

บทคัดย่อ

รหัสโครงการ: RDG5120004

ชื่อโครงการ : การเพิ่มความคงตัวของน้ำมันตะไคร้และการพัฒนาผลิตภัณฑ์สเปรย์ฆ่าเชื้อหัวนมวัว

ชื่อนักวิจัย : วิชรี คุณกิตติ ณัทนา อารมณ์ดี

หน่วยงาน: คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

Email address: watkhu@kku.ac.th

ระยะเวลาโครงการ : มีนาคม 2550 – ตุลาคม 2552

หลักการและเหตุผล โรคเต้านมอักเสบเป็นปัญหาที่สำคัญที่ทำให้เกิดการสูญเสียทางเศรษฐกิจต่ออุตสาหกรรมการผลิตนมโภคในประเทศไทย เชื้อก่อโรคที่เป็นสาเหตุให้เกิดโรคเต้านมอักเสบ ที่มักพบโดยทั่วไป ได้แก่ *Staphylococcus aureus*, *Streptococcus agalactiae*, *Pseudomonas aeruginosa*, *Escherichia coli* และ *Bacillus cereus* การป้องกันการติดเชื้อด้วยการฆ่าเชื้อก่อนและหลังรีดนมวัว สามารถลดอุบัติการณ์การเกิดโรคเต้านมอักเสบได้อย่างมีประสิทธิภาพ

วัตถุประสงค์ เพื่อพัฒนาสเปรย์น้ำมันตะไคร้สำหรับฆ่าเชื้อเต้านมแม่วัวที่สามารถฆ่าเชื้อที่ก่อโรคได้ภายใน 2 นาที และเพื่อศึกษาความคงตัวทางกายภาพ เคมีและประสิทธิภาพในการฆ่าเชื้อก่อโรคของสเปรย์ที่พัฒนาขึ้น

วิธีการศึกษา องค์ประกอบและ การเปลี่ยนแปลงองค์ประกอบทางเคมีของน้ำมันตะไคร้ จะทำการศึกษาโดย GC/MS spectrophotometry ส่วนความคงตัวทางเคมีขององค์ประกอบหลักในน้ำมันตะไคร้ วิเคราะห์ห้าปีมาแล้ว โดยใช้ Gas chromatography การทำนายอายุขององค์ประกอบหลักใช้ Arrhenius plots ส่วนประสิทธิภาพในการฆ่าเชื้อแบคทีเรียและระยะเวลาที่ฆ่าเชื้อได้ ใช้วิธี Broth microdilution assay

ผลการศึกษา พบว่าสภาวะที่ทำให้ citral ซึ่งเป็นองค์ประกอบหลักในน้ำมันตะไคร้ ในน้ำกระสายนมมีความคงตัวมากที่สุดคือ การเติม 0.1% w/v สารสกัดชาเขียว ใน citric-phosphate buffer pH 6-7 เมื่อเตรียมส่วนผสมแบบ non-aqueous และ ชนิดที่เติมน้ำ พบว่าการเตรียมแบบ non-aqueous สามารถลดการสลายตัวของ citral ได้อย่างไร้ค่า ประสิทธิภาพในการฆ่าเชื้อ *S. aureus* ของตัวรับทั้ง 2 แบบไม่แตกต่างกัน เมื่อทำการทดสอบความไวของเชื้อ *S. aureus* ต่อน้ำมันตะไคร้ และสารสกัดชาเขียวพบว่าสารสกัดชาเขียวมีค่า MIC/MBC น้อยกว่าน้ำมันตะไคร้ แต่เมื่อนำมาทดสอบในตัวรับพบว่าสารสกัดชาเขียวที่เติมไม่สามารถเพิ่มประสิทธิภาพในการฆ่าเชื้อ *S. aureus* ได้ และยังทำให้ระยะเวลาในการฆ่าเชื้อที่เติมลงไปต่ำลงเมื่อเก็บที่ 40°C เมื่อศึกษาระยะเวลาที่สเปรย์สามารถฆ่าเชื้อ *S. aureus* ที่ 40°C พบว่า ระยะเวลาที่สามารถฆ่าเชื้อได้มากกว่า 90% ในเวลามากกว่า 30 นาที ซึ่งยังไม่เหมาะสมที่จะนำไปใช้ในฟาร์ม เป็นที่น่าสังเกตว่าเมื่อเก็บตัวอย่างที่ 40°C นาน 60 วัน ตัวรับที่ไม่เติมสารเพิ่มความคงตัวสามารถฆ่าเชื้อได้ถึง 5.32 log reduction ภายใน 60 นาที เมื่อนำไปตรวจหาการเปลี่ยนแปลงขององค์ประกอบโดย GC/MS พบว่าองค์ประกอบหลักที่ตรวจพบในน้ำมันตะไคร้ มีปริมาณลดลง แต่พบว่ามีสาร dicyanomethylene-9-anthrone เพิ่มขึ้นอย่างชัดเจน หลังเก็บไว้ที่ 40°C นาน 30 และ 60 วัน เมื่อทำการทำนายอายุขององค์ประกอบหลักในตัวรับ non-aqueous ในสภาวะเร่งพบร่วมกับ myrcene, α - และ β - citral จะลดลงอย่างรวดเร็วเมื่อเวลาและอุณหภูมิเพิ่มขึ้น แต่ geraniol จะลดลงในอัตราเร็วที่ใกล้เคียงกันทุกอุณหภูมิที่ทดสอบ ส่วนตัวรับที่นำมาเจือจากพบร่วมกับองค์ประกอบหลักทุกตัวในตัวรับที่เจือจากมีการสลายตัวเป็นไปในทำนองเดียวกันยกเว้น myrcene มีอัตราเร็วในการสลายตัวมากกว่า non-aqueous จากการทำนายอายุของสารสำคัญหลักแต่ละตัวด้วย Arrhenius plots พบว่า myrcene, α - และ β - citral และ geraniol มีอายุ 30, 4.2, 1.7 และ

1.5 วัน ตามลำดับ นอกจากนี้ เมื่อทำการศึกษาถึงปัจจัยที่ส่งผลต่อประสิทธิภาพในการฆ่าเชื้อโดยออกแบนการทดลองด้วย 2^3 Full Factorial design พบว่า Span 80 และ ปริมาณ IPM ในตัวรับเป็นปัจจัยที่ส่งผลต่อค่า MIC ของตัวรับดังนี้ เมื่อปริมาณ IPM ในตัวรับมากขึ้น ค่า MIC ของเชื้อ *S. aureus* ลดลง ส่วนตัวรับที่มี Span 80 จะให้ค่า MIC ที่มากกว่าตัวรับที่ไม่มี ทั้งนี้ IPM และชนิดของสารก่ออิมัลชันจะเกิด interaction กันในตัวรับ เมื่อศึกษาอิทธิพลของ propylene glycol (PG) หรือ IPM ต่อระยะเวลาในการฆ่าเชื้อ *B. cereus* เมื่อเก็บที่ 50°C และนำมายอดสอบทุก 7 วันพบว่า ในตัวรับที่มีเพียง propylene glycol (PG) หรือ IPM อย่างเดียว จะต้องใช้เวลามากกว่า 2 นาทีในการฆ่าเชื้อ *B. cereus* และ หากในตัวรับมีสารทั้ง 2 ชนิดผสมกันจะเกิด interaction กันในตัวรับ แม้ว่ามีบางตัวรับที่ไม่คงตัวทางกายภาพ แต่ยังสามารถฆ่าเชื้อ *S. aureus*, *Ps. aeruginosa* และ *E. coli* ได้ภายใน 2 นาที ยกเว้น *B. cereus* จะใช้เวลามากกว่า โดยเฉพาะตัวรับที่มีส่วนผสมของ IPM, Tween 80 และ Span 80 จากการทดสอบทั้ง 8 ตัวรับพบว่าตัวรับที่มีประสิทธิภาพดีที่สุด ทั้งในด้านการฆ่าเชื้อแบคทีเรีย และความคงตัวทางกายภาพคือตัวรับที่มีส่วนผสมดังนี้ น้ำมันตะไคร้ 1.5% v/v, 5% w/v Tween 80, 5% Ethanol, 5% w/v propylene glycol ใน citric-phosphate buffer pH 6.8 ตันทุนเฉพาะวัตถุติดที่ใช้ในการผลิตคิดเป็น 0.25 บาทต่อมิลลิลิตร หรือ 250 บาทต่อลิตร

สรุปผล ความคงตัวทางกายภาพและทางเคมีไม่สัมพันธ์กับประสิทธิภาพในการฆ่าเชื้อของสเปรย์น้ำมันตะไคร้ ดังนั้นการควบคุมคุณภาพของน้ำมันตะไคร้ด้วยปริมาณสารที่เป็นองค์ประกอบหลัก ได้แก่ citral, geraniol และ myrcene ไม่สามารถสะท้อนประสิทธิภาพในการฆ่าเชื้อของสเปรย์น้ำมันตะไคร้ได้ และที่สำคัญจะต้องระมัดระวังในการเลือกส่วนผสมในตัวรับ เพราะอาจเกิด interaction กันทำให้ประสิทธิภาพในการฆ่าเชื้อต่ำลงได้ ทั้งนี้ควรนำไปทดสอบผลทางคลินิกในสภาวะที่ใช้จริงในฟาร์มวันมต่อไป

Abstract

Project Number: RDG5120004

Project Title: Stability enhancement of lemongrass oil and antiseptic spray for prevention of cow mastitis

Researchers: Khunkitti W. and Aromdee C.

Institute: Faculty of Pharmaceutical Sciences Khon Kaen University, Khon Kaen 40002

Email address: watkhu@kku.ac.th

Duration of Study: March 2007 – October 2009

Background Mastitis is a major problem causing economic losses in the dairy industry. The most common major pathogens found in Northeastern areas include *Staphylococcus aureus*, *Streptococcus agalactiae*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Bacillus cereus*. Pre-milking and post-milking teat disinfectant are the effective procedure for prevention of mastitis occurrences. In previous study, it was found that lemongrass oil is very effective against mastitis pathogens and it has a potential for development as lemongrass antiseptic spray for prevention of cow mastitis. However, the problems on physico-chemical stability of the major components of lemongrass need to be solved. The knowledge on stability enhancement of lemongrass oil could be applied for developing lemongrass antiseptic spray for mastitis.

Purpose of study To develop antiseptic spray from lemongrass oil for prevention of cow mastitis which can kill the common major mastitis pathogens within 2 min and to investigate physicochemical stability as well as antimicrobial activity of the lemongrass spray.

Methods GM/MS was used to investigate chemical components and compositional changes of lemongrass oil. GC was to evaluate the stability of major component compounds in the preparations. Arrhenius plots were carried out for chemical stability study. Broth microdilution assay was for antimicrobial study and time kill of bacteria.

Results Citral in lemongrass was stable in vehicle containing 0.1%w/v Green tea extract in citric-phosphate buffer pH 6-7. To investigate the stability of citral, non-aqueous (concentrated sample) and aqueous samples (diluted sample) were prepared. As expected, citral in non aqueous sample was more stable than in aqueous sample. However, antimicrobial efficacy against *S. aureus* of both samples was the same. When antimicrobial activity of pure lemongrass oil and green tea extract was compared, green tea extract was more effective against *S. aureus* than pure lemongrass oil. However, there was no synergistic effect between lemon grass oil and green tea extract when the mixture was tested. Moreover, the longer the incubation time at 40 °C, the worse the killing time of this mixture. When the samples kept at 40 °C were challenged with *S. aureus*, it took more than 30 min to reduce the bacteria by 90 percent which will not practical for field use. It should be noted that when the lemongrass sample without green tea extract was kept at 40 °C for 30 and 60 days, challenge test with *S. aureus* caused 5.32 log reduction in 60 min. GC/MS chromatograms revealed that the large amount of dicyanomethylene-9-anthrone was clearly found. Accelerated temperature stability study revealed that

myrcene, α - and β -citral in non aqueous sample rapidly degraded as the temperature increased. However geraniol was degraded at the same rates for elevated temperatures tested. Except for myrcene, the similar findings were also found in the diluted sample. The amount of myrcene appears to be obviously increased when kept at 40 $^{\circ}\text{C}$. According to Arrhenius plots, the shelf life of myrcene, α -citral, β -citral and geraniol in non aqueous sample were 30, 4.2, 1.7, and 1.5 days, respectively. In addition, when 2^3 full factorial design was used to investigate the factors affecting the antimicrobial activity, it was found that Span 80 and the amount of IPM in the formulations were the major factors affected MIC values of *S. aureus*. As amount of IPM increased, the MIC values decreased whereas using Span 80 as a co-emulsifier in the formulation, the MIC values increased. However, the interaction between IPM and type of surfactants used was found. In addition, the amount of propylene glycol and IPM in lemongrass formulation was also affected on the kill time when the samples kept at 50 $^{\circ}\text{C}$ were challenged with *B. cereus* every 7 days. In the presence of either propylene glycol or IPM alone in the formulation, the kill time would take longer than 2 min and interaction effect between both agents was also found. Although the some formulations were physically unstable, the kill time on *S. aureus*, *Ps. aeruginosa* and *E. coli* were still less than 2 min whereas the kill time when challenge with *B. cereus* would take more than 2 min. However, in formulations containing IPM, Tween80 and Span 80, the longer the samples kept at 50 $^{\circ}\text{C}$, their kill time against *B. cereus* would take longer. Out of 8 formulations tested, the stable and effective formulation was the sample contained 1.5% v/v Lemongrass oil , 5% w/v Tween 80, 5% Ethanol, 5% w/v propylene glycol in citric-phosphate buffer pH 6.8. The cost of the ingredients used in this formulation was 0.25 baths per milliliter.

Conclusions The physico-chemical stability of lemongrass spray preparations were not correlated with their antimicrobial activity. Therefore, quality control of lemongrass spray by quantify amounts of the major component compounds in lemongrass which are citral, geraniol and myrcene could not reflect antiseptic activity of the spray. It is importance to carefully select the ingredients for lemongrass spray formulation because interaction between the ingredients would cause the loss of antimicrobial activity. However, Clinical evaluation of lemongrass spray in the filed would be needed for further study.