นทำการวิเคราะห์คุณภาพทางเคมี กายภาพ คุณค่าทางโภชนาการ ร้อยละของการเสื่อมเสียโดยใช้อุจจิณฑ์ และประเมินค่าทางประสิทธิภาพสัมผัส ผลการศึกษาพบว่าสัมโภตัดแต่งพันธุ์ท่าข้ออย และพันธุ์ขาวแต่งกวนที่ห่อหุ้มด้วยฟิล์ม PVC และเคลือบผิวด้วย 1.0 % CMC และเก็บรักษาที่อุณหภูมิ 5 °C ในวันที่ 9 ของการเก็บรักษา มีปริมาณกิตามินซีคงเหลือ ปริมาณกรดพีโนลิก และฤทธิ์ด้านอนุมูลอิสระในปริมาณที่สูงกว่าที่อื่น ๆ อย่างมีนัยสำคัญทางสถิติ ($P \leq 0.05$) คือ 61.68 มิลลิกรัมต่อกิโลกรัมตัวอย่าง, 250.23 มิลลิกรัมต่อลิตร และ 66.71 เปอร์เซ็นต์ ตามลำดับของสัมโภตัดแต่งพันธุ์ท่าข้ออย สำหรับสัมโภตัดแต่งพันธุ์ขาวแต่งกวนมี 66.89 มิลลิกรัมต่อกิโลกรัมตัวอย่าง, 298.22 มิลลิกรัมต่อลิตร และ 68.05 เปอร์เซ็นต์ ตามลำดับ ในขณะที่การเคลือบผิวสัมโภตัดแต่งด้วย 0.5 % Chitosan และเก็บรักษาที่อุณหภูมิ 5 °C จะช่วยชะลอการสูญเสียน้ำหนักได้ดี และคงความแน่นเนื้อได้ดีที่สุด ซึ่งสอดคล้องกับผลการประเมินค่าทางประสิทธิภาพสัมผัสที่ได้รับคะแนนมาก ยอมรับในคุณลักษณะทางด้านต่าง ๆ สูงกว่าการเคลือบผิวด้วยสารเคลือบผิวอื่น ๆ นอกจากนี้ยังพบว่าการเคลือบผิวด้วย 0.5 % Chitosan ยังสามารถยับยั้งการเสื่อมเสียของจากเรือราได้ดีที่สุด

ด้วย ผลการศึกษาแสดงให้เห็นว่าการยึดอยุกการเก็บรักษาตัวนิโอลิตแแต่งที่เคลือบผิวด้วย 1.0 % CMC และ 0.5 % Chitosan และเก็บรักษาที่อุณหภูมิ 5 °C สามารถยึดอยุกการเก็บรักษาตัวนิโอลิตแแต่งได้นาน 27 วัน โดยผู้ทดสอบยังให้การยอมรับคุณลักษณะทางประสิทธิภาพด้านด่าง ๆ ในขณะที่ตัวนิโอลิตแแต่งที่มีการบรรจุแบบดัดแปลงสภาพของภาชนะทั้งที่ห่อหุ้มด้วยฟิล์ม PE และ PVC เพียงอย่างเดียวจะมีอยุกการเก็บรักษาที่อุณหภูมิ 5 °C นาน 9 วัน และ 15 วันตามลำดับ และอยุกการเก็บรักษาตัวนิโอลิตแแต่งจะสั้นลงเมื่ออุณหภูมิการเก็บรักษาสูงขึ้น

ABSTRACT

Study on the some preharvest factors to postharvest quality of pummelo (*Citrus maxima* Merr.) cv. Takoi and Khao Taeng Gua. Using 6 year-old trees with canopy periphery 2.5-2.7 meters and periphery 0.4-0.5 meter was carried out at Amphur Mueang, Chainat province and Amphur Pho Prathap Chang, Phichit province. In the study were divided into 4 experimental such as Experiment 1, The physiochemical qualities was studied to compared between the pummelo fruits from GAP and non GAP certification. The results found that Organophosphate and Pyrethroid were the major chemical residues in both GAP and non GAP. Moreover, the physiochemical characteristics such as weight, height, peripheral, peel weight, peel thickness, titratable acidity (TA), soluble solid (SS), vitamin C, peel and pulp firmness and color changes in peel and plup were nearly similar. Experiment 2, Study of crop load on postharvest quality of pummelo, the quality of pummelo Takoi, It founded that treatment 60 fruits/tree showed the highest weight (1.48 kg) and fruit periphery (52.43 cm) In addition, soluble solids (SS) and SS/TA also showed higher than other treatments. As for treatment of 80 fruits/tree showed that highest height (16.08 cm) and peel weight (0.69 kg) more than other treatments. But treatment 100 fruits/tree found the highest content of titratable acidity and vitamin C more than other treatments. Moreover, it found that color changes (L^* a^* b^* and H^o value) and fruit firmness of all treatments were no significant difference. The quality of pummelo Khao Taeng Gua, the results found the crop load of 60 fruits/tree had weight (1.26 kg) and fruit firmness(3.21 kg/cm^2) were also higher than other treatments. The crop load of trees thinned to 80 fruits/tree had soluble solids (SS) and SS/TA ratio vitamin C higher than control. But the crop load of trees thinned to 100 fruits/tree were the highest height (15.72 cm) fruit periphery (54.33 cm) and peel weight (0.54 kg). Moreover, it found that color changes (L^* a^* b^* and H^o value) was not significantly different. Experiment 3 Effect of Ca-B and GA_3 on the postharvest quality of Pummelo fruits cv. Takoi, The results showed that at 7 months after anthesis, the soluble solids(9.00°Brix), SS/TA ratio (13.10) and firmness of pulp (3.02 kg/cm^2) of the pummelo fruits treated with Ca(200 ppm)-B(1.5 ppm) + GA_3 25 ppm more than other treatments. The physical characteristics showed

that fruit weight(1.49 kg) and height(14.33 cm) of pummelo from Ca(800 ppm)-B(6 ppm) + GA₃ 25 ppm were higher than other treatments. At 8 months after anthesis, the fruits from treatment Ca(200 ppm)-B(1.5 ppm) and Ca(200 ppm)-B(1.5 ppm) + GA₃ 25 ppm showed higher soluble solid(9.06 °Brix) and SS/TA ratio(11.22) more than the control. Fruit treated with Ca(800 ppm)-B(6 ppm) + GA₃ 25 ppm showed height(16.30 cm), fruit weight(1.66 kg), peel weight(0.70 kg) and periphery(54.66 cm) more than the control. Late harvesting period (9 months after anthesis) showed that the fruits treated with Ca(400 ppm)-B(3 ppm), Ca(800 ppm)-B(6 ppm) and Ca(400 ppm)-B(3 ppm) + GA₃ 25 ppm had higher soluble solids(8.46 °Brix), SS/TA ratio(11.22) and vitamin C (43.57 mg/100ml) than other treatments. Fruit treated with Ca(200 ppm)-B(1.5 ppm) had higher height(15.25 cm), fruit periphery(53.95 cm) and fruit weight(1.59 kg) than the control. Effect of Ca-B and GA₃ on the postharvest quality of Pummelo fruits cv. Khao Taeng Gua, The results showed that at 7 months after anthesis, the soluble solids(10 °Brix), titratable acidity(0.69 %), vitamin C(44.16 mg/100ml), and L value on peel (46.36)of the pummelo fruits treated with Ca(200 ppm)-B(1.5 ppm)+GA₃, Ca(400 ppm)-B(3 ppm))+GA₃, Ca(800 ppm)-B(6 ppm) and Ca(400 ppm)-B(3 ppm) were higher than control. In addition, the firmness of pulp on the pummelo fruits treated with Ca(400 ppm)-B(3 ppm) + GA₃ 25 were more than control. The physical characteristics such as weight(1.50 kg), periphery(51.31 cm), and height(15.83 cm) on the fruits treated with Ca (400 ppm)-B(3 ppm) + GA₃ 25 were more than control, but the fruits treated with Ca(800 ppm)-B(6 ppm) showed the highest thickness of peel(2.26 cm) more than control. At 8 months after anthesis, the fruits treated with Ca(200 ppm)-B(1.5 ppm) + GA₃ 25, Ca(400 ppm)-B(3 ppm) + GA₃ 25 ppm and Ca(400 ppm)-B(3 ppm) showed higher soluble solids(9.80 °Brix), Vitamin C(40.03 mg/100ml), firmness of pulp)(3.08 kg/cm²), and L value of pulp (41.58) more than control. The physical characteristic showed that fruit periphery(53.13 cm), peel weight(0.58 kg), fruit weight(1.55 kg) on the fruits treated with Ca(400 ppm)-B(3 ppm) + GA₃ 25 ppm and Ca(400 ppm)-B(3 ppm) were higher than control. Late harvesting period (9 months after anthesis) showed that the fruits treated with Ca(400 ppm)-B(3 ppm) and Ca(400 ppm)-B(3 ppm)+GA₃ 25 ppm had soluble solids(8.46 °Brix), and L value of peel (46.25) more than control. Moreover, the fruits treated with Ca(400 ppm)-B(3 ppm) + GA₃ 25 and Ca(800 ppm)-B(6 ppm) had titratable acidity(0.68 %), firmness of pulp(2.31 kg/cm²) and vitamin C(50.52 mg/100ml) more than control. The physical characteristics showed that the fruits treated

with Ca(400 ppm)-B(3 ppm)+ GA₃ 25 had height(17.58 cm), fruit periphery(55.13 cm), peel weight(0.78 kg), peel thickness (2.26 cm) more than control. The granulation was mostly found in the fruits treated with Ca(400 ppm)-B(3 ppm) than other treatments. Experiment 4, The quality of pummelo cv. Tha Takoi, the bagged fruit with blue nylon showed weight(1.77 kg), height(15.44 cm), periphery (54.65 cm) and peel weight(0.67 kg) more than other treatments. As for treatment of bagged fruits with white paper showed that the peel thickness (1.98 cm), fruit firmness(2.81 kg/cm²), soluble solid(9.53 °Brix) and titratable acidity(0.69 %) were the highest. But bagged fruits with white paper found the changes color L * a * b* and H° more than other treatments. In case of Khao Taeng Gua, bagged fruits with white paper showed the weight(1.60 kg), height(16.05 cm), peel thickness(2 cm) and granulation more than other treatments. But no bagged fruits showed that periphery, peel weight(0.15 kg), firmness of peel(0.81 kg/cm²), soluble solid(9.53 °Brix)and titratable acidity(0.65 %) were the highest. The peel color change (L*, a*, b* and H°) of bagged fruits with white paper showed higher than other treatment.

Effect of coating chitosan carnauba natural[®] and fumigation of 1-MCP on pummelo fruit cv. Khao - Taeng Gua and Tha-Koi on posthavest quality and shelf life using factorial in completely randomized design (CRD) were investigated. The pummelo fruits cv. Khao - Taeng Gua were treated with chitosan consisted of 0, 0.5, and 1.0 % (w/v). The sample were stored at 5, 10, 15 and 30 °C for 56 days. The results revealed that pummelo fruits were treated with 0.5 % (w/v) of chitosan and stored at 10 °C had the best appearance due to its delay titratable acidity (TA), SS/TA, respiration rate, firmness, and the best overall qualities than other treatments ($p \leq 0.05$). Pummelo fruits treated with 1.0% (w/v) of chitosan stored at 10 °C delayed degreening but its have the highest ethanol content (1,115 ppm). Pummelo fruits cv. Tha-Koi were treated with chitosan consisted of 0, 0.5, and 1.0 % (w/v). The sample were stored at 5, 10, 15 and 30 °C for 56 days. The results revealed that pummelo fruits were treated with 0.5 % (w/v) of chitosan stored at 10 °C had the best appearance due to its reduce of degreening firmness, ethanol content, SS/TA and the best overall than other treatment ($p \leq 0.05$). Pummelo fruits were treated with 0.5 and 1.0 (w/v) of chitosan and stored at 5 °C delayed wight loss but pummelo fruits were treated with chitosan stored at 5 °C had higher ethanol content than other treatment ($p \leq 0.05$). The study of pummelo fruits cv. Khao - Taeng Gua were treated with carnauba natural[®] consisted of 0, 0.5, and 1.0 % (v/v). The sample were stored at 5, 10, 15 and 30 °C for 56 days. The results revealed that pummelo fruits

treated with 50 % (v/v) of carnauba natural[®] stored at 10 °C had the best appearance due to its reduced of firmness, lowest off-flavor and the best overall than other treatment ($p \leq 0.05$). The pummelo fruits cv. Tha-Koi were treated with consisted of 0, 0.5, and 1.0 (v/v) carnauba natural[®]. The sample were stored at 5, 10, 15 and 30 °C for 56 days. The results revealed that pummelo fruits were treated with 100 % (v/v) of carnauba natural[®] and stored at 10 °C had the best appearance due to its reduced of degreening, weight loss and the best overall. All treated fruits had less effect on SS, TA, SS/TA and vitamin C during storage. Effect of 1-MCP on postharvest quality and shelf life of pummelo cv. Khao - Taeng Gua using factorial in completely randomized design (CRD) were investigated first factor was 1-MCP fumigation on pummelo fruits cv. Khao - Taeng Gua consisted of 0.01, 0.1 and 1 ppm, second factor was fumigated duration with 1, 2, 3 and 4 hr compared with no fumigation stored at 10 °C for 56 days. It was found that fumigation with 1-MCP at 0.01 ppm for 4 hr was the most effective to delay degreening, soluble solids, respiration rate, firmness and the best overall. The fruits treated with 0.01 and 0.1 ppm 1-MCP did not induce browning. Fruits treated with high concentration and all durations of 1-MCP induced browning on skin of fruits. In case of pummelo cv. Tha-Koi it was found that the application of 1-MCP at a concentration of 0.1 ppm for 3 h had highest SS/TA, delayed the firmness and the best overall were related to total soluble solids

The objectives of this research were to determine optimum shelf - life extension processed of fresh cut pomelo using film and edible coatings were investigated. The pomelo have 2 kinds (Takoy and Khotangkwa), and use film have 2 types (Polyethylene, PE and Polyvinyl Chloride, PVC) use were modified atmosphere packaging and edible coating have 3 types (1.0 % Caeboxy Methyl Cellulose (CMC), 0.5 % Chitosan and 1.0 % Alginate) then kept at 5 °C, 15 °C and 37 °C were studied. To analysis chemical – physical qualities, nutritional value, % spoilage and sensory evaluation. The result showed that fresh cut pomelo of Takoy and Khotangkwa using PVC film and 1.0 % CMC of pummelo ($p \leq 0.05$). The fruit treat with 0.01 all treatments and 0.1 ppm 1-MCP for 1, 2 and 3 did not induce peel browning but the fruits treated with high concentration and duration of 1-MCP may induce browning on skin of fruits ie., 0.1 ppm 1-MCP 4 hr and 1.0 ppm 1-MCP more than 1 hr.

were edible coating that stored 9 days at 5 °C have ascorbic acid remain, total phenolic and antioxidant activity contents were high significantly ($P \leq 0.05$) as compared with other about 61.68 mg/sample, 250.23 mg/L and 66.71 % respectively of Takoy. The part of Khotangkwa have 66.89 mg/sample, 278.22 mg/L and 68.05 % respectively. While fresh cut pomelo were coating with 0.5 % Chitosan stored at 5 °C have the best effectively in weight loss reduction and firmness loss. 0.5 % Chitosan coating can improvement texture that correlation sensory evaluation have higher scores acceptable sensory properties than others treatment. Besides 0.5 % Chitosan coating can raise of decay inhibition. These result showed that fresh cut pomelo were coating with 10 % CMC and 0.5 % Chitosan could extended shelf-life of fresh cut pomelo could be kept for 27 days with acceptable sensory properties (colour, odor, taste, texture and overall acceptance). Also fresh cut pomelo were packed in modified atmosphere packaging with the