

บทคัดย่อ

วัตถุประสงค์ของโครงการวิจัยนี้คือการพัฒนาตัวรับฟิล์มจากไก่โตชาานสำหรับยืดอายุการเก็บรักษาล้วงไจ่ ภายหลังการเก็บเกี่ยว โดยเปรียบเทียบไก่โตชาานนิดน้ำหนักโน้มเลกุลต่ำและปานกลาง โดยใช้โพรพิลีนไกลคอลและทวีน 80 เป็นสารเพิ่มความยืดหยุ่น ประเมินคุณสมบัติทางกายภาพ การคุณชั้นน้ำ การซึมผ่านของไอน้ำ และความยืดหยุ่นของ แผ่นฟิล์ม นอกจากนี้ยังทำการสังเคราะห์อนุพันธุ์ของไก่โตชาานที่ละลายน้ำได้ 3 ชนิด และศึกษาประสิทธิภาพในการยืดอายุ การเก็บรักษาล้วงไจ่ หลังการเก็บเกี่ยวของครัวนบกซีเมทิลไก่โตชาานเทียบกับตัวรับไก่โตชาาน ผลการทดลองพบว่า แผ่นฟิล์มที่เตรียมได้จากไก่โตชาานน้ำหนักโน้มเลกุลต่ำได้ฟิล์มที่ง่ายต่อการตัดและง่ายต่อการซึมผ่านของไอน้ำ แต่ไก่โตชาานน้ำหนักโน้มเลกุลปานกลางมีคุณสมบัติรวมที่ดีกว่า ฟิล์มจากไก่โตชาานน้ำหนักโน้มเลกุลปานกลางความเข้มข้นร้อยละ 2 โดยน้ำหนักมีการคุณชั้นน้ำดีกว่า ความเข้มข้นร้อยละ 1 โดยน้ำหนัก และไม่เปลี่ยนแปลงอย่างมีนัยสำคัญเมื่อเพิ่ม โพรพิลีนไกลคอลหรือทวีน 80 การซึมผ่านของไอน้ำผ่านแผ่นฟิล์มจากไก่โตชาานความเข้มข้นร้อยละ 1 โดยน้ำหนักสูงกว่าที่ร้อยละ 2 โดยน้ำหนัก และสูงขึ้นเมื่อเพิ่ม ปริมาณ โพรพิลีนไกลคอลและ/หรือทวีน 80 เมื่อเปรียบเทียบวิธีการเคลือบกลัวไจ่ด้วยวิธีการชุบเคลือบและการพ่นเคลือบพบว่า การชุบเคลือบได้ฟิล์มที่มีการกระจายตัวดี และไก่โตชาานความเข้มข้นร้อยละ 2 ได้ฟิล์มที่กระจายตัวสม่ำเสมอกว่าร้อยละ 1 โดยน้ำหนัก ส่งผลให้มีอายุการเก็บที่นานกว่าโดยพิจารณาจากน้ำหนักที่เปลี่ยนแปลง สีที่เปลี่ยนแปลง และการตกกระ เมื่อเปรียบเทียบตัวรับไก่โตชาาน ตัวรับไก่โตชาานร่วมกับสารสกัดชาเขียว และตัวรับครัวนบกซีเมทิลไก่โตชาาน พบว่าตัวรับไก่โตชาานความเข้มข้นร้อยละ 2 ร่วมกับ โพรพิลีนไกลคอลร้อยละ 0.25 และทวีน 80 ร้อยละ 0.25 สามารถยืดอายุการเก็บได้นานขึ้น 2 วัน การเพิ่มสารสกัดชาเขียวร้อยละ 0.25 ได้ผลใกล้เคียงกันแต่จะช่วยลดการเกิดตำหนิได้ ส่วนการใช้ครัวนบกซีเมทิลไก่โตชาานร้อยละ 1 และ 3 โดยน้ำหนัก กลับส่งผลให้กลัวไจ่สูญเสียและมีอายุการเก็บเพียง 9 วัน ดังนี้อาจสรุปได้ว่าการใช้ไก่โตชาานความเข้มข้นร้อยละ 2 ร่วมกับ โพรพิลีนไกลคอลร้อยละ 0.25 และทวีน 80 ร้อยละ 0.25 ด้วยการชุบเคลือบเพียงครั้งเดียวเป็นทางเลือกที่ดีที่สุด ซึ่งจะมีต้นทุนเพิ่มขึ้นประมาณ 0.88 บาทต่อ กก. 1 หวี และการเพิ่มสารสกัดชาเขียวที่เป็นทางเลือกที่มีประโยชน์

Abstract

The purpose of this research was to develop film coating formulations using chitosan to prolong postharvest shelf-life of Kluai Khai, Musa (AA group). Low and medium molecular weight chitosans were compared for preparing film using polyethylene glycol (PEG) and polysorbate 80 (tween 80) as film plasticizers. The prepared free films were evaluated for their overall physical appearance, water adsorption, water vapor penetration, and stretching ability. Moreover, this research also produced 3 types of chitosan derivatives to improve chitosan solubility. The prolong shelf-life efficacy of carboxymethylchitosan (CMC) was compared with chitosan formulations. The results showed that low molecular weight chitosan produced non-uniform and brittle films, while medium molecular weight chitosan produced film with relatively better overall properties. The evaluation result of the medium molecular weight free film showed that water adsorption of the film prepared from 2% w/v chitosan was higher than that prepared from 1% w/v chitosan and did not significantly change with the addition of PEG or tween 80. The water vapor penetration was found to be higher in the film prepared from 1% w/v chitosan comparing to 2% chitosan and it could be increased with the addition of PEG and/or tween 80. The stretching test showed that 1% w/v chitosan produced film with higher stretching ability than 2% w/v chitosan and the addition of PEG and/or tween 80 improved the stretching ability of the films. These film formulations were tested using dip-coating and spray-coating methods. The results revealed that dip-coating method provided a smoother and much better spreading ability film when using 2% w/v chitosan than 1% w/v chitosan. This resulted in longer postharvest shelf-life, when considered from weight loss, color change and senescence spotting evaluation methods. The results revealed that 2% chitosan formulation with 0.25% PEG and 0.25% tween 80 provided additional 2 days shelf-life, while inclusion of 0.25% green tea extract provided similar results with less overall fruit defect. In contrary, 1% and 3% CMC induced banana fruit ripening and had shelf-life for only 9 days. In conclusion, film formulation containing 2% w/v of medium molecular weight chitosan, 0.25% PEG and 0.25% tween 80 using a single dip-coating method provided the best option with additional 0.88 baht per banana hand and inclusion of green tea extract proved to be a good alternative.