รหัสโครงการ: RDG5030026

ชื่อโครงการ: คุณสมบัติเชิงพลศาสตร์ของอาคารและคุณลักษณะบริเวณที่ตั้งของชั้นดินเพื่อการแบ่ง

เขตความรุนแรงของแผ่นดินไหวอย่างละเอียดในจังหวัดเชียงใหม่

ชื่อนักวิจัย: นคร ภู่วโรดม 1 เป็นหนึ่ง วานิชชัย 2 ชยานนท์ หรรษภิญโญ 3

¹คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ²สถาบันเทคโนโลยีแห่งเอเชีย

³คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

e-mail address: pnakhorn@engr.tu.ac.th

ระยะเวลาโครงการ: มิถุนายน 2550 - กุมภาพันธ์ 2553

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาคุณสมบัติเชิงพลศาสตร์ของอาคารที่มีผลต่อพฤติกรรมการ ตอบสนองภายใต้แรงแผ่นดินใหวโดยการตรวจวัดการสั้นใหวตามธรรมชาติของอาคาร และศึกษา คุณลักษณะของชั้นดินบริเวณที่ตั้งอาคารที่มีผลต่อลักษณะของคลื่นแผ่นดินไหวที่เกิดขึ้นเนื่องจากสภาพ ชั้นดินของบริเวณที่ตั้งโดยการตรวจวัดคลื่นการสั่นขนาดเล็กที่ผิวดิน ในส่วนแรกของงานวิจัยเป็นการ ตรวจวัดอาคารจำนวน 51 หลังในจังหวัดเชียงใหม่ และ 20 หลังในเขตกรุงเทพมหานคร แล้วทำการ วิเคราะห์ข้อมูลและรวมกับข้อมูลจากงานวิจัยก่อนหน้าในการวิเคราะห์เชิงถดถอยสำหรับความสัมพันธ์ ระหว่างค่าคาบธรรมชาติกับคุณลักษณะทางกายภาพของอาคาร ผลพบว่า ค่าคาบธรรมชาติพื้นฐาน (Tหน่วย วินาที) แสดงในรูปความสัมพันธ์เชิงเส้นกับความสูงของอาคาร (H หน่วย เมตร) เมื่อใช้สมการ ขอบเขตล่างและพิจารณาการเปลี่ยนแปลงค่าคาบธรรมชาติเนื่องจากการตอบสนองภายใต้แผ่นดินใหว สามารถสรุปเสนอสมการสำหรับการประมาณค่าคาบธรรมชาติที่เหมาะสมสำหรับออกแบบอาคารเพื่อ ์ ต้านแรงแผ่นดินใหวในประเทศไทยคือ T=0.02H งานวิจัยในส่วนที่สองเป็นการศึกษาคุณลักษณะของ ชั้นดินบริเวณที่ตั้งอาคารโดยการตรวจวัดคลื่นการสั่นขนาดเล็กที่ผิว โดยวิธีที่ใช้ศึกษาได้พัฒนาให้ ้ เหมาะสมในทางปฏิบัติเมื่อเปรียบเทียบกับวิธีสำรวจอื่นๆ เนื่องจากวิธีนี้ใช้อุปกรณ์และบุคลากรน้อยและ ให้ผลที่มีความถูกต้อง หลักการพื้นฐานคือ การวัดการสั่นสะเทือนตามธรรมชาติที่ผิวดินและวิเคราะห์ สำหรับคุณลักษณะเฉพาะของชั้นดินบริเวณที่ตั้ง ได้แก่ คาบอิทธิพลหลัก และ ความเร็วคลื่นเฉือนตาม ความลึกของชั้นดินที่บริเวณนั้น งานวิจัยนี้ใช้เทคนิคการตรวจวัดและวิเคราะห์อัตราส่วนของสเปกตรัมใน แนวราบต่อแนวดิ่งของคลื่นที่ผิวดินเพื่อหาค่าคาบอิทธิพลหลักของพื้นที่ศึกษาในจังหวัดเชียงใหม่จำนวน 100 ตำแหน่ง และใช้เทคนิควิเคราะห์แบบ 2-sites Spatial Autocorrelation (2sSPAC) สำหรับการ ้สำรวจความเร็วคลื่นเฉือนตามความลึกของชั้นดิน ได้ศึกษากับ 30 บริเวณในจังหวัดเชียงใหม่ 25 บริเวณ ในจังหวัดเชียงราย 16 บริเวณในจังหวัดกาญจนบุรี และ 4 บริเวณในกรุงเทพมหานคร ผลค่าคาบอิทธิพล หลักของพื้นที่ศึกษาในจังหวัดเชียงใหม่พบว่า มีค่าคาบอิทธิพลหลักอยู่ในช่วง 0.4 ถึง 0.8 วินาทีเป็น ส่วนมาก ผลการศึกษาความเร็วคลื่นเฉือนตามความลึกของชั้นดินจากเทคนิค 2sSPAC ให้ผลสอดคล้อง กับผลการสำรวจด้วยเทคนิคอื่นเป็นอย่างดี และเมื่อนำมาใช้จำแนกชั้นดิน ได้ผลคือบริเวณที่ศึกษาใน จังหวัดเชียงใหม่ เชียงราย และกาญจนบุรี ส่วนใหญ่จำแนกเป็น ชั้นดินประเภท D (ดินแข็ง) ส่วนผล การศึกษาในกรุงเทพมหานครและปริมณฑลพบว่าทุกบริเวณจำแนกเป็น ชั้นดินประเภท E (ดินอ่อน) คำหลัก: คุณสมบัติเชิงพลศาสตร์ อาคารคอนกรีตเสริมเหล็ก การตรวจวัดการสั่นใหว การสั่นขนาดเล็ก คุณสมบัติบริเวณที่ตั้ง

Project Code: RDG5030026

Project Title: Dynamic Properties of Buildings and Site Characteristics of Subsoil for

Seismic Microzonation of Chiangmai City

Investigators: Nakhorn Poovarodom¹ Pennung Warnitchai² Chayanon Hansapinyo³

¹Faculty of Engineering Thammasat University ²Asian Institute of Technology

³ Faculty of Engineering Chiangmai University

e-mail address: pnakhorn@engr.tu.ac.th

Project Duration: June 2007 – February 2010

The objectives of this research are to investigate the dynamic properties of building, which characterize its response under dynamic effects, by ambient vibration measurement, and to study the site effects, which characterize the seismic response of sedimentary deposit beneath the site, by microtremor observations. In the first part, the ambient vibration measurements were conducted comprehensively for 51 buildings in Chiangmai and 20 buildings in Bangkok. The dynamic characteristics of the building were identified and combined with the previous results to provide data for regression analysis for the relationship between the fundamental periods and physical properties of the building. It was found that, the fundamental periods are mainly correlated to height of the building as linear relationship. The lower bound formula of period and corrections from low strain vibration to strong shaking level was made to propose the formula for the fundamental period in second, T, with height of the building in meter, H. The formula is presented as T=0.02H. In the second part, the site effects of subsoils were extensively studied by microtremor observations. This technique has superior outstanding features that it requires less measurement efforts yet provides rationally accurate results. The basic principle of the microtremor observation is to record ambient vibration at the ground surface and analyze for the site characteristics such as the predominant period and the shear wave velocity profile at a given site. The technique of Horizontal-to-Vertical spectral ratio (H/V) method was applied to estimate the predominant period at 100 sites in Chiangmai. The technique of array microtremor observation with 2-sites Spatial Autocorrelation (2sSPAC) was applied for exploration of shear wave velocity profile for 30 sites in Chiangmai, 25 sites in Chiangrai, 16 sites in Kanchanaburi and 4 sites in Bangkok. The results of H/V microtremor observation in Chiangmai showed that the predominant periods are in the range of 0.4 to 0.8 second. The shear wave velocity profiles from 2sSPAC technique were in good agreement when compared with other techniques. Site classification based on average shear wave velocity revealed that subsoils of Chiangmai, Chiangrai and Kanchanaburi are classified as class D (dense or stiff soil) in most area while all sites in Bangkok are classified as class E (soft soil).

Keywords: Dynamic property, Reinforced concrete building, Vibration measurement,

Microtremor, Site characteristic