บทคัดย่อ

การวิจัยนี้เกี่ยวข้องกับการกำหนดส่วนเพิ่มราคารับซื้อไฟฟ้าสำหรับแหล่งพลังงานหมุนเวียนหกแห่ง ในประเทศไทย ซึ่งได้แก่ ชีวมวล ก๊าซชีวภาพ พลังน้ำขนาดเล็ก ขยะชุมชน พลังงานลม และ วัตถุประสงค์หลักคือการคำนวณหาส่วนเพิ่มราคาและระยะเวลาสนับสนุนที่ พลังงานแสงอาทิตย์ เหมาะสมสำหรับแต่ละแหล่งพลังงานหมุนเวียน ส่วนเพิ่มราคาจึงถูกกรอบด้วยต้นทุนผลิตไฟฟ้า พลังงานหมุนเวียน ราคารับซื้อไฟฟ้า และต้นทุนที่หลีกเลี่ยงได้จากการผลิตไฟฟ้าเชื้อเพลิงฟอสซิล ภายใต้ข้อจำกัดด้านงบประมาณ กำลังผลิตเป้าหมาย และกำลังผลิตของแต่ละแหล่งพลังงาน หมุนเวียน ส่วนเพิ่มราคาอาจถูกตรึงค่าหรือแปรค่าตลอดช่วงเวลาศึกษา ปัญหาการหาค่าเหมาะที่สุด ถูกกำหนดเป็นการจัดกำหนดการไม่เป็นเชิงเส้นจำนวนเต็มผสม ซึ่งเขียนขึ้นในซอฟท์แวร์ที่มีชื่อว่า GAMS และใช้ขั้นตอนวิธี SBB เป็นเครื่องมือหาผลเฉลย ผลจากการจำลองสถานการณ์ทำให้สังเกต ได้ว่าชีวมวลมีลำดับความสำคัญเป็นอันดับหนึ่ง และพลังงานแสงอาทิตย์มีลำดับความสำคัญเป็น อันดับสุดท้ายในการสนับสนุน เมื่อกำลังผลิตไฟฟ้าพลังงานหมุนเวียนเพิ่มขึ้น ทำให้ต้นทุนผลิต ไฟฟ้าถูกบิดเบือน เพราะเป็นผลมากจากส่วนเพิ่มราคา ดังนั้น ส่วนเพิ่มราคารับซื้อไฟฟ้าจึงควรถูก กำหนดให้น้อยที่สุดเท่าที่จะเป็นไปได้

ABSTRACT

This research involves with the provision of electricity purchasing price adders for six renewable energy resources in Thailand. Those generation resources are biomass, biogas, small hydro, municipal waste, wind energy, and photovoltaic. The main objective is to determine the proper price adder and subsidy period for each renewable energy resource. The price adder is bounded by renewable generation cost, purchasing price, as well as avoided cost of fossil-fuelled generation; given budget limitation, target capacity and generation capacity of each renewable energy resource. The price adders are either fixed or varied with a study period. The optimization problems are formulated as a mixed-integer nonlinear programming in the General Algebraic Modeling System (GAMS) and solved by using SBB as a solver. It can be observed from the simulation results that biomass is the first priority and photovoltaic is the last priority for subsidization. As renewable capacity grows, electricity costs are distorted as a result of price adder. Thus, electricity purchasing price adder should be provided as minimum as necessary.