Abstract

The hallmark of pathophysiology of cardiovascular disease is endothelial dysfunction and endothelial damage. Targeting against vascular endothelial cell dysfunction and promoting endothelial cell repair represent a new challenge in cardiovascular interventions. Here we investigate the antioxidant property of pomelo (Citrus maxima (Burm. f.) Merr., CM) fruit juice and effects on endothelial nitric oxide production and endothelial wound repair in vitro. Two varieties of pomelo were used in this study, including var. "Kao Tang Kwa" (CM1) and CM var. "Tub Tim Siam" (CM2). The fruit juice was lyophilized and kept at 4 °C until use. The antioxidant capacity was evaluated by Ferric Reducing Antioxidant Power (FRAP) assay and the total phenolic content was measured by Folin-Ciocalteu method. Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cord of newborns. Nitric oxide (NO) production was measured by Griess reaction while RT-PCR detected the change in eNOS mRNA expression. Effect of CM on H₂O₂-induced oxidative stress was detected by changes in fluorescent intensity of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Endothelial cell proliferation (MTT assay) and scratch wound closure assay were evaluated for the potential activity of CM in enhancing wound healing. The antioxidant capacities of CM1 and CM2 were were 53.43±4.265 and 64.44±4.549 µmol FeSO₄/g lyophilize powder, respectively The total phenolic contents were equivalent to 6.26 and 6.91 mg gallic acid/g powder for CM1 and CM2, respectively. No changes in NO production or eNOS expression were detected in HUVECs treated with both CMs at highest concentration used (1000 µg/mL). CMs significantly reduced cellular ROS levels in HUVECs treated with H₂O₂ but no alteration in cell survival was observed. Despite no significant increase in cell proliferation was detected CMs at 1000 µg/mL promoted endothelial wound healing at 48 h (p<0.05). In summary, CM may enhance endothelial cell repair by mechanisms not related to nitric oxide production or cell proliferation.

บทคัดย่อ

ลักษณะที่เด่นชัดของพยาธิสรีรวิทยาของโรคหัวใจและหลอดเลือดคือการเสื่อมหน้าที่และการถูก เป้าหมายหมายการรักษาใหม่ๆจึงมุ่งเน้นเกี่ยวกับการส่งเสริมการ ทำลายของเซลล์เยื่อบุหลอดเลือด ซ่อมแซมเซลล์เยื่อบุหลอดเลือด งานวิจัยนี้ศึกษาคุณสมบัติการเป็น antioxidant ของน้ำคั้นส้มโอสองสาย พันธุ์คือ พันธุ์ขาวแตงกวา (CM1) และพันธุ์ทับทิมสยาม (CM2) และศึกษาฤทธิ์ต่อการเปลี่ยนแปลงการ สร้างในตริกออกไซด์ และการซ่อมแซมเซลล์เยื่อบุหลอดเลือดในหลอดทดลอง โดยเตรียมน้ำคั้นส้มโอใน รูปของผงแห้งและเก็บรักษาไว้ที่อุณหภูมิ 4 °C จนกว่าจะทำการทดลอง วัดความสามารถในการเป็น antioxidant ด้วยวิธี Reducing Antioxidant Power (FRAP) assay และวัดปริมาณสารประกอบฟืนอล ทั้งหมดด้วยวิธี Folin-Ciocalteu ส่วนเซลล์เยื่อบุหลอดเลือดสกัดได้จากหลอดเลือดดำของสายสะดือทารก แรกคลอด ตรวจวัดผลของน้ำคั้นส้มโอต่อการสร้างในตริกออกไซด์ด้วยวิธี Griess reaction และวัดการ แสดงออกของยืน eNOS ด้วยวิธี RT-PCR การวัดฤทธิ์ต้าน oxidative stress ภายในเซลล์จากการ เหนี่ยวนำของไฮโดรเจนเปอร์ออกไซด์ทำได้โดยวัดความเข้มของฟลูออเรสเซนต์ที่เกิดจากการทำปฏิกิริยา ของ 2',7'-dichlorodihydrofluorescein diacetate กับสารในกลุ่ม ROS การศึกษาฤทธิ์ของน้ำคั้นส้มโอ ในการเร่งการสมานแผลของเซลล์เยื่อบุหลอดเลือดทำโดยวัดการแบ่งตัวของเซลล์ด้วย MTT assay และ วัดการสมานแผลของเซลล์ด้วย scratch wound closure assay ผลการทดลองแสดงว่าน้ำคั้นส้มโอมี ฤทธิ์ต้านอนุมูลอิสระโดยวัดเป็นหน่วย µmol FeSO₄/g lyophilize powder มีค่าเท่ากับ 53.43±4.265 และ 64.44±4.549 สำหรับ CM1 และ CM2 ตามลำดับ และมีปริมาณสารประกอบฟืนอลทั้งหมดเท่ากับ 6.26 และ 6.91 mg gallic acid/g powder สำหรับ CM1 และ CM2 ตามลำดับ จากการตรวจวัดการสร้างใน ตริกออกไซด์และการแสดงออกของยืน eNOS ไม่พบว่ามีการเปลี่ยนแปลงหลังจากได้รับน้ำคั้นส้มโอที่ ความเข้มข้นสูงสุดที่ทำการศึกษาคือ 1000 µg/mL น้ำคั้นส้มโอทั้งสองสายพันธุ์สามารถลดระดับ ROS ในเซลล์ที่ได้รับไฮโดรเจนเปอร์ออกไซด์ แต่ไม่มีผลต่อการอยู่รอดของเซลล์ น้ำคั้นส้มโอทั้งสองสายพันธุ์ที่ ความเข้มข้น 1000 µg/mL มีฤทธิ์เร่งการสมานแผลเซลล์เยื่อบุหลอดเลือดได้ที่เวลา 48 ชั่วโมง โดยไม่มี ผลกระทบต่อการแบ่งตัวเพิ่มปริมาณเซลล์ กล่าวโดยสรุป น้ำคั้นส้มโออาจมีฤทธิ์ส่งเสริมการสมานแผล ของเซลล์เยื่อบุหลอดเลือดด้วยกลไกอื่นๆที่ไม่ผ่านการทำงานของในตริกออกไซด์ หรือการเพิ่มการแบ่งตัว ของเซลล์