

บทคัดย่อ

การผสมแบบพลาวตของยางฟลูออโร ยางธรรมชาติและพอลิเอทิลีนความหนาแน่นสูงพร้อมสารคงรูปสามารถทำได้ในเครื่องผสมแบบภายในที่อุณหภูมิ 150°C และ 50 รอบต่อนาที และนำยางผสมเทอร์โมพลาสติกอิเล็กทรอนิกส์ที่ได้ไปคงรูปและขึ้นรูปต่อในเครื่องอัดร้อนที่ 180°C จะได้ผลิตภัณฑ์เทอร์โมพลาสติกวัลภาชนะเซตที่มีรูปสันฐานเข้ากันได้ดี มีอนุภาคยางขนาดเล็กกว่า 1 ไมครอนกระจายในเนื้อพลาสติก การเปลี่ยนปริมาณยางฟลูออโรและยางธรรมชาติในสูตรผสมยางเป็น 60/10 55/15 50/20 และ 35/35 เบอร์เซ็นต์โดยน้ำหนัก ส่วนปริมาณพอลิเอทิลีนคงที่เป็น 30 เบอร์เซ็นต์โดยน้ำหนัก ผลการคงรูปแสดงการเพิ่มปริมาณยางธรรมชาติมากทำให้แรงบิดจะลดลงและอัตราการคงรูป เวลาคงรูปก็จะลดลง การเติม organoclay ทำให้การคงรูปมีอัตราเร็วขึ้นและมีแรงบิดสูงขึ้นด้วย การเพิ่มอุณหภูมิคงรูปจาก 150°C เป็น 180°C ทำให้เวลาในการคงรูปเร็วขึ้นถึง 10 เท่า โดยที่มีค่าแรงบิดสูงสุดและต่ำสุดใกล้เคียงกัน ยางเทอร์โมพลาสติกไวภาชนะเซตแสดงสมบัติเชิงกลที่ดี สำหรับสูตร HDPE/FKM/NR 30/60/10 wt% มีความแข็งแรงถึง 11 MPa การทนการยืดจันหาด 150% ความแข็งแรงต้านการฉีกขาด 45 MPa ความแข็ง shore A เป็น 90 สามารถทนน้ำมันแก๊สโซเชล 95, 91 และ E20 ที่อุณหภูมิห้องได้ที่สุด (บรวม 1.1% หรือบรวมเพิ่มขึ้น 0.1%) และสามารถทนไบโอดีเซล B5 ได้ดี เมื่อวัดการบรวมที่ 10°C แสดงการบรวมเพิ่มขึ้นเป็น 0.25% แต่เฉพาะใน E20 การบรวมเพิ่มเป็น 0.45% สูตรนี้สามารถลดต้นทุนได้ 25% เมื่อผสม organoclay ลงในยางผสม ทำให้สมบัติเชิงกล(ความแข็งแรงดึงและการทนการยืดจันหาด)ลดลงราว 40% แต่ความแข็งและความแข็งแรงต้านการฉีกขาดลดลงไม่เกิน 10% สามารถเพิ่มการทนน้ำมันแก๊สโซเชล E20 และไบโอดีเซล B5 ได้ดีขึ้น โดยเฉพาะที่อุณหภูมิสูงและเมื่อมีปริมาณยางธรรมชาติเพิ่มขึ้น เมื่อเพิ่มปริมาณยางในสูตรจนถึง 35 wt% สมบัติเชิงกลและการทนน้ำมันด้อยลงคือความแข็งแรงดึงลดลงประมาณ 28% ความแข็งแรงต้านการฉีกขาดลดลง 20% และความแข็งลดลงเล็กน้อยราว 5% แสดงการบรวมในแก๊สโซเชล E20 และ B5 เพิ่มจนถึง 50% แต่ที่อุณหภูมิสูงจะบรวมเพิ่มจนถึง 70% ส่วนการทนแรงยืดจันหาดเพิ่มขึ้น 33% โดยเฉพาะในกรณีที่เติม organoclay ยิ่ดได้เพิ่มกว่า 2 เท่า และสามารถลดต้นทุนวัตถุดิบลงได้ราว 50% เมื่อเปรียบเทียบกับการผสมตามสูตรที่ไม่มีสารคงรูปก็พบว่าสมบัติการคงรูป สมบัติเชิงกล สมบัติการต้านแรงนีกขาด และการทนน้ำมันทั้ง 4 ชนิดด้อยกว่าการผสมแบบพลาวต และสูตรที่มียาง 10 wt% แสดงสมบัติทนน้ำมันแก๊สโซเชล และไบโอดีเซลใกล้เคียงกับสูตรยางฟลูออโร(อย่างเดียว) มากที่สุด

ABSTRACT

Dynamic vulcanization of fluoroelastomer (FKM), natural rubber (NR) and high density polyethylene (HDPE) with vulcanizing agent was carried out in the internal mixer at temperature of 150°C and 50 rpm. The obtained thermoplastic elastomer was cured and formed by compression molding at 180°C. As a result, the product “thermoplastic vulcanizate” was obtained with well compatibilized morphology; the plastic particles of 1 micron size were distributed in rubber matrix where NR phase was distributed in FKM major phase. The content of FKM and NR in the formular was altered as 60/10, 55/15, 50/20, and 35/35 %wt while the HDPE content is constant at 30 %wt. According to the cure results, as the NR content increased, torque tended to decrease as well as cure rate and cure time. Addition of organoclay brought about higher cure time and torque. Increasing cure temperature from 150°C to 180°C resulted in increasing cure time of about 10 times while having the similar maximum and minimum torques. Thermoplastic vulcanizate showed good mechanical properties. It was found that HDPE/FKM/NR 30/60/10 %wt had tensile strength of 11 MPa, elongation at break 150%, tear strength 5 MPa, Harness shore A 90, the best resistance to gasohol 91/95/E20 at room temperature (swelling of 1.1 times or increasing swell of 10%), and good resistance to biodiesel B5. When the swelling was measured at 100°C, the swelling increased by 25% except in E20 where the swelling was increased by 45% thus this formulae reduced the cost by 25%. When organoclay was added to the mixed rubber, the mechanical properties (tensile strength and elongation at break) reduced about 40% but the hardness and tear strength decreased not beyond 10% while the resistance to gasohol E20 and biodiesel B5 became better especially at higher temperature and higher NR content. When NR content increased to 35 %wt, the mechanical properties and resistance to oil were reduced; i.e. tensile strength reduced by 28%, tear strength reduced by 20%, and hardness slightly reduced about 5% while swelling in E20 and B5 was increased to 50% and 70% at high temperature. Moreover, elongation at break increased 33% and especially with organoclay, it was increased greater than twice and the cost was cut by 50%. When comparing to the formulae without curing agents, the mechanical properties, tear strength and resistance to all 4 oils were worse than those prepared by dynamic vulcanization. The formulae with 10 %wt showed the most similar resistances to gasohol and biodiesel like the cured FKM.