

บทคัดย่อ

รหัสโครงการ : RDG5030027

ชื่อโครงการ : อัตราการขยายตัวของคลื่นแผ่นดินไหวในพื้นที่เสี่ยง

ชื่อผู้วิจัย : สุพจน์ เทชารสินสกุล¹ , อาณัติ เรืองรัศมี¹

¹ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Email address : tsupot@chula.ac.th

ระยะเวลาโครงการ :

1 มิถุนายน 2550 – 31 พฤษภาคม 2552 (ขยายเวลา 30 พฤษภาคม 2552)

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการขยายตัวของแผ่นดินไหวที่จังหวัดเชียงใหม่ เชียงราย กาญจนบุรี และกรุงเทพมหานคร โดยผู้วิจัยจะได้พัฒนาสมการที่เหมาะสมในการ คำนวณความเร็วคลื่นเนื่องของดินเพื่อการวิเคราะห์เชิงพลศาสตร์ของชั้นดิน และศึกษา สเปกตรัมผลตอบสนองของชั้นดินต่อการเกิดแผ่นดินไหวเพื่อใช้ในการออกแบบโครงสร้าง อาคาร ในเบื้องต้นได้ทำการทดสอบดินในภาคสนามเพื่อหาค่าความเร็วคลื่นเนื่องโดยใช้การ ทดสอบด้วยโซลินโกล์ดในการหาค่าความเร็วคลื่นเนื่องและค่าโมดูลัสเนื่องของดินแต่ละชั้น โดยเลือก บริเวณที่สำรวจดินจำนวน 6 หลุม นอกจากนี้ยังรวมข้อมูลทุกด้านที่ได้มีผู้ทดสอบหาค่า ความเร็วคลื่นแรงเนื่องในประเทศไทย คณะผู้วิจัยได้ทำการวิเคราะห์ความเร็วคลื่นแรงเนื่องโดย วิธีสะท้อนกลับ พบว่าการวิเคราะห์ความเร็วคลื่นแรงเนื่องในภาคสนามผลการทดสอบ Down-hole seismic test ได้เป็นอย่างดี โดยสามารถประมาณผลกราฟของนำหนักกดทับต่อค่าความเร็ว คลื่นแรงเนื่อง และ ตำแหน่งที่มีการเปลี่ยนแปลงระดับน้ำได้ดี ได้เป็นอย่างดี

จากการวิเคราะห์ความเร็วคลื่นแรงเนื่องด้วยวิธีสะท้อนกลับ คณะผู้วิจัยได้นำเสนอ สมการในการเพื่อใช้ในการคำนวณความเร็วคลื่นเนื่องของดินประเภทต่างๆ จากนั้นได้ศึกษา ผลตอบสนองแผ่นดินไหวของชั้นดินในต่างๆ จำนวน 33 จุด พบว่าอัตราการขยายของคลื่น แผ่นดินไหวมีค่าถึง 2.0 ในบริเวณที่ความเร็วคลื่นเนื่องในระดับ 30 เมตรมีค่าต่ำกว่า 200 เมตร ต่อวินาที

นอกจากนี้ เพื่อประโยชน์ในการใช้งาน คณะผู้วิจัยได้ทำการจัดทำฐานข้อมูลเพื่อ รวบรวมข้อมูล และผลการวิเคราะห์ต่างๆ ในรูปแบบของแผนที่สารสนเทศภูมิศาสตร์ โดยผู้ใช้ สามารถเลือกพื้นที่ที่ต้องการข้อมูล และ แสดงผลข้อมูลที่ต้องการทราบได้อย่างง่ายดาย นอกจากนี้ ผู้ใช้ยังสามารถทำการเพิ่มเติม และ/หรือ ปรับปรุงข้อมูลบนฐานข้อมูลนี้ได้ โดยทำ ตามวิธีการที่กำหนดไว้ในรายงานฉบับนี้

คำหลัก : ความเร็วคลื่นแรงเนื่อง อัตราการขยายตัวของคลื่นแผ่นดินไหว แผนที่สารสนเทศ ภูมิศาสตร์

ABSTRACT

Project Code : RDG5030027

Project Title : อัตราการขยายตัวของคลื่นแผ่นดินไหวในพื้นที่เสี่ยง

Investigators : Supot teachavorasinskun¹, Anat Ruanggrassamee¹

¹ Faculty of Engineering, Chulalongkorn University

Email address : tsupot@chula.ac.th

Project Duration :

1 June 2007 – 31 May 2009 (Extended to 30 November 2009)

This research aimed to examine the probable seismic amplification factors due to various typical earthquakes in Chiang-Mai, Chiang-Rai, Kanchanaburi, and Bangkok areas. The formulation for predicting shear wave velocity was developed and the acceleration response spectra in the area were investigated. The seismic downhole tests were conducted at 6 sites to develop the relationship for predicting shear wave velocity in the areas. Furthermore, more than 30 existing secondary information on the shear wave velocity profiles in the studied areas were also analyzed. The new technique for down-hole seismic test interpretation (so-called refraction method) were developed and used in the study. It was found that the proposed technique can properly interpret the influence of overburden effective stress and variation of underground water table. Based on those information, a simple empirical equation for estimating shear wave velocity was proposed. Soil response analysis was done for 33 sites to obtain the acceleration response spectra at the ground and the amplification factors. It is found that the amplification factors are as large as 2.0 at locations where $(V_s)_{30}$ is less than 200 m/s.

The database was created based on the Geographic Information System (GIS) to gather information and analytical results obtained from the study. The user can easily select the interested location to find out information; i.e. the subsoil profile, estimation of shear wave velocity and probable seismic amplification factor. Moreover, the database can be added/modified by following the instruction given in this report.

Keywords : Shear wave propagation velocity, Seismic amplification factor, GIS