บทคัดย่อ

นำพลังงานไมโครเวฟมาประยุกต์ใช้ในกระบวนการทำความร้อนด้วยระบบ ไมโครเวฟในการอุ่นยางธรรมชาติคอมพาวด์ก่อนเข้าสู่กระบวนการวัลคาในซ์ โดยยางธรรมชาติ คอมพาวด์มีการเติมด้วยสารเติมแต่งและผสมด้วยเขม่าดำ เพื่อจำลองสูตรคล้ายกับผลิตภัณฑ์ยางตัน โดยใช้กำมะถัน 2.5 phr และเขม่าดำ 10 phr ยางธรรมชาติคอมพาวด์ถูกนำมาอุ่นให้ร้อนด้วยระบบ ไมโครเวฟชนิดท่อนำคลื่นรูปทรงสี่เหลี่ยม (MODE: TE₁₀) ทำงานที่ระดับถี่ 2.45 GHz สามารถ แปรเปลี่ยนกำลังไฟฟ้าได้ตั้งแต่ 0 ถึง 1,500 วัตต์ โดยจะทำการศึกษาทั้งการทดลอง แบบจำลองทางคณิตศาสตร์ ในการทดลองจะศึกษาเกี่ยวกับ กำลังไมโครเวฟที่ป้อนเข้าไป ที่ความ หนาชิ้นงาน 3 ซม, โครงสร้างทางเคมีของยางธรรมชาติคอมพาวด์ การเกิดโครงสร้างตาข่ายสามมิติ ภายในชิ้นงานทดสอบที่มีสมบัติไดอิเล็กตริก (dielectric properties) ต่างกัน ผลที่ได้จากการทดลอง พบว่าพลังงานไมโครเวฟสามารถใช้อุ่นยางธรรมชาติคอมพาวด์ให้เริ่มร้อนก่อนเข้าสู่กระบวน การวัล คาในซ์ที่มีความหนามากกว่า 5 ซม.ได้ โดยปัจจัยหลักที่มีผลต่ออัตราการเปลี่ยนแปลงอุณหภูมิ คือ กำลังไมโครเวฟ และค่าสมบัติใดอิเล็กตริกของยางธรรมชาติคอมพาวด์ (ซึ่งมีการปรับเปลี่ยน นอกจากนี้พบว่าการอุ่นยางธรรมชาติคอมพาวด์โดยใช้พลังงาน องค์ประกอบของส่วนผสม) ไมโครเวฟสามารถทำให้เกิดการเชื่อมโยงพันธะ (cross-linked) ขึ้นด้วย ยางธรรมชาติคอมพาวด์ที่ เติมเขม่าดำจะมีค่าความสามารถในการแปรเปลี่ยนพลังงานที่วัสดุดูดซับเป็นพลังงานความร้อนมาก กว่าที่ไม่เติม ส่งผลให้พลังงานความร้อนที่เกิดขึ้นมีมากกว่าแต่ไม่มีผลต่อการเชื่อมโยงพันธะ คือ % Crosslinking เพิ่มขึ้นจาก 0 mol/cm³ เป็น 1.85 x10 ื mol/cm³ เมื่อผสมด้วยเขม่าดำ 10, 30 และ ในส่วนของการวิเคราะห์เชิงทฤษฎีเป็นการศึกษาเพื่อดูลักษณะการกระจายอุณหภูมิได้ เปรียบเทียบกับผลจากการทดลอง โดยทำการศึกษาผลของกำลังไมโครเวฟที่ป้อนไป และความหนา ของชิ้นงาน ที่มีผลต่อการกระจายอุณหภูมิภายในชิ้นงานทดสอบยางธรรมชาติคอมพาวด์ โดยใช้ ระเบียบวิธีเชิงตัวเลขมาช่วยในการวิเคราห์ ผลที่ได้จากแบบจำลองทางคณิตศาสตร์พบว่า ลักษณะ การกระจายอุณหภูมิภายในชิ้นทดสอบยางธรรมชาติคอมพาวด์ที่ได้สอดคล้องกับการทดลอง ประโยชน์ขององค์ความรู้ที่ได้จากงานวิจัยนี้จะสามารถนำไปประยุกต์ใช้สำหรับกระบวนการคงรูป ยางธรรมชาติในภาคอุตสาหกรรมต่อไป

Abstract

This research study on an application of microwave radiation for pre-heating of natural rubber compound for the purpose of pre-heating before vulanisation process. The natural rubber which was compounded with various additive, sulfur 2.5 phr and carbon black 10 phr similar to solid tire product, was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE₁₀) operating at frequency of 2.45 GHz in which the power can vary from 0 to 1,500 W. The experimental and numerical were studied in the present work. In the experimental, the influence of power input were examined. Results were discussed in views of the thermal properties, 3-D network, dielectric properties and chemical structures. It was found that microwave radiation can be applied to pre-heating natural rubber compound before vulcanisation process. Microwave radiation was very useful to be able to pre-heating natural rubber compound that has thickness greater than 5mm. Crosslinking in natural rubber compound may occur after pre-heating by microwave radiation though FTIR measurement. There were a few effects of carbon black content on crosslinking after applying microwave radiation that is % Crosslinking increased from 0 mol/cm³ to 1.85 x10⁻⁴ mol/cm³ after adding with carbon black 10, 30 and 50 phr, respectively. Moreover, natural rubber-compound without carbon black showed a lower heat absorption compared with natural rubber-compounding filled with carbon black. This is due to the difference in dielectric loss factor. In numerical work purposes to study temperature propagation of natural rubber compound under microwave pre-heating. The influence of power input and sample thickness were examined after applying microwave radiation to the natural rubber compound samples. The numerical results from this study are able to explain behavior of temperature propagation as well as the experimental results. This preliminary result along with the fundamental study of microwave radiation to pre-heating natural rubber compound is considered to be useful information that can be applied to rubber processing in industries.