

บทคัดย่อ

โครงการวิจัยนี้เสนอการพัฒนาสูตรสารเคลือบผลไม้จากเซลล์คาวาเกรดอาหาร โดยการคัดแปลงด้วยไข่ การนึบนา และไนเซลล์แล็ค และทดสอบประสิทธิภาพของสารเคลือบต่อคุณภาพในการเก็บรักษาผลไม้ไทยสีชนิด คือ มะม่วงน้ำดอกไม้ กล้วยไช่ ส้มโอขาวใหญ่ และเงาะ โรงเรียน โดยมีทั้งการทดสอบในระดับห้องปฏิบัติการ เปรียบเทียบกับการเก็บในถุงพลาสติกแบบ High OTR หรือการใช้สารเคลือบทางการค้า และการทดสอบการเคลือบเงาะ โรงเรียนในระดับการค้า ผลจากการศึกษาลักษณะสมบัติของฟิล์มเคลือบ พบว่าสารเคลือบเซลล์คาวาพื้นฐาน (10% เซลล์แล็ค) ที่มีการคัดแปลงโดยการเติมไข่จากเซลล์แล็ค หรือจากสารนึบนา ปริมาณ 5.0-7.5% โดยน้ำหนัก มีสมบัติทางกลสูงขึ้น ค่าอุณหภูมิเปลี่ยนสถานะลักษณะแก้วสูงขึ้น แต่ต่อต้านการกั้นผ่านเข้าออกของก๊าซและไอน้ำลดลง เนื่องจากลักษณะฟิล์มของอิมัลชันที่มีความเป็นเนื้อเดียวกันน้อยกว่าสารเคลือบเซลล์คาวาพื้นฐาน ซึ่งทำให้เกิดลักษณะการเคลือบบางส่วนของเปลือกผลไม้ การประเมินประสิทธิภาพของสารเคลือบพิจารณาจากลักษณะทางคุณภาพ และการซิมสูตรสารเคลือบที่เหมาะสมในการรักษาคุณภาพมีวงน้ำดอกไม้เบอร์ 4 คือสารเคลือบเซลล์แล็คสูตรพื้นฐาน ที่ซึ่งแม้ว่าจะสามารถลดการสูญเสียน้ำได้น้อยกว่าการบรรจุในถุงพลาสติก High OTR แต่พบว่าสามารถป้องกันการถูกคุกคามของโรคที่เข้าทำลายผล และมีความแน่นเนื้อสูงกว่าการใช้ถุงพลาสติก หลังการเก็บรักษา 3 สัปดาห์ ที่ 12 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 95 ± 5 ก่อนบ่ม สำหรับกล้วยไช่ การบรรจุถุงพลาสติกที่ใช้ในการค้า (สหกรณ์การเกษตรท่าข่าย จังหวัดเพชรบุรี) สามารถรักษาคุณภาพได้ดีกว่าการเคลือบผิว ด้วยสารเคลือบ โดยช่วยชะลอการสูญเสียต่อการซิมหลังการบ่ม โดยสามารถเก็บรักษาไว้ได้เป็นเวลา 2 สัปดาห์ ที่ 12 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 95 ± 5 สำหรับส้มโอมันสูข้าวใหญ่ การเคลือบผิวด้วยสารเคลือบสูตรที่พัฒนาขึ้นทุกสูตร หรือสูตรการค้า (CM) สามารถรักษาคุณภาพของส้มโอมันสูข้าวได้ดีกว่าไม่เคลือบ หลังการเก็บรักษาเป็นเวลา 8 สัปดาห์ ที่ 10 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 95 ± 5 แต่สารเคลือบเซลล์คาวาพื้นฐานที่มีต้นทุนต่ำ ที่สุดจึงเหมาะสมที่ใช้งานมากที่สุด สำหรับการรักษาคุณภาพของเงาะ โรงเรียน การจุ่มเคลือบใน สารเคลือบเซลล์แล็คสูตรคัดแปลงด้วยไข่เซลล์แล็ค 7.5% (โดยน้ำหนัก) หรือ การบรรจุถุงพลาสติก High OTR เป็นวิธีรักษาคุณภาพที่ดีที่สุด เมื่อเก็บรักษาที่ 12 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 85-95% เป็นเวลา 2 สัปดาห์ โดยสามารถลดการสูญเสียน้ำหนัก ชะลอการเปลี่ยนแปลงขนาด ให้ความแน่นเนื้อดี เมื่อทำการทดสอบสารเคลือบกับเงาะ โรงเรียนในสภาพที่ใช้ในการค้า 2 ครั้ง ได้แก่ ระดับการค้าในประเทศไทย เลียนแบบสภาพการวางขายในชุมเปอร์มาร์เก็ต พบว่า การเคลือบผิวผลเงาะด้วยสารเคลือบสูตรพื้นฐานคัดแปลงด้วยไข่คาวา 5% ให้ผลการทดลองที่ดี สามารถลดการสูญเสียน้ำหนักได้พอกับการใช้ถุงพลาสติก โดยพบว่าระยะเวลาการเก็บรักษาที่เหมาะสมที่ทำให้เงาะยังคงอยู่ในสภาพที่ดีของการเคลือบด้วยสารเคลือบเซลล์แล็คคัดแปลงด้วยไข่คาวา 5% และเก็บรักษาไว้ที่ 20°C ได้เป็นเวลา 3 วัน (จำลองการวางขายในห้าง) หากมีการเก็บไว้ที่ 12°C เป็นเวลา 1 หรือ 2 สัปดาห์ สามารถยั่งมาระยะที่อุณหภูมิ 20°C ได้เป็นเวลา 2 หรือ 1 วัน ตามลำดับ โดยสารเคลือบสามารถลดการสูญเสียน้ำหนัก ชะลอการเปลี่ยนแปลงขนาด ให้ความแน่นเนื้อดี และคะแนนการซิมสูง สำหรับการทดสอบการใช้งานสารเคลือบเงาะ โรงเรียนในระดับการค้าเพื่อส่งออกต่างประเทศ (รัฐคุ้ม) พบว่ามีความเป็นไปได้สูงที่จะใช้สารเคลือบที่ดี ลดต้นทุนการขนส่งเงาะไปยังต่างประเทศได้

Abstract

This project presented a development of shellac-based fruit coating formulations modified with carnauba or shellac waxes. The efficacy of coating formulations was tested on four types of Thai fruits; mango (*cav.* Namdokmai), Khai banana, pomelo (*cav.* Kaoyai), and rambutan (*cav.* Rongrien). The tests were done on laboratory scales, in comparison to either the storage in high-OTR plastic bags, or using a commercialized coating solution. The commercial-scaled evaluations were conducted on rambutans. The results from the characterization of the films of the coating solution revealed that the basic shellac coating formula (10% shellac) modified with 5.0-7.5% (w/w) led to higher mechanical properties, higher glass transition temperature, but lower diffusivities for gases and water vapor compared to the based formulation. This is because the emulsion characteristic of the modified formulation which were less homogeneous. This would result in the partial coating on the fruit skin. Efficacies of the coating formulations were evaluated using physico-chemical properties and tasting of the fruits. The suitable fruit coating formulation for mango (Namdokmai No.4) was the based shellac solution. Although coating mangoes with this formula resulted in higher weight loss in comparison to the storage in high-OTR plastic bags, it could protect the fruits against pathogens and the loss of flesh firmness. After 3 weeks of storage at 12 °C, 95±5% RH, the consumer satisfaction with the ripening mangoes using this coating was not different from those kept in the high OTR plastic bags. For Khai banana, it was found that storage in plastic bags (Tayang district agricultural cooperation, Petchaburi province), resulted in the highest fruit storage qualities. After 3 weeks of storage at 12 °C, 95±5% RH, it was found that the plastic bags could delay the ripening process, and other quality changes such as skin spotting, weight loss, lowering flesh firmness, and total soluble solids. Although this method caused the highest alcohol concentration, but changes in flavor was not detected by consumers. For pomelo (*cav.* Kaoyai), after 8 weeks of storage at 10 °C and 95±5% RH, all of the tested coating formulations, including a commercialized coating (CM, composed of polyethylene and latex) gave better fruit qualities than the controlled group (no coatings). The shellac based formulations did not result in high level of alcohol productions as in the fruits coated with the CM. The basic formulation had the lowest cost, so it was then chosen as the most suitable coating. For rambutan (*cav.* Rongrien) storage at 12 °C, and 85-95% relative humidity for 2 weeks, the best method discovered was either the dip coating with shellac based formulation modified with 7.5% (w/w) shellac wax, or the use of high-OTR plastic bags. These two methods resulted in satisfactory appearances, delay of the fruit hair darkening, and higher firmness. The coating formulation modified with 5% (w/w) carnauba wax was selected for a commercial-scale evaluation on preserving quality of rambutan (*cav.* Rongrien). The obtained results were promising. The coated rambutans kept their qualities for at least 2 weeks in a commercial cold room (12°C). These coated rambutans remained fresh after moving out to shelves (at 20 °C) for 3 days, and 2 days after the first and the second week of storage in the cold room. The coating was found to reduce water loss, delay hair darkening and retain the firmness of the fruit flesh. The coated fruit received high preference scores from consumers. For the same coating tested on commercial exported rambutans, the high potential was found for the application this specific coating since the coating could retard the appearance of blackening hairs. In addition, the coating process used was simple enough for exporters. The results showed potential of the coating formulation in reducing export costs.