## บทคัดย่อ

มังคุดเป็นผลไม้ที่มีแมลงศัตรูที่สำคัญ ได้แก่ เพลี้ยไฟ หนอนชอนใบ เพลี้ยแป้ง หนอนกิน ใบอ่อน แมลงวันผลไม้ มด ฯลฯ ซึ่ง เพลี้ยไฟ (Scirtothrips dorsalis Hood) เป็นแมลงศัตรูที่พบ ระบาด ทั้งตัวอ่อนและตัวเต็มวัยทำลายพืชโดยการดูดกินน้ำเลี้ยงจากส่วนต่างๆ ของพืช ทั้งยอด อ่อน ใบอ่อน ช่อดอก และช่อผล ถ้าเป็นใบอ่อนหรือยอดอ่อนจะทำให้ชะงักการเจริญเติบโต แคระแก รน หงิกงอ และแสดงอาการใบไหม้ เป็นเหตุให้พืชขาดความอุดมสมบูรณ์ ถ้าระบาดในขณะออกดอก และติดผลอ่อน อาจทำให้ดอกและผลอ่อนร่วง ผลที่ถูกทำลายแต่ไม่ร่วงจะมีผิวเปลือกขรุขระหรือที่ เรียกว่า "ขี้กลาก" ผลที่มีลักษณะดังกล่าวจะขายได้ในราคาต่ำ อย่างไรก็ตาม แม้มีรายงานว่าการใช้ สารเคมีป้องกันกำจัดแมลงศัตรูที่สำคัญของมังคุด สามารถใช้ได้ผล แต่ประเทศไทยก็ยังไม่สามารถ เพิ่มปริมาณผลผลิตคุณภาพให้เพียงพอกับความต้องการของตลาดได้ และปัจจุบันนี้การเกษตร สมัยใหม่มีการใช้สารเคมีเป็นจำนวนมาก ก่อให้เกิดปัญหาโรคและแมลงระบาดทำให้เกิดการยุ่งยาก ในการป้องกันกำจัด ทำให้เกิดพิษภัยต่อผู้บริโภค และในปัจจุบันที่กระแสเกษตรอินทรีย์เข้ามาเป็น ทางเลือกใหม่สำหรับผู้บริโภค ผู้ผลิตมังคุดบางรายจึงหันมาให้ความสำคัญ และคันหาวิธีการที่ สามารถผลิตมังคุดอินทรีย์โดยไม่ใช้สารเคมี และให้ผลตอบแทนที่คุ้มค่าเป็นอีกทางเลือกหนึ่ง

การวิจัยนี้ทำที่สวนเกษตรกร จังหวัดตราด โดยหาวิธีการควบคุมประชากรเพลี้ยไฟมังคุด ประเมินความเสียหายจากการทำลายของเพลี้ยไฟ หาความสัมพันธ์ของปริมาณเพลี้ยไฟกับ สภาพแวดล้อม เพื่อผสมผสานหาวิธีการจัดการที่เหมาะสม จากการสำรวจพบเพลี้ยไฟมากในช่วงที่ มังคุดเริ่มออกตอกและดอกบานประมาณ 50% ตั้งแต่ช่วงตันเดือนกุมภาพันธ์ 2552 และมีปริมาณ สูงขึ้นเรื่อยๆ จนถึงช่วงพัฒนาการของผล ปริมาณเพลี้ยไฟที่พบมีความสัมพันธ์กับอุณหภูมิ ความชื้น สัมพัทธ์ และปริมาณน้ำฝน โดยในช่วงที่อุณหภูมิค่อนข้างสูง ความชื้นสัมพัทธ์ต่ำ พบเพลี้ยไฟระบาด มากและปริมาณน้ำฝนที่เพิ่มมากขึ้นมีผลให้ประชากรเพลี้ยไฟลดลง และทั้ง 4 กรรมวิธี ได้แก่ 1) กรรมวิธีควบคุม คือการให้น้ำปกติ 2) การให้น้ำในทรงพุ่ม โดยให้สูงจากโคนต้นขึ้นไป 4 เมตร 3) การให้น้ำในระดับเหนือทรงพุ่ม โดยให้สูงจากโคนขึ้นไป 6-8 เมตร และ4) การใช้เชื้อจุลินทรีย์ ปฏิปักษ์ในการกำจัดเพลี้ยไฟ พบปริมาณเพลี้ยไฟ ในปริมาณใกล้เคียงกัน ส่วนปริมาณผลที่ถูก ทำลายโดยเพลี้ยไฟ พบว่าในกรรมวิธีที่มีการให้น้ำในทรงพุ่มที่ระดับความสูง 4 เมตร มีปริมาณ ผลผลิตที่เสียหายน้อยที่สุด

การป้องกันกำจัดเพลี้ยไฟโดยการจัดการสภาพแวดล้อมภายในทรงพุ่ม (micro-climate) โดย ติดตั้งระบบน้ำในทรงพุ่ม น้ำเป็นตัวทำให้เกิดความชื้นและอากาศเย็น ซึ่งเป็นสภาพที่ไม่เหมาะต่อ การอาศัยของเพลี้ยไฟ ทำให้มังคุดถูกทำลายโดยเพลี้ยไฟน้อย ทำให้เกษตรกรสามารถผลิตมังคุด คุณภาพได้ในปริมาณที่มากขึ้น จึงถือเป็นทางเลือกหนึ่งที่เกษตรกรผู้ผลิตมังคุดอินทรีย์สามารถนำไป ปรับใช้เพื่อลดความเสียหาย และเพิ่มปริมาณผลผลิตคุณภาพได้ และลงทุนในปีแรกเพียงครั้งเดียว สามารถให้ผลตอบแทนที่คุ้มค่า สามารถผลิตมังคุดอินทรีย์ได้อย่างยั่งยืน

## **Abstract**

Mangosteen fruits (*Garcinia mangostana* L.) are commonly attacked by number of pests such as thrips, leafminers, mealy bugs, leaf eating caterpillars, fruit flies and ants. Thrips (*Scirtothrips dorsalis* Hood) are insect pests which threat mangosteen in both larva and adult stages. They prefer to feed by sucking up fluid in shoots, young leaves, flower buds and fruit buds. Damaged young leaves or shoots cause stunted growth, distorted and bright leaves. Epidemic happening during blooming and fertilization period cause losing flowers and young fruits, and scarring on fruit peel which will low selling value. Although there are reports recommended the success of using chemical pesticides to control and prevent thrips, however, Thailand still cannot produce sufficient quality products to serve the market. It cannot permanently control diseases and pests epidemic, and it is consequently toxic for consumers. Nowadays, organic agriculture products are an elective choice for consumers. Agriculturists therefore turn their interesting to produce organic mangosteen with no pesticides used and worthwhile in compensation.

This research had done in orchards at Trat Province aimed to find out thrips control strategy. Data from evaluation the damage and correlation study between density and environment were brought together and analyzed for this purpose. The results showed that number of populations started increasing during flower buds developing and 50%-petals opening period of mangosteen which was at the beginning of February 2009 and keeping higher in number until fruit developing period. Temperature, humidity and rainfall were found affected to thrips density. Epidemic was detected when climate was hot and humidity was low, and number of populations decreased when volume of rainfall increased. From all information, it brought to 4 designed strategies included 1) controlling by giving regular irrigation, 2) irrigation inside tree shade by watering at 4 meters height from ground, 3) irrigation above tree shade by watering at 6-8 meters height from ground, and 4) Using microbial antagonists. All strategies demonstrated no significant different in number of thrips found. However, the 4 meters-height watering showed lesser damage of mangosteen fruit than other three strategies.

Thrips prevention according to micro-climate management establish by placing irrigation system inside tree shade. Water produces humidity and cool down the temperature which is not good to be their habitat. Hence, this will be the election for agriculturists to produce quality organic mangosteen with less loss and sustainable in only one time investment at the beginning.

RDG5220030 หน้า 4