บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาคุณค่าทางอาหารของลิ้นจี่สายพันธุ์ที่นิยมบริโภค ได้แก่ กิมเจ็ง และจักรพรรคิในการใช้เป็นผลิตภัณฑ์เสริมอาหาร โดยทำการศึกษาฤทธิ์ในการปกป้องตับ ฤทธิ์ต้านการ อักเสบ แก้ปวด ฤทธิ์ของลิ้นจี่ต่อเซลล์ในระบบภูมิคุ้มกัน ด้วยวิธีทางภูมิคุ้มกันและ Tissue Microarray ของ ลิ้นจี่ ทั้ง 2 สายพันธุ์ในสัตว์ทดลอง รวมทั้งให้บริการวิชาการในเรื่องคุณประโยชน์ด้านสุขภาพของลิ้นจี่แก่ สาธารณชน

ผลการศึกษาพบว่าสารสกัดที่ได้จากเนื้อลิ้นจี่สดทั้งสองสายพันธุ์ ประกอบด้วยวิตามิน ซี และกลุ่ม สารโพลีฟีนอล ซึ่งสารประกอบทั้งสองมีคุณสมบัติต้านอนุมูลอิสระได้ และเมื่อใช้สารสกัดลิ้นจี่ทั้งสองสาย พันธุ์ทดสอบกับรูปแบบการทดลอง lipid peroxidation พบว่ามีฤทธิ์ต้านอนุมูลอิสระ

ศักยภาพในการนำสารสกัดลิ้นจี่ไปเป็นผลิตภัณฑ์เสริมอาหารที่น่าสนใจคือ ความสามารถในการ ป้องกันพิษต่อตับ คณะผู้วิจัยได้ทดสอบสารสกัดลิ้นจี่สายพันธุ์กิมเจ็งและจักรพรรดิ ในหนูขาวที่เหนี่ยวนำ ให้เกิดพิษต่อตับค้วย CCl4, paracetamol และ D-galactosamine พบว่า สารสกัดจากลิ้นจี่ทั้งสองสายพันธุ์ สามารถป้องกันการเกิดพิษต่อตับได้ ซึ่งเห็นได้จากผลของสารสกัดลิ้นจี่มีแนวโน้มในการลด activity ของ เอนไซม์ใน serum (ALT, GTP และ GOT) นอกจากนี้จากการวิเคราะห์ทางพยาธิวิทยาของเนื้อเยื่อตับก็พบว่า สัตว์ทดลองที่ทำให้เกิดพิษต่อตับด้วยสารเหนี่ยวนำทั้งสาม เมื่อได้รับสารสกัดลิ้นจี่ พยาธิสภาพของเนื้อเยื่อ ตับมีการเปลี่ยนแปลงที่ดีขึ้นจากกลุ่มที่ไม่ได้รับสารสกัดอย่างมีนัยสำคัญ ซึ่งผลของสารสกัดลิ้นจี่ดังกล่าว คล้ายกลึงกับผลของ silymarin ซึ่งเป็นสารมาตราฐานที่มีฤทธิ์ปกป้องตับ และด้วยตัวของสารสกัดลิ้นจี่เองกี ไม่มีผลเปลี่ยนแปลงลักษณะทางกายภาพ และพยาธิวิทยาของตับ นอกจากนี้สารสกัดลิ้นจี่ยังมีฤทธิ์ด้านการ อักเสบ และฤทธิ์ระงับปวด ในรูปแบบ carageenin-induce paw edema และ acetic acid-induced writhing response ในหนู

การทดสอบผลของสารสกัดลิ้นจี่ต่อระบบภูมิคุ้มกันได้ศึกษาผลต่อทั้ง innate และ adaptive immunity ในหนูขาว ด้วยการป้อนสารสกัดลิ้นจี่ทั้งสองสายพันธุ์นาน 90 วัน พบว่าความสามารถในการกินเชื้อยีสต์ของนิว โทรฟิลที่แยกได้จากเลือดของหนูกลุ่มควบคุม นอกจากนี้สารสกัดจากลิ้นจี่ไม่มีความเป็นพิษต่อเซลล์ในระบบภูมิคุ้มกันเมื่อได้รับติดต่อกันเป็นเวลานาน โดยพบว่าจำนวนประชากรย่อยของลิมโฟไซด์ที่แยกได้จากม้ามไม่มีการเปลี่ยนแปลงเมื่อเทียบกับหนูปกติ และไม่พบความแตกต่างในการแบ่งตัวเพิ่มจำนวนของ splenocyte เมื่อถูกกระตุ้นด้วย mitogen อย่างไรก็ ตาม ในการศึกษาเบื้องต้นนี้พบว่า หนูที่ได้รับสารสกัดจากลิ้นจี่พันธุ์กิมเจ็งมีการสร้าง IFN-γ และ IL-4 ลดลง ส่วนหนูที่ได้รับสารสกัดจากลิ้นจี่พันธุ์กิมเจ็งมีการสร้าง IFN-γ และ IL-4 เพิ่มสูงขึ้น

แม้ว่าความแตกต่างนี้จะไม่มีนัยสำคัญทางสถิติแต่ก็มีแนวโน้มที่แสดงให้เห็นว่าสารสกัดจากลิ้นจี่น่าจะมี ส่วนประกอบที่มีความสามารถในการซักนำการทำงานของ T lymphocyte

ความปลอดภัยจากการบริโภคสารสกัดลิ้นจี่ พบว่า การป้อนสารสกัดในขนาดสูง (500 มก/กก) แก่ หนูขาวทุกวันติดต่อกันนาน 90 วัน ซึ่งเป็นระยะเวลาเดียวกันกับเวลาที่ใช้ทดสอบความเป็นพิษกึ่งเรื้อรัง ไม่ ทำให้หนูขาวเสียชีวิต และไม่มีผลเปลี่ยนแปลงน้ำหนัก และพยาธิสภาพของเนื้อเยื่อสำคัญในร่างกาย

จากผลการศึกษาทั้งหมด สรุปได้ว่าสารสกัดลิ้นจี่กิมเจ็งและจักรพรรดิ มีคุณค่าทางอาหารและมี สารประกอบที่มีฤทธิ์ต้านอนุมูลอิสระ ที่อุดมด้วยวิตามินเอ วิตามินซี สารประกอบฟินอลิกและสารพฤกษา เคมีที่มีบทบาทเป็นสารแอนติออกซิแคนท์ แอนติอะพอพโตสิส และชักนำการทำงานของ T lymphocyte บ่งชี้ถึงการมีศักยภาพที่จะพัฒนาหรือใช้เป็นผลิตภัณฑ์เสริมอาหารเพื่อปกป้องการทำลายและการอักเสบ ของตับจากสารพิษต่าง ๆ ได้

Abstract

Purpose: To evaluate fruit pulp of two strains of Litchi chinensis Sonner (Gimjeng and Chakapat) for nutritional values, immune modulators, anti- lipid peroxidation, anti-inflammatory, analgesic and hepatoprotective activity on carbon tetrachloride, paracetamol, and D-galactosamine- induced hepatotoxicity in rats. Methodology: A dry powder of fruit pulp from two strains of Lychee (Gimjeng and Chakapat) was prepared by blending, filtering through layers of gauzes and filter papers, and drying the separated concentrated filtrates under vacuum (F1 fraction, 10-15% yield), and residual part was further extracted with ethanol (1.3-1.7% yield). Nutritional value was evaluated in the antioxidative Gimjeng and Chakapat lychee extracts. Vitamin C (ascorbic acid), content was determined using 2',6'dichloroindophenol (DCIP) titration method. Amount of total phenolics was assayed with Folin-Ciocaltue reagent. Vitamin A and E contents were determined using HPLC technique. Major constituents of the ingredients were identified using GC/MS technique. Both strains of lychee extracts were then screened for anti-lipid peroxidation activities, anti-inflammatory, analgesic effects and a hepatoprotective activity, using male Wistar albino rats. Hepatotoxicity was induced by carbon tetrachloride (2 ml/kg, subcutaneous injection), paracetamol (2.5 g/kg, oral feeding), D-galactosamine (400 mg/kg, intraperitoneal injection). Silymarin, a standard hepatoprotective drug, 2 doses (100 and 500 mg/kg) of Gimjeng and Chakapat extract, were administered orally. The control group was treated with distilled water. After ten days, the rats were sacrificed and their livers were isolated, weighed and prepared for histopathological, tissue microarray and immunohistochemical studies. The serum was analyzed for glutamate pyruvate transaminase (GPT), serum glutamate oxalate transaminase (GOT), and alkaline phosphatase (ALP). Apoptotic activities of the livers was immunohistochemically analyzed and assessed quantitatively. Additionally, immunological responses in rats fed with high dose of lychee extracts (500 mg/kg) for 90 days were also evaluated. Results: The preparations of Gimjeng and Chakapat extracts showed the presence of vitamin C (1.2 \pm 0.6 and 4.3 \pm 0.1mg/100g), and phenolic content (1.46 \pm 0.01 and 3.25 \pm 0.04 mg/100g), respectively. Amount of polyphenolic catechins and vitamin E in the extracts were very low so that it was undetectable with HPLC/UV detection. Nonetheless, vitamin A contents in the Gimjeng and Chakapat extracts were 11.53 and 156.22mg/100g. Analysis by GC/MS demonstrated 2furancarboxaldehyde; 2,3-dihydro-3,5-dihydroxy-6-methylpyranoside; 1,3,5-triazine-2,4,6-triamine and 3phenyl-2-propeonic acid as the major constituents in the lychee extract. There was no significant difference between two lychee strains on Carrageenin-induced anti-inflammatory effects but Chakapat

was shown to be superior over Gimjeng on acetic acid-induced writhing response. Antioxidant properties of both lychee extracts on the inhibition of lipid peroxidation varied depending upon the dosages, but Gimjeng as compared to Chakapat demonstrated a better antioxidant activity as revealed by anti-lipid peroxidation activity with the trolox equivalent antioxidant capacity (TEAC) values of 11.64 and 9.09 g/mg trolox, respectively. Immunologic response as shown by the percentage of phagocytosis was not different between control and rats fed with lychee extracts. There was no change in splenocyte subpopulation and proliferation of splenocytes after stimulated with mitogen. These results suggested that high dose of lychee extracts are not toxic to cells in the immune system. However, our preliminary data showed that the amount of IFN-γ and IL-4 from stimulated splenocytes were slightly decreased in rats fed with Gimjeng extracts. In contrast, the amount of IFN-γ was declined in rats fed with Chakapat extracts while the amount of IL-4 was slightly increased. It is likely that the lychee extracts could modulate the function of T lymphocytes. For hepatoprotective studies, administration of silymarin and both Gimjeng and Chakapat lychee extracts lowered all serum liver enzyme levels. The pretreatment with silymarin and lychee extracts at the dose of 100 and 500 mg/kg could protect against increases of GPT, GOT and ALP enzymes in CCl₄, paracetamol and D-galactosamine -intoxicated rats. Carbon tetrachloride, paracetamol, and D-galactosamine administration in rats significantly elevated the serum levels of GPT, GOT, and ALP as compared to controls. Nonetheless, administration of silymarin, Gimjeng and Chakapat lychee extracts prevented these increases significantly (p<0.05). The pretreatment with silymarin and lychee extracts at the dose of 100 and 500 mg/kg could protect against increases of GPT, GOT and ALP enzymes in CCl₄, paracetamol and D-galactosamine -intoxicated rats. Immuno-histopathological studies using tissue microarray technique also confirmed the hepatoprotective effect of the two strains of lychee by decreasing apoptosis together with restoration of morphological changes. Hepatoprotective effects of both lychee extracts varied depending upon the dosages, but the Gimjeng extract was shown to be superior to the Chakapat extract as compared by a quantitative analysis of apoptotic cells. A number of apoptotic cells/mm² was significantly reduced in the group of CCl₄, paracetamol and D-galactosamine-induced rats pretreated with the Gimjeng lychee extracts as compared with deionized water p < 0.0001, p < 0.005, p<0.005 respectively which was superior over the groups of rats pretreated with the Chakapat p<0.0001, p<0.01, p<0.01 respectively.. According to histopathological examination of the livers, less morphological changes were seen in rats with Gimjeng and Chakapat pretreatment. Our demonstration that apoptosis as identified by its distinctive morphological features and by immunostaining for caspase 3 can be extensive in CCl₄, paracetamol and galactosamine - intoxicated rats indicating for the first time that it may be entirely responsible for the so-called "necrosis" seen in these drug and chemicals -induced liver injury. Anti-apoptotic activity was more pronounced when the rats were treated with Gimjeng extracts at the dose of 500mg/kg. The superiority of hepatoprotective effect of Gimjeng was also supported by a better result on inhibition of lipid peroxidation and its significant reduction in serum liver enzymes. Even though the results on vit C and phenolic content in which Gimjeng extracts revealed less amount of vit C and total phenolic compound as compared to those of Chakapat, other active principles in lychee extracts remain to be determined. Anti-oxidant and anti-apoptosis including the immunomodulatory activity by frequent consumption of Chakapat and Gimjeng lychee are worth further study. Conclusion: Both strains of lychee, Gimjeng and Chakapat are functional and seasonal fruits which are abundant with vitamin A, vitamin C, phenolics and phytochemicals. They showed anti-inflammatory, analgesic activities and significant hepatoprotective effects in carbon tetrachloride, paracetamol and D-galactosamine- induced hepatotoxicity by preventing the increase of liver enzymes and inhibiting apoptotic cell death. Possibly, they enable antioxidative and free radicals-scavenging activities to eliminate reactive oxidants including anti-apoptotic activity and modulating the function of T lymphocytes that contribute to liver tissue damage and inflammation.