

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาสารสำคัญในน้ำมันตะไคร้ที่มีประสิทธิภาพในการด้านเชื้อ *C. albicans* และ *C. krusei* ทั้งที่อยู่ในรูปแพลงโนทินิกและไบโอลิฟ์ม รวมทั้งศึกษา postantifungal effect ของสารที่ทดสอบ และผลต่อกระบวนการการขึ้นตัวของวัสดุที่ใช้ทำฟันเทียมและการเปลี่ยนแปลงรูปร่างของเชื้อ ผลการทดสอบพบว่า citral เป็นสารที่มีปริมาณมากที่สุด ในองค์ประกอบของน้ำมันตะไคร้ รองลงมาได้แก่ beta-myrcene, geraniol และ geranyl acetate ตามลำดับ โดย geraniol เป็นสารที่มีประสิทธิภาพในการด้านเชื้อ *C. albicans* และ *C. krusei* ทั้งที่อยู่ในรูปแพลงโนทินิกและไบโอลิฟ์ม โดยที่สุด รองลงมาได้แก่ citral ในขณะที่ myrcene และ geranyl acetate ที่มีความเข้มข้นในช่วง 0.02-32 ไมโครลิตรต่อมิลลิลิตร ไม่มีประสิทธิภาพในการขับยุงการเจริญเติบโตหรือทำลายเชื้อรานเคนดิค่าทั้งสองชนิด นอกจากนี้ citral และ geraniol ยังสามารถลดการขึ้นตัวของเชื้อ *C. albicans* บนพื้นผิวของวัสดุที่ใช้ทำฟันเทียมได้แตกต่างอย่างมีนัยสำคัญทางสถิติ ($p < 0.01$) เมื่อเปรียบเทียบกับกลุ่มควบคุม และยังสามารถขับยุงการสร้าง germ tube ของเชื้อ *C. albicans* ได้เมื่อทดสอบในความเข้มข้นที่ไม่ทำลายเชื้อ จากการศึกษาโดย Scanning electron microscopy พบว่าหลังจากเชื้อ *C. albicans* และ *C. krusei* สัมผัสถกับ citral และ geraniol เป็นเวลา 2 ชั่วโมง เซลล์ของ *C. albicans* ถูกทำลายโดยเกิดการแตกออกของผนังเซลล์ แต่เซลล์ของเชื้อ *C. krusei* แม้ไม่เห็นการแตกออกของผนังเซลล์ แต่พบว่ารูปร่างของเชื้อเปลี่ยนแปลงไปจากปกติ ส่วน postantifungal effect ของสารสำคัญในน้ำมันตะไคร้ที่ความเข้มข้นเท่ากับ 1 และ 1.5 เท่าของค่า MIC พบว่า geranyl acetate มีค่า postantifungal effect ต่อเชื้อรานเคนดิค่าทั้งสองมากที่สุด รองลงมาคือ citral และ geraniol ตามลำดับ แต่ที่ความเข้มข้นเท่ากับหรือมากกว่า 2 เท่าของค่า MIC citral มีค่า postantifungal effect ต่อเชื้อรานเคนดิค่าทั้งสองมากที่สุด รองลงมาคือ geranyl acetate และ geraniol ตามลำดับ ผลการศึกษานี้ชี้ให้เห็นว่าสารสำคัญหลักแต่ละชนิดในน้ำมันตะไคร้มีประสิทธิภาพต่อการด้านเชื้อ *C. albicans* และ *C. krusei* แตกต่างกัน นอกจากนี้สัดส่วนที่เหมาะสมของสารสำคัญหลักแต่ละชนิดในน้ำมันตะไคร์ยังส่งผลต่อประสิทธิภาพในการด้านเชื้อ *C. albicans* และ *C. krusei* อีกด้วย

Abstract

The purpose of this study was to determine the antimicrobial effects of major constituents of *Cymbopogon citratus* oil against *Candida albicans* and *Candida krusei* in both planktonic and biofilms form. The postantifungal effect (PAFE), the effect on candidal adhesion to acrylic and on germ tube formation of the tested agents were also evaluated. The results revealed that citral is a major constituent of *C. citratus* oil followed by beta-myrcene, geraniol and geranyl acetate, respectively. Among the four major constituents tested, geraniol exhibited the most effective killing activity and possessed the strongest inhibitory effect on Candida biofilm formation followed by citral. In addition, citral and geraniol significant reduced ($P < 0.01$) the adherence of *C. albicans* to denture acrylic when compared with control and can inhibit germ tube formation of *C. albicans* at subcidal concentration. While myrcene and geranyl acetate at concentrations 0.02-32 μ l/ml have no fungicidal activities. Scanning electron microscopy of candidal cells which adhered to acrylic and treated with citral and geraniol for 2 h revealed profound ultrastructural changes, which included smaller and deflated cells compared with the unexposed control. Among the tested agents, geranyl acetate induced the longest PAFE in both *Candida* spp. at minimum inhibitory concentration (MIC) and 1.5xMIC followed by citral and geraniol, respectively. However, at concentration of 2xMIC citral induced the longest PAFE in both *Candida* spp. followed by geranyl acetate and geraniol, respectively. Our data indicates that each constituent of *C. citratus* oil has different antimicrobial effects against *C. albicans* and *C. krusei*. Moreover, an appropriate ratio of each constituent in *C. citratus* oil also affects its antimicrobial activities on both *Candida* spp.