

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การใช้ประโยชน์จากสารเคมีในเปลือกหอยนางรม^{เพื่อการกำจัดโลหะหนักและฟอสเฟตในน้ำเสีย}

โดย รศ.ดร.ดวงกมล ณ ระนอง และคณะ

เดือนปีที่เสร็จโครงการ มีนาคม 2554

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การใช้ประโยชน์จากสารเคมีในเปลือกหอยนางรมเพื่อการกำจัดโลหะหนักและฟอสเฟตในน้ำเสีย

คณะกรรมการ

- รศ.ดร.ดวงกมล ณ ระนอง
- ดร.วัลย์รัตน์ จันทร้อมพร

ผู้ติดต่อ

สาขาวิชาเคมี คณะวิศวกรรมศาสตร์
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ชุดโครงการ

อาหารปลอดภัยและการพัฒนาอาชีพทางเลือกและการจัดการทรัพยากรชัยฝั่ง จ.สุราษฎร์ธานี
สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)
(ความเห็นในรายงานผลการวิจัยเป็นของผู้วิจัย สำนักงานกองทุนสนับสนุนการวิจัยไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

หน้าที่

สารบัญรูป	ii
สารบัญตาราง	v
บทสรุปผู้บริหาร	1
บทคัดย่อ	3
Abstract	3
เนื้อหางานวิจัย	4
1. ความสำคัญ / ความเป็นมา	4
2. วัตถุประสงค์ของโครงการ	4
3. วิธีวิจัย	5
3.1 การเตรียมวัสดุดูดซับ	5
3.2 การสร้างเครื่องกรองน้ำข้าขนาดเล็กสำหรับกำจัดโลหะหนักเพื่อใช้ในครัวเรือน	7
3.3 การสร้างเครื่องบำบัดน้ำเสียสำหรับกำจัดฟอสเฟต	9
4. ผลการทดลอง วิเคราะห์ และวิจารณ์	15
4.1 การเตรียมวัสดุดูดซับ	15
4.2 การสร้างเครื่องกรองน้ำข้าขนาดเล็กสำหรับกำจัดโลหะหนักเพื่อใช้ในครัวเรือน	18
4.2.1 การทดลองแบบง่าย	18
4.2.2 การทดลองแบบต่อเนื่อง	32
4.2.3 การทดลองโดยใช้เครื่องกรองน้ำตันแบบ	35
4.3 การสร้างเครื่องบำบัดน้ำเสียสำหรับกำจัดฟอสเฟต	37
4.3.1 การทดลองแบบง่าย	37
4.3.2 การทดลองแบบต่อเนื่อง	51
4.3.3 เครื่องบำบัดน้ำเสียครัวเรือนตันแบบ	53
5. สรุปและข้อเสนอแนะ	55
6. เอกสารอ้างอิง	56
ภาคผนวก	57
ก. บทความสำหรับการเผยแพร่	58
ข. กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์	70
ค. ตารางเปรียบเทียบวัตถุประสงค์ กิจกรรมที่วางแผน กิจกรรมที่ดำเนินการมา และผลที่ได้รับ	71

สารบัญรูป

หน้าที่

รูปที่ 3.1-1	เครื่องมือเตรียมสารดูดซับจากเปลือกหอยนางรม (ระดับห้องปฏิบัติการ)	5
รูปที่ 3.1-2	เตาเผาสำหรับเตรียมสารดูดซับสำหรับการใช้งานจริงในระดับชุมชน	7
รูปที่ 3.2-1	แผนภาพสำหรับการบรรจุสารในคอลัมน์ดูดซับที่ใช้ในการทดลองแบบต่อเนื่อง	8
รูปที่ 3.3-1	ชุดทดสอบการดูดซับฟอสฟे�ตสำหรับการทดลองแบบกะ	10
รูปที่ 3.3-2	ชุดทดสอบการดูดซับฟอสฟे�ตแบบต่อเนื่อง	11
รูปที่ 3.3-3	แผนภาพของเครื่องบำบัดน้ำเสียครัวเรือนตันแบบ	12
รูปที่ 3.3-4	ถังดักไขมัน	12
รูปที่ 3.3-5	ชุดกรองอย่างง่าย	13
รูปที่ 3.3-6	ท่อบรรจุวัสดุดูดซับ (ความจุวัสดุดูดซับ 150 กรัม)	13
รูปที่ 3.3-7	ชุดบำบัดน้ำเสียจากครัวเรือน	14
รูปที่ 4.1-1	スペクトรัม XRD ของ (a) เปลือกหอยนางรมบด (b) เปลือกหอยนางรมที่ผ่านการให้ความร้อนที่ 700°C ในอากาศ	16
รูปที่ 4.1-2	ภาพถ่าย SEM ของเปลือกหอยนางรมที่ผ่านการให้ความร้อนที่ 700°C นาน 6 ชั่วโมง ในบรรยากาศของ (a, b) อากาศ และ (c, d) ในโตรเจน	17
รูปที่ 4.2-1	ไอโซเทอร์มการดูดซับของตะกั่ว (อุณหภูมิ 25°C)	19
รูปที่ 4.2-2	ความสัมพันธ์เชิงเส้นของการดูดซับตะกั่วตามรูปแบบแลงเมียร์ (อุณหภูมิ 25°C)	19
รูปที่ 4.2-3	ความสัมพันธ์เชิงเส้นของการดูดซับตะกั่วตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)	20
รูปที่ 4.2-4	ไอโซเทอร์มการดูดซับของตะกั่วของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองแลงเมียร์โดยใช้ค่า K และ ค่า q_0 จากตารางที่ 4.2-1	21
รูปที่ 4.2-5	ไอโซเทอร์มการดูดซับของแคนเดเมียม (อุณหภูมิ 25°C)	22
รูปที่ 4.2-6	ความสัมพันธ์เชิงเส้นของการดูดซับแคนเดเมียมตามรูปแบบแลงเมียร์ (อุณหภูมิ 25°C)	22
รูปที่ 4.2-7	ความสัมพันธ์เชิงเส้นของการดูดซับแคนเดเมียมตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)	23
รูปที่ 4.2-8	ไอโซเทอร์มการดูดซับของสังกะสี (อุณหภูมิ 25°C)	24
รูปที่ 4.2-9	ความสัมพันธ์เชิงเส้นของการดูดซับสังกะสีตามรูปแบบแลงเมียร์ (อุณหภูมิ 25°C)	24
รูปที่ 4.2-10	ไอโซเทอร์มการดูดซับของสังกะสีของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และ ค่า q จากตารางที่ 4.2-3	25
รูปที่ 4.2-11	ไอโซเทอร์มการดูดซับของเหล็ก (อุณหภูมิ 25°C)	26
รูปที่ 4.2-12	ความสัมพันธ์เชิงเส้นของการดูดซับเหล็กตามรูปแบบแลงเมียร์ (อุณหภูมิ 25°C)	27
รูปที่ 4.2-13	ความสัมพันธ์เชิงเส้นของการดูดซับเหล็กตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)	27
รูปที่ 4.2-14	ไอโซเทอร์มการดูดซับของเหล็กของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และ ค่า q จากตารางที่ 4.2-4	28
รูปที่ 4.2-15	ไอโซเทอร์มการดูดซับของโครเมียม (อุณหภูมิ 25°C)	29
รูปที่ 4.2-16	ความสัมพันธ์เชิงเส้นของการดูดซับโครเมียมตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)	29

สารบัญรูป (ต่อ)

หน้าที่

รูปที่ 4.2-17	ไอโซเทอร์มการดูดซับของโครงเมียมของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และ ค่า g จากตารางที่ 4.2-5	30
รูปที่ 4.2-18	กราฟเบรคทรูจ์ของการดูดซับไออกอนของตะกั่ว (อุณหภูมิ 25°C)	32
รูปที่ 4.2-19	กราฟเบรคทรูจ์ของการดูดซับไออกอนของแคนเดเมียม (อุณหภูมิ 25°C)	32
รูปที่ 4.2-20	กราฟเบรคทรูจ์ของการดูดซับไออกอนของสังกะสี (อุณหภูมิ 25°C)	33
รูปที่ 4.2-21	กราฟเบรคทรูจ์ของการดูดซับไออกอนของเหล็ก (อุณหภูมิ 25°C)	33
รูปที่ 4.2-22	กราฟการดูดซับไออกอนของโครงเมียมในการทดลองแบบต่อเนื่อง (อุณหภูมิ 25°C)	34
รูปที่ 4.2-23	กราฟเบรคทรูจ์ของการดูดซับไออกอนแคนเดเมียมเมื่อใช้เครื่องกรองน้ำตันแบบ	36
รูปที่ 4.2-24	กราฟเบรคทรูจ์ของการดูดซับไออกอนสังกะสีเมื่อใช้เครื่องกรองน้ำตันแบบ	36
รูปที่ 4.3-1	การดูดซับฟอสเฟตจากน้ำเสียสมมติด้วยตัวดูดซับ (OS-treated, $\text{N}_2/700^\circ\text{C}$) ที่ 25°C ความเข้มข้นเริ่มต้นต่างๆ	38
รูปที่ 4.3-2	การดูดซับฟอสเฟตจากน้ำเสียสมมติความเข้มข้นเริ่มต้น 50 ppm ที่ 25°C ด้วยตัวดูดซับ OS-treated, $\text{N}_2/700^\circ\text{C}$ และ OS-treated, $98.5\text{N}_2-1.5\text{H}_2\text{O}/700^\circ\text{C}$	38
รูปที่ 4.3-3	ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมบดเป็นสารดูดซับ (OS)	39
รูปที่ 4.3-4	ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ผ่านการปรับปรุงสมบัติด้วยอากาศที่ (a) 700°C (OS-treated, air/ 700°C) และ (b) 800°C (OS-treated, air/ 800°C) เป็นสารดูดซับ	40
รูปที่ 4.3-5	ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ผ่านการปรับปรุงสมบัติด้วย N_2 ที่ (a) 600°C (OS-treated, $\text{N}_2/600^\circ\text{C}$), (b) 700°C (OS-treated, $\text{N}_2/700^\circ\text{C}$) และ (c) 800°C (OS-treated, $\text{N}_2/800^\circ\text{C}$) เป็นสารดูดซับ	41
รูปที่ 4.3-6	ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ปรับปรุงสมบัติด้วย N_2 ผสมไอน้ำในอัตราส่วน $1:1$ ที่ 700°C (OS-treated, $\text{N}_2-\text{H}_2\text{O}/700^\circ\text{C}$)	42
รูปที่ 4.3-7	ข้อมูลการดูดซับของสารดูดซับ OS-treated, $\text{N}_2/500^\circ\text{C}$ ในรูปความสัมพันธ์เชิงเส้นสำหรับไอโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir	43
รูปที่ 4.3-8	ข้อมูลการดูดซับของสารดูดซับ OS-treated, air/ 700°C ในรูปความสัมพันธ์เชิงเส้นสำหรับไอโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir	44
รูปที่ 4.3-9	ข้อมูลการดูดซับของสารดูดซับ OS-treated, air/ 800°C ในรูปความสัมพันธ์เชิงเส้นสำหรับไอโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir	45
รูปที่ 4.3-10	ข้อมูลการดูดซับของสารดูดซับ OS-treated, $\text{N}_2/600^\circ\text{C}$ ในรูปความสัมพันธ์เชิงเส้นสำหรับไอโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir	46
รูปที่ 4.3-11	ข้อมูลการดูดซับของสารดูดซับ OS-treated, $\text{N}_2/700^\circ\text{C}$ ในรูปความสัมพันธ์เชิงเส้นสำหรับไอโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir	47

รูปที่ 4.3-12	ข้อมูลการดูดซับของสารดูดซับ OS-treated, $N_2/800^\circ C$ ในรูปความสัมพันธ์เชิงเส้น สำหรับไฮโซเทอร์มการดูดซับแบบ (a) Freundlich และ (b) Langmuir	48
รูปที่ 4.3-13	ข้อมูลการดูดซับของสารดูดซับ OS-treated, $50N_2-50H_2O/700^\circ C$ ในรูปความสัมพันธ์ เชิงเส้นสำหรับไฮโซเทอร์มการดูดซับแบบ (a) Freundlich และ (b) Langmuir	49
รูปที่ 4.3-14	เปรียบเทียบสมการไฮโซเทอร์มการดูดซับ (ตารางที่ 4.3-1) กับผลการทดลองที่ $25^\circ C$ ของสารดูดซับชนิดต่างๆ	50
รูปที่ 4.3-15	อัตราส่วนความเข้มข้นฟอสเฟตที่เหลือในน้ำเสียสมมติต่อความเข้มข้นฟอสเฟตเริ่มต้น ที่แตกต่างกัน	52
รูปที่ 4.3-16	อิทธิพลของขนาดอนุภาควัสดุดูดซับที่มีต่อประสิทธิภาพการดูดซับฟอสเฟตในน้ำเสียสมมติ	52
รูปที่ 4.3-17	การเปลี่ยนแปลงอัตราส่วนความเข้มข้นฟอสเฟตที่เหลือต่อความเข้มข้นฟอสเฟตเริ่มต้น [C/C ₀] เมื่อใช้ตัวอย่างเป็นน้ำเสียจากครัวเรือน	53

สารบัญตาราง

หน้าที่

ตารางที่ 3.1	สภาวะที่ใช้ในการทดลองแบบงำสำหรับ Pb, Cd, Zn, Fe และ Cr เครื่องแก๊สโครมาโทกราฟ GC-FID	8
ตารางที่ 4.1-1	องค์ประกอบของสารดูดซับชั่งวิเคราะห์ด้วยเทคนิค XRF เครื่องวิเคราะห์แก๊สโครมาโทกราฟ GC-FID	15
ตารางที่ 4.1-2	พื้นที่ผิวจำเพาะของวัสดุดูดซับที่ได้เมื่อให้ความร้อนเปลือกหอยนางรมที่ 700°C ¹ ภายใต้บรรยายกาศของแก๊สพานิชนิดต่างๆ	16
ตารางที่ 4.2-1	การดูดซับตะกั่วด้วยสารดูดซับชนิดต่างๆ	20
ตารางที่ 4.2-2	การดูดซับแแคดเมียมด้วยสารดูดซับชนิดต่างๆ	23
ตารางที่ 4.2-3	การดูดซับสังกะสีด้วยสารดูดซับชนิดต่างๆ	25
ตารางที่ 4.2-4	การดูดซับเหล็กด้วยสารดูดซับชนิดต่างๆ	28
ตารางที่ 4.2-5	การดูดซับโครเมียมด้วยสารดูดซับชนิดต่างๆ	30
ตารางที่ 4.2-6	รูปแบบไอโซเทอร์มที่เหมาะสมสำหรับการดูดซับโลหะหนักชนิดต่างๆ ด้วยกระบวนการแบบงำ (อุณหภูมิ 25 °C)	31
ตารางที่ 4.2-7	ประสิทธิภาพของการดูดซับแบบงำโดยเฉลี่ยของโลหะแต่ละชนิด	31
ตารางที่ 4.2-8	เวลาสูงสุดที่สารดูดซับบำบัดน้ำได้ตามมาตรฐานน้ำบริโภคที่กฏหมายกำหนด และความสามารถในการดูดซับโลหะหนักแต่ละชนิด	35
ตารางที่ 4.3-1	ไอโซเทอร์มการดูดซับฟอสฟेटในน้ำเสียสมมติสำหรับสารดูดซับแต่ละชนิด	50
ตารางที่ 4.3-2	ปริมาณการดูดซับฟอสฟे�ตอิมตัวของสารดูดซับชนิดต่างๆ	51
ตารางที่ 4.3-3	ราคาเครื่องบำบัดน้ำเสียครัวเรือน (ตันแบบขนาด 50 ลิตร)	54

กิตติกรรมประกาศ

ขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) ฝ่ายเกษตรที่สนับสนุนเงินทุนวิจัย

คณะผู้วิจัย

บทสรุปผู้บริหาร

จังหวัดสุราษฎร์ธานีมีการเพาะเลี้ยงหอยนางรมกันอย่างแพร่หลายทำให้มีเปลือกหอยนางรมเหลือทิ้งปริมาณมาก เพื่อให้การพัฒนาอาชีพและวิถีความเป็นอยู่ในชุมชนมีความยั่งยืน จึงควรต้องมีแนวทางที่เหมาะสมในการจัดการเปลือกหอยนางรมเหลือทิ้ง โดยที่ผ่านมา มีการนำเปลือกหอยนางรมไปผสมในอาหารสัตว์หรือปุ๋ย แต่การใช้ประโยชน์ดังกล่าวไม่อJORองรับปริมาณเปลือกหอยนางรมที่เพิ่มมากขึ้นทุกปี รวมถึงยังเป็นการใช้ประโยชน์ที่ไม่คุ้มค่า ดังนั้นจึงควรมีการศึกษาวิจัยเพื่อเพิ่มแนวทางการใช้ประโยชน์จากเปลือกหอยนางรมเหลือทิ้ง โดยนำไปใช้ส่งเสริมความเป็นอยู่และอาชีพเพาะเลี้ยงสัตว์น้ำชายฝั่งของผู้คนในชุมชนให้ดีขึ้น จากรายงานการตรวจสอบคุณภาพน้ำของหน่วยศึกษาและเฝ้าระวังมลพิษทางน้ำ (Water Patrol) กรณีพืช เอเชียตะวันออกเฉียงใต้ พบร่วม แหล่งน้ำธรรมชาติในจังหวัดสุราษฎร์ธานีและจังหวัดใกล้เคียงมีการปนเปื้อนโลหะหนักจำพวกตะกั่ว โคโรเมียม และแคนเดเมียม ในระดับที่รุนแรงมากจนไม่เหมาะสมที่จะนำมาใช้บริโภค และเมื่อน้ำทะเลน้ำทะเลจะทำให้เกิดการสะสมของโลหะหนักในสัตว์ทะเลจนไม่สามารถนำมาบริโภคได้ ประกอบกับปัจจุบันเริ่มมีผลการศึกษาที่แสดงแนวโน้มการสะสมของแคนเดเมียมในระดับที่สูงขึ้นในหอยนางรมที่เพาะเลี้ยงในจังหวัดสุราษฎร์ธานีด้วย หากปล่อยทิ้งไว้อาจทำให้คุณภาพของหอยนางรมไม่เป็นที่ยอมรับ และไม่ปลอดภัยต่อการบริโภค ซึ่งอาจส่งผลกระทบรุนแรงต่ออุตสาหกรรมอาหาร การเพาะเลี้ยง และรายได้ของชุมชน นอกจากนี้การเติบโตของชุมชนตามชายฝั่งทะเลและแหล่งน้ำ ทำให้ปริมาณน้ำทิ้งทั้งจากครัวเรือน การเพาะปลูก และอุตสาหกรรมการเพาะเลี้ยงสัตว์น้ำมีปริมาณเพิ่มขึ้น ซึ่งหากทิ้งไว้จะเกิดปรากฏการณ์ยูโรฟิเดชันจะส่งผลเสียต่อการเพาะเลี้ยงหอยนางรม และแหล่งทรัพยากรในท้องทะเลถูกทำลายในวงกว้าง เป็นการสูญเสียที่ไม่อาจประเมินค่าได้ จึงต้องมีการป้องกันเพื่อไม่ให้เกิดปัญหาดังกล่าวขึ้น

งานวิจัยนี้มีเป้าหมายในการหาแนวทางในการนำเปลือกหอยนางรมเหลือทิ้งไปใช้ประโยชน์ในการบำบัดน้ำที่มีโลหะหนักหรือฟอสฟे�ตปนเปื้อน โดยกำหนดวิธีและสภาวะที่เหมาะสมในการเตรียมสารดูดซับจากเปลือกหอยนางรมที่ใช้ดูดซับไอลอนโลหะหนัก 5 ชนิด (ตะกั่ว แคนเดเมียม สังกะสี เหล็กและโคโรเมียม) และฟอสฟे�ตนำข้อมูลที่ได้ไปใช้ออกแบบเครื่องกรองน้ำ และเครื่องบำบัดน้ำเสียต้นแบบสำหรับใช้งานในชุมชน

จากการศึกษาเพื่อหาแนวทางในการนำเปลือกหอยนางรมเหลือทิ้งมาผลิตเป็นสารดูดซับสำหรับใช้กำจัดไอลอนโลหะหนักและฟอสฟे�ตในน้ำเสีย สำหรับการกำจัดไอลอนโลหะหนักเมื่อนำสารดูดซับที่ได้จากการเพาเปลือกหอยนางรมภายใต้สภาวะที่มีอากาศไหผ่านที่อุณหภูมิ 700°C มาทำการทดลองแบบกะ พบร่วมประสิทธิภาพในการกำจัดโลหะหนัก ได้แก่ เหล็ก สังกะสี แคนเดเมียม ตะกั่ว และโคโรเมียม คิดเป็นร้อยละ 92.19, 91.82, 90.62, 72.06 และ 24.30 ตามลำดับ เมื่อนำสารดูดซับที่ผลิตได้จากเปลือกหอยนางรมไปทดสอบด้วยเครื่องดูดซับแบบต่อเนื่อง พบร่วมสามารถกำจัดเหล็กและแคนเดเมียมออกจากน้ำเสียที่มีองค์ประกอบชนิดเดียวได้เท่ากับ 3.6 และ 2.9 มิลลิกรัมโลหะหนัก/กรัมสารดูดซับ ตามลำดับ เมื่อทดลองใช้เครื่องกรองน้ำต้นแบบ (ดูดซับแบบต่อเนื่อง) บำบัดน้ำเสียสมมติที่มีโลหะหนักทั้ง 5 ชนิดผสมกัน พบร่วมสามารถใช้งานได้ดีเฉพาะกรณีไม่มีเหล็กอยู่ด้วย โดยสามารถกำจัดแคนเดเมียมและสังกะสีได้เท่ากับ 33 และ 38 มิลลิกรัมโลหะหนัก/กรัมสารดูดซับตามลำดับ สำหรับการกำจัดฟอสฟे�ต พบร่วมสารดูดซับที่สังเคราะห์โดยใช้แก๊สต่างชนิดกันมีลักษณะไอโซเทอร์มการดูดซับต่างกัน และสารดูดซับที่เตรียมจากการเพาเปลือกหอยนางรมภายใต้บรรยายกาศของแก๊สในไตรเจนที่อุณหภูมิ 700°C เหมาะสมที่จะใช้บำบัดน้ำเสียจากครัวเรือนที่มีระดับความเข้มข้นของฟอสฟे�ตไม่เกิน 50 ppm และมีความจุอิมต้าเท่ากับ 583.5 mg-P/g ซึ่งสารดูดซับปริมาณ 15 กรัม สามารถบำบัดตัวอย่างน้ำเสียจากครัวเรือนด้วยอัตราการไหล 1 ลิตรต่อชั่วโมง ให้มีระดับความเข้มข้นของฟอสฟे�ตต่ำกว่าเกณฑ์ที่กฎหมายกำหนดได้นาน 10 ชั่วโมง โดยมีต้นทุนของเครื่องตันแบบสำหรับบำบัดน้ำเสียชุมชนขนาด 50 ลิตร ในราคาประมาณ 1,700 บาท

อย่างไรก็ตามสารดูดซับที่ได้จากเปลือกหอยนางรมในงานวิจัยนี้มีข้อเสีย คือ มีอนุภาคขนาดเล็กขึ้นรูปยาก และจะละลายออกมานเป็นน้ำที่ผ่านการบำบัดด้วย จึงต้องหาวิธีขึ้นรูปที่เหมาะสมและพัฒนาเทคโนโลยีในการดำเนินงานเพื่อให้สามารถนำไปใช้ในเครื่องกรองน้ำและเครื่องบำบัดน้ำเสียขนาดใหญ่ที่ใช้งานได้จริงอย่างมีประสิทธิภาพ

บทคัดย่อ

งานวิจัยนี้ทำการศึกษาเพื่อหาแนวทางในการนำเปลือกหอยนางรมเหลือทิ้งมาผลิตเป็นสารดูดซับสำหรับใช้กำจัดไอลอห์นักและฟอสเฟตในน้ำเสีย สำหรับการกำจัดไอลอห์นักเมื่อน้ำสารดูดซับที่ได้จากการเผาเปลือกหอยนางรมภายใต้สภาวะที่มีอากาศไหลผ่านที่อุณหภูมิ 700°C มาทำการทดลองแบบพบร่วมสามารถกำจัดโลหะนักได้ทุกชนิดโดยมีประสิทธิภาพในการกำจัดเหล็ก สังกะสี แ cacium เมียม ตะกั่ว และโคโรเมียม เท่ากัน 92.19% , 91.82% , 90.62% , 72.06% และ 24.30% ตามลำดับ เมื่อนำไปทดสอบด้วยเครื่องดูดซับแบบต่อเนื่องพบว่าสามารถกำจัดเหล็กและแ cacium เมียมออกจากน้ำเสียที่มีองค์ประกอบชนิดเดียวได้ 3.6 และ 2.9 mg/g ตามลำดับ เมื่อนำไปทดสอบกับน้ำเสียที่มีโลหะทั้ง 5 ชนิด พบร่วมสามารถใช้งานได้ดีเฉพาะกรณีไม่มีเหล็กอยู่ด้วยโดยสามารถกำจัดแ cacium เมียมและสังกะสีได้ 33 และ 38 mg/g ตามลำดับ สำหรับการกำจัดฟอสเฟตพบว่าสารดูดซับที่สังเคราะห์โดยใช้แก๊สต่างชนิดกันมีลักษณะไม่เหมือนกัน แต่สารดูดซับที่เตรียมโดยใช้อากาศที่ 700°C เหมาะสมที่จะใช้บำบัดน้ำเสียครัวเรือนที่มีฟอสเฟตเข้มข้นในช่วงไม่เกิน 50 ppm ที่สุด โดยมีความจุอิมตัวเท่ากับ 583.5 mg-P/g โดยตัวดูดซับ 15 g สามารถบำบัดน้ำเสียครัวเรือนตัวอย่างด้วยอัตรา $1 \text{ litr/t}\text{ชั่วโมง}$ ให้มีความเข้มข้นฟอสเฟตต่ำกว่าเกณฑ์ที่กฎหมายกำหนดได้นาน 10 ชั่วโมง

ABSTRACT

The preparation of adsorbent from oyster shell waste used in water treatment for removing heavy metal ions and phosphate has been investigated in this study. The adsorbent used in the heavy metal removal was prepared by heating the oyster shell under air atmosphere at 700°C . It showed removal efficiency of 92.19% , 91.82% , 90.62% , 72.06% and 24.30% in the removing ion of Fe, Zn, Cd, Pb and Cr, respectively, when the adsorption was tested in a small batch equipment. When the adsorption was tested using a continuous mode equipment, the adsorbent had efficiency of 3.6 and 2.9 mg/g for removal of Fe and Cd, respectively. From the test using the water containing all of the 5 metal ions, the adsorbent successfully used for water treatment only when no existing of iron. It could adsorb 33 and 38 mg/g of Cd and Zn, respectively. The study on the phosphate removal revealed that the adsorbents prepared under different conditions had different phosphate adsorption isotherms. Among all the prepared adsorbents, the one prepared using air at 700°C was the most effective adsorbent for phosphate removal from household waste water with phosphate concentration of $\leq 50 \text{ ppm}$. It had saturated adsorption capacity of 583.5 mg-P/g . The adsorbent (15 g) was able to treat the household waste water under the level stricited by law with the treatment rate of $1 \text{ dm}^3/\text{h}$ for 10 h .

เนื้อหางานวิจัย

1. ความสำคัญ / ความเป็นมา

จังหวัดสุราษฎร์ธานีมีเนื้อที่เพาะเลี้ยงหอยนางรมบริเวณกว้างและมีเปลือกหอยนางรมเหลือทิ้งปริมาณมาก เพื่อให้การพัฒนาอาชีพและวิถีความเป็นอยู่ของผู้คนในชุมชนมีความยั่งยืนจำเป็นต้องมีการจัดการเปลือกหอยนางรมเหลือทิ้งให้เหมาะสม ที่ผ่านมาเปลือกหอยนางรมถูกนำไปผสมอาหารสัตว์หรือใช้เป็นปุ๋ยเพราะมีรากดูดเคลื่อนย้ายสูงแต่การใช้ประโยชน์นี้ไม่อาจรองรับเปลือกหอยนางรมเหลือทิ้งปริมาณมากที่เพิ่มขึ้นต่อเนื่องทุกปี คณะผู้วิจัยจึงต้องการเพิ่มแนวทางการใช้ประโยชน์เปลือกหอยนางรมเหลือทิ้งที่ให้ผลตอบแทนคุ้มค่าและช่วยส่งเสริมความเป็นอยู่ของผู้คนในชุมชนให้ดีขึ้น

หน่วยศึกษาและเฝ้าระวังมลพิษทางน้ำ (Water Patrol) กรณีพิช เอเชียตะวันออกเฉียงใต้ ได้รายงานผลการตรวจสอบคุณภาพน้ำตามแหล่งน้ำต่างๆ ไว้ว่า แหล่งน้ำธรรมชาติในจังหวัดสุราษฎร์ธานีและจังหวัดใกล้เคียงมีการปนเปื้อนโลหะหนักจำพวกตะกั่ว โครเมียม และแคนเดเมียม ในระดับที่รุนแรงมากจนไม่เหมาะสมที่จะนำมาใช้บริโภค ประชากรที่อาศัยในพื้นที่ซึ่งบริโภคน้ำบาดาลหรือน้ำประปาที่ผลิตจากแหล่งน้ำดิบบริเวณน้ำอาจได้รับโลหะหนักและสารเคมีในร่างกายจนเกิดโรคต่างๆ ตามมา นอกจากนี้เมื่อน้ำเหล่าน้ำแหล่งน้ำที่แหล่งน้ำที่มีการสะสมของโลหะหนักในสัดส่วนมากทำให้ไม่สามารถนำมาบริโภคได้ปัจจุบันเริ่มมีผลการศึกษาที่แสดงแนวโน้มการสะสมแคนเดเมียมในระดับที่สูงขึ้นในหอยนางรมที่เพาะเลี้ยงในจังหวัดสุราษฎร์ธานี ด้วย หากปล่อยทิ้งไว้จะทำให้คุณภาพของหอยนางรมไม่เป็นที่ยอมรับในตลาดต่างประเทศที่มีมาตรการควบคุมการปนเปื้อนที่เข้มงวด ส่งผลกระทบบุนเดรังต่ออุตสาหกรรมอาหาร การเพาะเลี้ยง และรายได้ของคนในชุมชน นอกจากนี้จังหวัดสุราษฎร์ธานีและจังหวัดใกล้เคียงมีแหล่งท่องเที่ยวทางทะเลที่สวยงามคร่าแก่การอนุรักษ์ไว้ให้เป็นแหล่งท่องเที่ยวของรายได้ของชุมชน แต่เนื่องจากการเติบโตของชุมชนตามชายฝั่งทะเลและแหล่งน้ำทำให้ปริมาณการปล่อยน้ำทิ้งทั้งจากครัวเรือน การเพาะปลูกและอุตสาหกรรมการเพาะเลี้ยงสัตว์น้ำเพิ่มขึ้น เมื่อมองในระยะยาวจะเกิดปรากฏการณ์ญี่ปุ่นฟิล์มที่ส่งผลเสียต่อการเพาะเลี้ยงหอยนางรมและทำให้แหล่งทรัพยากรในท้องทะเลถูกทำลายในวงกว้างซึ่งเป็นการสูญเสียที่ไม่อาจประเมินค่าได้ จึงต้องมีการป้องกันที่ดีไม่ให้เกิดปัญหาดังกล่าวขึ้น

งานวิจัยนี้มีเป้าหมายหลัก คือ นำเปลือกหอยนางรมเหลือทิ้งไปใช้ประโยชน์ในการบำบัดน้ำที่มีโลหะหนักหรือฟอสเฟตปนเปื้อน โดยหารือและสภาวะที่เหมาะสมในการสังเคราะห์สารดูดซับจากเปลือกหอยนางรมที่ใช้ดูดซับป้องกันโลหะหนัก 5 ชนิด (ตะกั่ว, แคนเดเมียม, สังกะสี, เหล็กและโครเมียม) และฟอสเฟต นำข้อมูลที่ได้ไปใช้ออกแบบเครื่องกรองน้ำ และเครื่องบำบัดน้ำเสียตันแบบสำหรับใช้งานในชุมชน ผลลัพธ์ที่ได้ทำให้เปลือกหอยนางรมเหลือทิ้งสามารถนำไปใช้ประโยชน์ได้หลากหลายขึ้นและช่วยส่งเสริมความเป็นอยู่ของคนในชุมชนให้ดีขึ้น

2. วัตถุประสงค์ของโครงการ

- กำหนดวิธีการและสภาวะที่เหมาะสมและง่ายต่อการผลิตสารดูดซับจากเปลือกหอยนางรม
- ทดสอบประสิทธิภาพในการลดปริมาณป้องกันโลหะหนัก (ตะกั่ว, แคนเดเมียม, สังกะสี, เหล็ก และโครเมียม) และฟอสเฟตในน้ำเสียจากสารดูดซับที่ได้
- สร้างเครื่องกรองน้ำขึ้นมาด้วยราคากลูกทุ่นเพื่อใช้ในกระบวนการบริโภคในครัวเรือน
- สร้างเครื่องตันแบบที่ทำงานง่ายสำหรับบำบัดน้ำเสียในชุมชนที่ทำอุตสาหกรรมเพาะเลี้ยงหอยนางรม

3. วิธีวิจัย

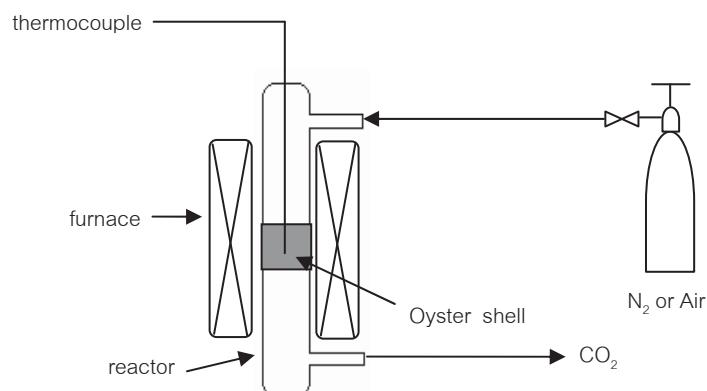
งานวิจัยนี้แบ่งการทดลองออกเป็น 3 ส่วน คือ (1) การเตรียมสารดูดซับ, (2) การสร้างเครื่องกรองน้ำขนาดเล็กสำหรับกำจัดโลหะหนักเพื่อใช้ในครัวเรือน และ (3) การสร้างเครื่องบำบัดน้ำเสียสำหรับกำจัดฟอสเฟต ดังอธิบายรายละเอียดในหัวข้อ 3.1, 3.2 และ 3.3 ตามลำดับ

3.1 การเตรียมสารดูดซับ

3.1.1 อุปกรณ์และสารเคมีที่ใช้

3.1.1.1 เครื่องมือที่ใช้เตรียมสารดูดซับระดับห้องปฏิบัติการ (รูปที่ 3.1-1)

3.1.1.2 เครื่องบดแบบใบมีดตัด


3.1.1.3 ตะแกรงคัดขนาด 150 และ 200 ไมโครเมตร

3.1.1.4 เปลือกหอยนางรมบด

3.1.1.5 แก๊สไนโตรเจน (99.99%)

3.1.1.6 อากาศ (air zero)

3.1.1.7 น้ำกลั่น

รูปที่ 3.1-1 เครื่องมือเตรียมสารดูดซับจากเปลือกหอยนางรม (ระดับห้องปฏิบัติการ)

3.1.2 วิธีเตรียมสารดูดซับ

3.1.2.1 การทดลองระดับห้องปฏิบัติการ

การเตรียมสารดูดซับเพื่อใช้ในการทดลองระดับห้องปฏิบัติการทำโดยนำเปลือกหอยนางรมไปล้างด้วยน้ำสะอาด นำไปตากแห้ง บดละเอียด และนำมาร่อนคัดขนาดด้วยตะแกรง จากนั้นนำไปบรรจุลงในหลอดแก้วครอบหัวและให้ความร้อนภายใต้บรรยายกาศของแก๊สเฉียบ (N_2 , air หรือ N_2 ผสม H_2O ในสัดส่วน 50:50 และ 98.5:1.5) ที่อุณหภูมิ 500, 600, 700 หรือ 800°C นาน 6 ชั่วโมง ด้วยเครื่องมือในรูปที่ 3.1-1 เก็บแก๊สที่ปากทางออกมาวัดองค์ประกอบด้วยเครื่องวิเคราะห์แก๊สโครมาโตกราฟทุก 30 นาที เมื่อไม่พบการรับน้ำได้ออกไซด์แล้วจึงลดอุณหภูมิลงมาที่อุณหภูมิห้อง เก็บสารดูดซับที่ได้ใน desiccators

OS หมายถึงเปลือกหอยนางรมที่ผ่านการให้ความร้อนที่ 500°C โดยองค์ประกอบไม่เปลี่ยนแปลงสำหรับเปลือกหอยนางรมที่ผ่านการให้ความร้อนแล้วองค์ประกอบเปลี่ยนแปลงจะตั้งชื่อเป็น “OS-treated ชนิดแก๊ส/อุณหภูมิ” ได้แก่ OS-treated $N_2/600^\circ C$, OS-treated $N_2/700^\circ C$, OS-treated $N_2/800^\circ C$, OS-treated air/700°C, OS-treated 50 N_2 -50 $H_2O/700^\circ C$ และ OS-treated 98.5 N_2 -1.5 $H_2O/700^\circ C$

สารดูดซับที่ได้จะถูกนำไปวิเคราะห์องค์ประกอบและโครงสร้างด้วยเทคนิค XRF, XRD, BET และ SEM

3.1.2.2 การใช้งานระดับชุมชน

การเตรียมสารดูดซับเพื่อการใช้งานจริงระดับชุมชนต้องเตรียมครั้งละปริมาณมากด้วยเครื่องมือที่ไม่ซับซ้อน ทำงานง่าย และราคาถูก งานวิจัยนี้จึงดัดแปลงเตาเผาแกลบ (รูปที่ 3.1-2) ซึ่งประกอบจากถังน้ำมัน 200 ลิตรและท่อเหล็ก ทำขึ้นได้ง่าย มีราคาถูก และยังสามารถใช้วัสดุชีวมวลหรือแก๊สชีวภาพเป็นเชื้อเพลิงให้ความร้อนได้

การเตรียมสารดูดซับเริ่มจากนำเปลือกหอยนางรมไปล้างด้วยน้ำสะอาด ตากแห้ง (แต่ไม่จำเป็นต้องบดละเอียด) และนำไปวางบนตะแกรง ปิดฝาท่อด้านข้างของเตาเผา เปิดฝาด้านบนและด้านล่าง จากนั้นจุดไฟให้ความร้อน ตรวจด้วยเครื่องบันทึกอุณหภูมิในแก๊สที่ออกจากเตาด้วยสารละลายน้ำปูนใส เมื่อไม่พบว่าน้ำปูนใสขึ้นจึงหยุดเผาเชื้อเพลิง ร้อนอุณหภูมิลดลงมาที่อุณหภูมิห้อง

รูปที่ 3.1-2 เตาเผาสำหรับเตรียมสารดูดซับสำหรับการใช้งานจริงในระดับชุมชน

3.2 การสร้างเครื่องกรองน้ำข้าดเล็กสำหรับกำจัดโลหะหนักเพื่อใช้ในครัวเรือน

3.2.1 สารเคมีที่ใช้

3.2.1.1 $\text{Pb}(\text{NO}_3)_2$ analytical grade

3.2.1.2 $\text{Cd}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ analytical grade

3.2.1.3 $\text{K}_2\text{Cr}_2\text{O}_7$ analytical grade

3.2.1.4 $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ analytical grade

3.2.1.5 $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ analytical grade

3.2.1.6 น้ำกลั่น

3.2.1.7 วัสดุดูดซับ OS-treated, air/700°C

3.2.2 วิธีทดลอง

3.2.2.1 การทดลองแบบง่าย

เตรียมสารละลายโลหะหนักที่ความเข้มข้นต่างๆ ใส่ในขวดรูป楚พู่ จำนวนนำไปเขย่าด้วยเครื่องเขย่าที่อุณหภูมิ 25 °C เป็นเวลา 1 วัน รожนเข้าสู่สมดุลการดูดซับ จึงเก็บสารตัวอย่าง 5 มิลลิลิตร ใส่ในขวดเก็บสารตัวอย่างที่มีสารละลายกรดในตrigเข้มข้น 2 มิลลิลิตร (เพื่อรักษาสภาพของตัวอย่าง และป้องกันไม่ให้อ่อนโลหะหนักติดที่ผนังภาชนะ) นำสารตัวอย่างที่ได้ไปวิเคราะห์หาปริมาณโลหะหนัก โดยใช้เครื่อง AAS ตารางที่ 3.1 แสดงข้อมูลเกี่ยวกับสภาวะที่ใช้ในการทดลองสำหรับโลหะหนักแต่ละชนิด

ตารางที่ 3.1 สาระที่ใช้ในการทดลองแบบงำสำหรับ Pb, Cd, Zn, Fe และ Cr

โลหะหนัก	ความเข้มข้นเริ่มต้น (ppm)	ปริมาตร (ml)	ปริมาณตัวดูดซับ (g)
Pb	5, 10, 15, 20	1000	0.1
Cd	5, 10, 15, 20, 25, 30, 35	200	0.02
Zn	2.5, 5, 7.5, 10, 15, 20, 25, 30	200	0.02
Fe	3, 5, 10, 15, 20, 25, 30, 35	200	0.02
Cr	25, 50, 100, 200, 250, 350	100	0.01

3.2.2.2 การทดลองแบบต่อเนื่อง

ชุดทดลองที่ใช้ทำจากคอลัมน์พลาสติก (เส้นผ่านศูนย์กลาง 0.3 cm สูง 0.7 cm) ภายในบรรจุสารที่มีโลหะหนักเข้มข้น 6 ppm เข้าสู่คอลัมน์จากด้านล่างด้วยอัตราการไหล (6 ml/min) ปล่อยให้ไหลขึ้นอย่างต่อเนื่อง (Up flow-fed) โดยใช้ Diaphragm Pump จากนั้นเก็บสารละลายตัวอย่างที่ไหลออกจากคอลัมน์ (5 ml) ใส่ในขวดที่มีกรดในตriticเข้มข้น 2 ml เพื่อรักษาสภาพตัวอย่างและป้องกันไม่ให้อ่อนของโลหะหนักติดที่ผนังภาชนะ นำสารละลายตัวอย่างไปวิเคราะห์หัวปริมาณโลหะหนักด้วยเครื่อง AAS ทั้งนี้หากสารละลายตัวอย่างมีความเข้มข้นกินช่วงที่เครื่อง AAS สามารถตรวจวัดได้ จะต้องเติมน้ำกัลล์เพื่อเจือจางในช่วง 30 นาทีแรก จากนั้นจะเก็บทุก 5 นาที อีก 30 นาที, ทุก 10 นาที อีก 2 ชั่วโมง และทุก 20 นาที อีก 1 ชั่วโมง

รูปที่ 3.2-1 แผนภาพลำดับการบรรจุสารใน colloidal ดูดซับที่ใช้ในการทดลองแบบต่อเนื่อง

3.2.2.3 การทดลองโดยใช้เครื่องกรองน้ำตันแบบ

เครื่องกรองน้ำตันแบบที่ใช้เป็น colloidal plastic (เส้นผ่านศูนย์กลาง 2.4 cm สูง 30 cm) ภายในบรรจุตัวดูดซับ 10 g น้ำเสียสมมติที่ใช้เป็นสารละลายน้ำของโลหะหนักทุกชนิดที่ศึกษาในงานวิจัยนี้ (ตะกั่ว แคนเดเมียม เหล็ก สังกะสี และโกรเมียม) โดยกำหนดความเข้มข้นของโลหะหนักแต่ละชนิดในน้ำเสียสมมติมีค่าเท่ากับ 10 ppm

การทดลองทำโดยป้อนน้ำเสียสมมติด้วย Diaphragm Pump กำหนดอัตราการไหลเป็น 1 l/h และเก็บสารละลายน้ำตัวอย่างที่ปากทางออกไปทำการวิเคราะห์หาปริมาณปริมาณโลหะหนักด้วยเครื่อง AAS เช่นเดียวกับการทดลองในหัวข้อ 3.2.2

3.3 การสร้างเครื่องบำบัดน้ำเสียสำหรับกำจัดฟอสฟे�ต

3.3.1 สารเคมีและอุปกรณ์ที่ใช้

3.3.1.1 บีกเกอร์ขนาด 250 ml

3.3.1.2 เครื่องกวนแบบแม่เหล็ก (magnetic stirrer)

3.3.1.3 ชุดตรวจอุณหภูมิ

3.3.1.4 Spectrophotometer ซึ่งมีอินฟราเรดทิวบ์สำหรับใช้กับความยาวคลื่น 880 nm

3.3.1.5 เครื่องแก้วที่ล้างด้วยน้ำกลั่นจนสะอาด

3.3.1.6 Anhydrous KH_2PO_4

3.3.1.7 น้ำกลั่น

3.3.1.8 กรดซัลฟูริกเข้มข้น 5 N

3.3.1.9 แอนติโมนิลโพตัสเซียมтар์เตรต ($\text{K}(\text{SbO})\text{C}_4\text{H}_4\text{O}_6 \cdot 0.5\text{H}_2\text{O}$)

3.3.1.10 แอมโมเนียมโมลิบเดต ($(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$)

3.3.1.11 กรดแอกซ์โคร์บิค

3.3.1.12 สารดูดซับ OS, OS-treated $\text{N}_2/600^\circ\text{C}$, OS-treated $\text{N}_2/700^\circ\text{C}$, OS-treated $\text{N}_2/800^\circ\text{C}$, OS-treated air/ 700°C , OS-treated $50\text{N}_2-50\text{H}_2\text{O}/700^\circ\text{C}$ และ OS-treated $98.5\text{N}_2-1.5\text{H}_2\text{O}/700^\circ\text{C}$

3.3.2 การวัดปริมาณฟอสฟे�ตด้วยวิธีแอกซ์โคร์บิค

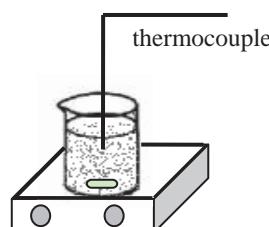
การเตรียมสารเคมี

- เติมกรดซัลฟูริก 5 N โดยเติมกรดซัลฟูริกเข้มข้นปริมาตร 70 ml ลงในน้ำกลั่น แล้วเติมน้ำกลั่นจนมีปริมาตรรวมเท่ากับ 500 ml
- เตรียมสารละลายน้ำติโมนิลโพตัสเซียมтар์เตรต โดยชั่ง $\text{K}(\text{SbO})\text{C}_4\text{H}_4\text{O}_6 \cdot 0.5\text{H}_2\text{O}$ หนัก 0.2743 g ละลายลงในน้ำกลั่นแล้วเจือจากน้ำด้วยน้ำกลั่นและเก็บในขวดแก้ว
- เตรียมสารละลายน้ำติโมนิลโพตัสเซียมtar์เตรต โดยชั่ง $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ หนัก 4 g ละลายลงในน้ำกลั่นแล้วเจือจากน้ำด้วยน้ำกลั่นและเก็บในขวดแก้ว
- เตรียมกรดแอกซ์โคร์บิค 0.1 M โดยชั่งกรดแอกซ์โคร์บิคหนัก 1.76 g ละลายในน้ำกลั่นแล้วเจือจากน้ำด้วยน้ำกลั่นและเก็บในขวดแก้ว

5. เตรียมน้ำยารวม โดยผสมน้ำยาเคมีข้างต้นในสัดส่วนสำหรับ 20 ml ดังนี้

กรดซัลฟูริก 5 N	10 ml
สารละลายแอนดิโนนิลโพตัสเซียมтар์เตรต	1 ml
สารละลายแอมโมเนียมโอลิบเดต	3 ml
สารละลายกรดแอกซ์โคร์บิก	6 ml

การผสมเริ่มจากนำสารละลายแต่ละชนิดมาตั้งทิ้งไว้จนมีอุณหภูมิเท่ากับอุณหภูมิห้อง จากนั้นจึงนำสารละลายแต่ละชนิดมาผสมกัน (โดยเติมเรียงลำดับและต้องผสมให้เข้ากันทุกครั้งเมื่อเติมส่วนผสมแต่ละชนิด) ถ้ามีความชุ่นเกิดขึ้นในน้ำยารวมหลังจากเติมสารละลายแอนดิโนนิลโพตัสเซียมтар์เตรต หรือสารละลายแอมโมเนียมโอลิบเดตให้เขย่า�้ำยาเคมีรวมนี้ตั้งทิ้งไว้ 2 – 3 นาที จนกระทั่งความชุ่นหายไป และจึงจะเติมน้ำยาตัวอื่นต่อไป (น้ำยารวมนี้ต้องใช้งานภายใน 4 ชั่วโมง)


วิธีวิเคราะห์

1. เตรียมกราฟมาตรฐาน: เตรียมสารละลายมาตรฐานฟอสเฟตเข้มข้น 10, 25, 50, 75 และ 100 ppm จำนวน 5 ml ในขวดรูปกรวยขนาด 100 ml และเติมน้ำยารวมลงไป 0.8 ml จากนั้นเขย่าให้เข้ากัน และตั้งทิ้งไว้อย่างน้อย 10 นาที แต่ไม่เกิน 30 นาที นำสารที่ได้ไปวัด %T ที่ความยาวคลื่น 880 nm โดยใช้น้ำกลั่นเป็นแบล็คแล้วเขียนกราฟมาตรฐานแสดงความสัมพันธ์ระหว่างความเข้มข้นของฟอสเฟต (ppm) กับค่า log (%T)
2. การวิเคราะห์ฟอสฟอรัสในสารละลายตัวอย่าง: ปีเปตสารละลายตัวอย่างมา 5 ml ใส่ลงในขวดรูปกรวย และเติมน้ำยารวมลงไป 0.8 ml จากนั้นเขย่าให้เข้ากัน และตั้งทิ้งไว้อย่างน้อย 10 นาที แต่ไม่เกิน 30 นาที นำสารที่ได้ไปวัด %T ที่ความยาวคลื่น 880 nm โดยใช้น้ำกลั่นเป็นแบล็ค

3.3.3 วิธีทดลอง

3.3.3.1 การทดลองแบบง่าย มีขั้นตอนดังนี้

1. เตรียมน้ำเสียสังเคราะห์ความเข้มข้นต่างๆ โดยใช้ Anhydrous KH_2PO_4 ผสมกับน้ำกลั่น
2. เตรียมอุปกรณ์ตามรูปที่ 3.3-1 โดยใช้น้ำเสียสังเคราะห์ 200 ml
3. เติมสารดูดซับจำนวน 0.1 g ลงในน้ำเสียสังเคราะห์
4. เก็บตัวอย่างปริมาตร 5 ml เมื่อการดูดซับอยู่ที่ภาวะสมดุลแล้ว (6 ชั่วโมง)
5. วัดปริมาณฟอสเฟตในน้ำเสียสมมติด้วยวิธีแอกซ์โคร์บิก

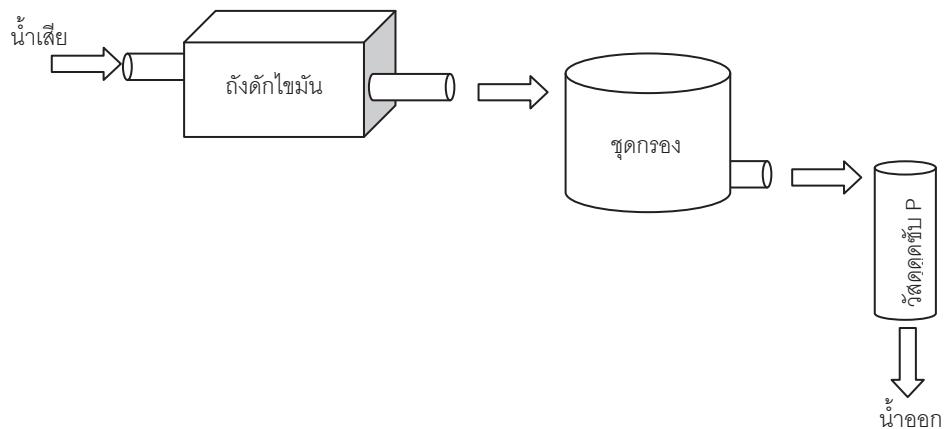
รูปที่ 3.3-1 ชุดทดลองการดูดซับฟอสเฟตสำหรับการทดลองแบบง่าย

3.3.3.2 การทดลองแบบต่อเนื่อง

ในการทดลองแบบต่อเนื่องจะพิจารณาเฉพาะ OS-treated $\text{N}_2/700^\circ\text{C}$ เท่านั้น เนื่องจาก OS-treated $\text{N}_2/700^\circ\text{C}$ มีประสิทธิภาพสูงที่สุดในการดูดซับฟอสเฟตสูงที่สุด

เครื่องดูดซับฟอสเฟต

แบบต่อเนื่องประกอบด้วย ปั๊มป้อนสารที่มีอัตราการไหล 0.1–1 l/h และท่อสำหรับบรรจุสารดูดซับ (เส้นผ่านศูนย์กลาง 2.5 cm ยาว 20 cm) ควบคุมอุณหภูมิโดยนำหล่อเย็นใน jacket ด้านนอก ติดตั้งดังแสดงในรูปที่ 3.3-2 โดยสารละลายจะถูกปั๊มเข้าทางด้านล่างของห่อและสารละลายที่ผ่านการกำจัดฟอสเฟตแล้วจะไหลออกทางด้านบนของห่อ การทดสอบทำโดยใช้น้ำเสียสังเคราะห์ที่มีความเข้มข้นของฟอสเฟตเท่ากับ 15, 20, 25 และ 100 ppm (ซึ่งเป็นค่าความเข้มข้นที่ครอบคลุมความเข้มข้นของฟอสเฟตในน้ำทึ้งชุมชนและในน้ำเสียจากโรงงานอุตสาหกรรม) และใช้วัสดุดูดซับ 0.3 g ทำการทดลองโดยป้อนน้ำเสียสังเคราะห์เข้าสู่ห่อที่บรรจุวัสดุดูดซับด้วยอัตราการไหล 0.3 l/h และเก็บตัวอย่างที่ทางออกทุกๆ 20 – 30 นาที เพื่อวัดปริมาณฟอสเฟตที่เหลืออยู่ด้วยวิธีแอกสคอร์บิค


รูปที่ 3.3-2 ชุดทดสอบการดูดซับฟอสเฟตแบบต่อเนื่อง

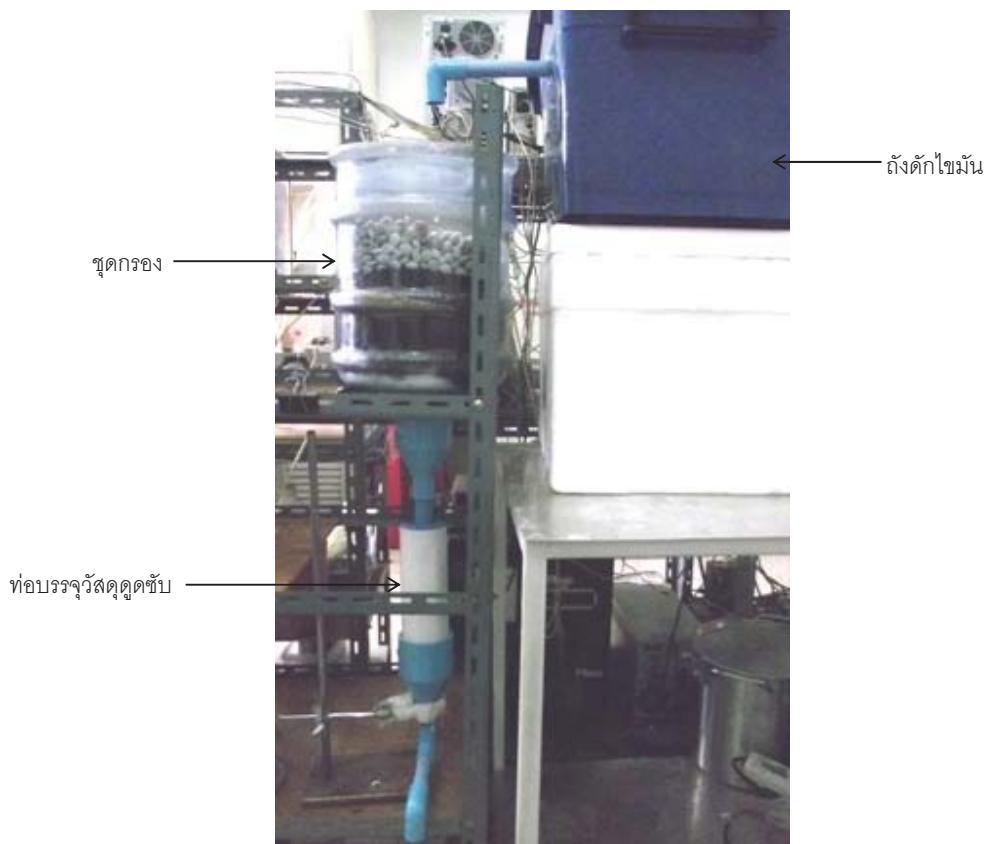
3.3.3.3 การทดลองโดยใช้เครื่องบำบัดน้ำเสียครัวเรือนตันแบบ

รูปที่ 3.3-3 แสดงแผนภาพของเครื่องบำบัดน้ำเสียครัวเรือนตันแบบที่ใช้ ประกอบด้วยถังดักไขมัน (รูปที่ 3.3-4), ชุดกรองอย่างง่าย (รูปที่ 3.3-5) และท่อบรรจุสารดูดซับ OS-treated $\text{N}_2/700^\circ\text{C}$ (รูปที่ 3.3-6) น้ำทึ้งจะถูกป้อนเข้าสู่ถังดักไขมันซึ่งทำหน้าที่ดักเศษอาหารและคราบไขมัน เมื่อไขมันถูกแยกออกจากน้ำทึ้งครัวเรือนแล้วจะไหลเข้าสู่ชุดกรองอย่างง่ายเพื่อกรองเศษวัสดุหรือเศษอาหารที่อาจตกค้างในน้ำ ลำดับชั้นของสารกรองในชุดกรองอย่างง่ายประกอบด้วยชั้นกรวดหยาบ, กรวดละเอียด, ทรายหยาบ, ทรายละเอียด, ถ่าน และสำลี น้ำเสียที่ออกจากชุดกรองอย่างง่ายจะไหลเข้าสู่ท่อบรรจุสารดูดซับในชั้นสุดท้าย โดยท่อบรรจุสารดูดซับเป็นห่อสองชั้น ห่อชั้นนอกทำด้วยพลาสติก ห่อชั้นในที่บรรจุสารดูดซับทำจากแผ่นตะแกรงขนาดรูเปิด 1 mm เพื่อให้น้ำเสียไหลผ่านเบดของสารดูดซับและไหลผ่านตะแกรงออกไปยังห่อชั้นนอกได้โดยมีความดันลดลง

รูปที่ 3.3-7 แสดงเครื่องบำบัดน้ำเสียครัวเรือนตันแบบที่สร้างขึ้น การทดลองทำโดยป้อนน้ำเสียชุมชนที่เกิดจากการซักล้างมีฟอสเฟต 12 ppm ด้วยอัตราการไหล 1 l/h เข้าสู่เครื่องบำบัดที่มีวัสดุดูดซับใน

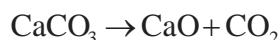
ขั้นสุดท้ายหนัก 15 กรัม จากนั้นเก็บตัวอย่างน้ำเสียที่ผ่านการบำบัดแล้วไปวิเคราะห์หาปริมาณฟอสฟे�ต ที่หลงเหลือที่เวลาต่างๆ

รูปที่ 3.3-3 แผนภาพของเครื่องบำบัดน้ำเสียครัวเรือนตันแบบ


รูปที่ 3.3-4 ถังดักไขมัน

รูปที่ 3.3-5 ชุดกรองอย่างง่าย

รูปที่ 3.3-6 ท่อบรรจุวัสดุดูดซับ (ความจุวัสดุดูดซับ 150 กรัม)

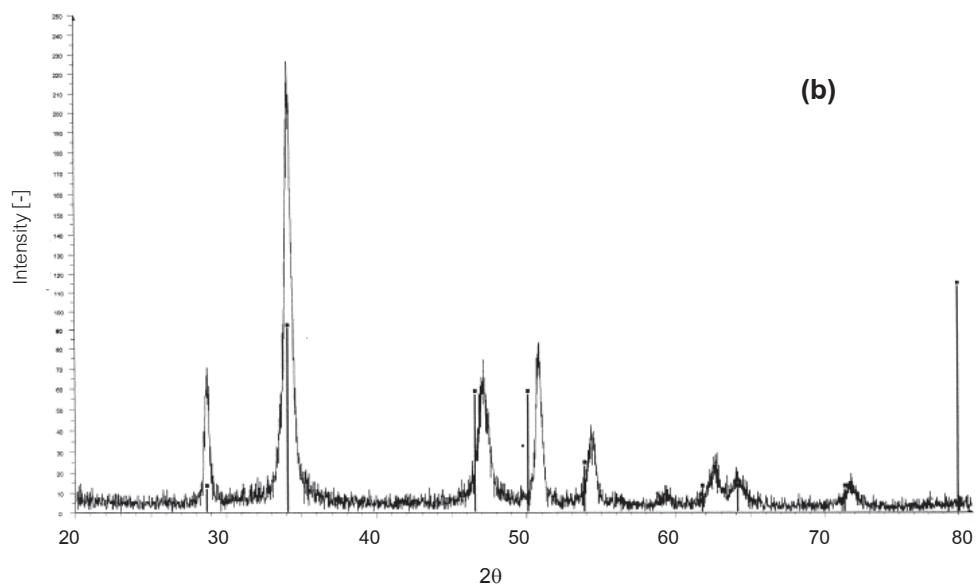
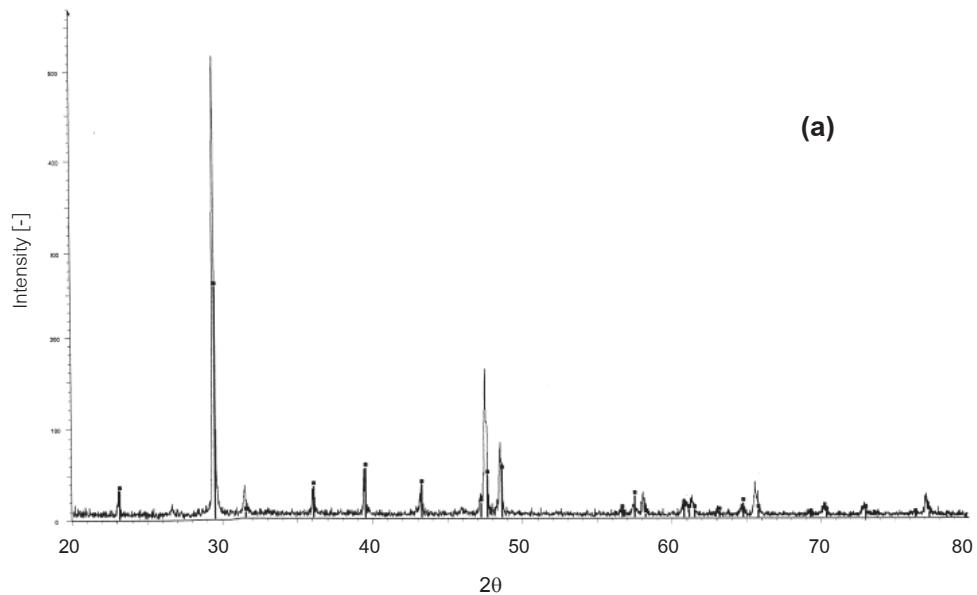


รูปที่ 3.3-7 ชุดบำบัดน้ำเสียจากครัวเรือน

4. ผลการทดลอง วิเคราะห์ และวิจารณ์

4.1 การเตรียมวัสดุดูดซับ

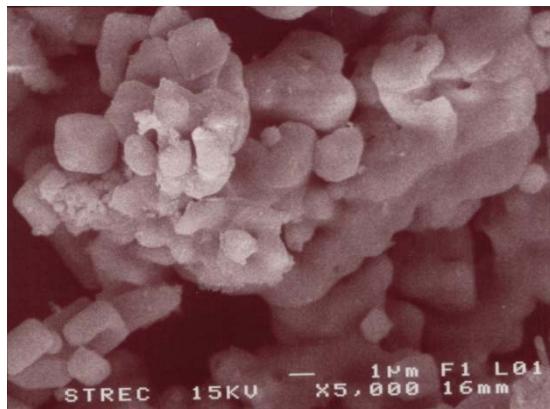
เมื่อนำเปลือกหอยนางรมบด (OS) ไปวิเคราะห์องค์ประกอบด้วยเทคนิค XRF พบว่ามีแคลเซียมคาร์บอเนต (CaCO_3) เป็นองค์ประกอบหลัก (ร้อยละ 93.3 โดยน้ำหนัก) และมีสารประกอบออกไซต์ของโลหะอื่นๆ อีกเล็กน้อย ดังตารางที่ 4.1-1 เมื่อนำเปลือกหอยนางรมไปให้ความร้อนภายใต้บรรยากาศของแก๊สเนื้อเยื่อ (OS-treated) ที่อุณหภูมิ 600, 700 และ 800°C พบว่ามีแก๊สคาร์บอนไดออกไซต์ออกมากจากเครื่องปฏิกรณ์ แต่เมื่อให้ความร้อนที่อุณหภูมิ 500°C เป็นเวลานานมากกว่า 10 ชั่วโมง ไม่พบแก๊สคาร์บอนไดออกไซต์ที่ปากทางออกเครื่องปฏิกรณ์เลย จึงสรุปได้ว่าการให้ความร้อนที่อุณหภูมิต่ำ ($\leq 500^\circ\text{C}$) ไม่ทำให้องค์ประกอบของเปลือกหอยนางรมเปลี่ยนแปลง แต่การให้ความร้อนที่อุณหภูมิสูง ($\geq 600^\circ\text{C}$) ทำให้องค์ประกอบของเปลือกหอยนางรมเปลี่ยนจาก CaCO_3 เป็น CaO ตามปฏิกิริยา

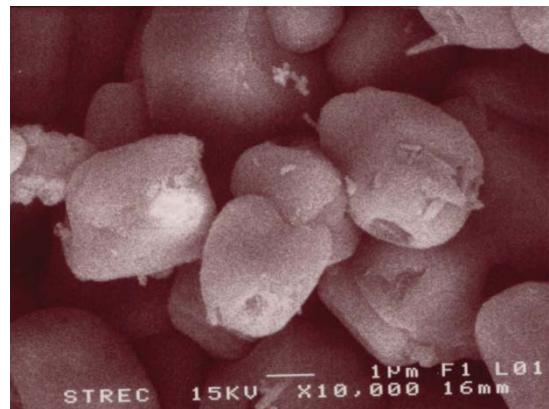



ผลการวิเคราะห์ในตารางที่ 4.1-1 (OS-treated, air/ 700°C และ OS-treated, $\text{N}_2/700^\circ\text{C}$) แสดงว่าเปลือกหอยนางรมที่ผ่านการให้ความร้อนภายใต้บรรยากาศของแก๊สเนื้อเยื่อที่อุณหภูมิ 700°C นาน 6 ชั่วโมง มี CaO เป็นองค์ประกอบหลัก และไม่มี CaCO_3 หลงเหลืออยู่ การตรวจสอบโครงสร้างผลึกด้วยเทคนิค XRD (รูปที่ 4.1-1) แสดงว่าเปลือกหอยนางรมมีโครงสร้างผลึกเป็น CaCO_3 เมื่อผ่านการให้ความร้อนภายใต้บรรยากาศของแก๊สเนื้อเยื่อที่อุณหภูมิ 700°C แล้วโครงสร้างจะเปลี่ยนเป็น CaO ทั้งหมด การเตรียมวัสดุดูดซับจากหอยนางรมในงานวิจัยนี้โดยการให้ความร้อนภายใต้บรรยากาศของแก๊สเนื้อเยื่อที่อุณหภูมิ $\geq 600^\circ\text{C}$ จึงทำการวัดหาปริมาณแก๊สคาร์บอนไดออกไซต์ที่ปากทางออกของเครื่องปฏิกรณ์จนไม่มีแก๊สคาร์บอนไดออกไซต์ออกมากแล้ว เพื่อให้แน่ใจว่าไม่มี CaCO_3 เหลืออยู่ในวัสดุดูดซับ

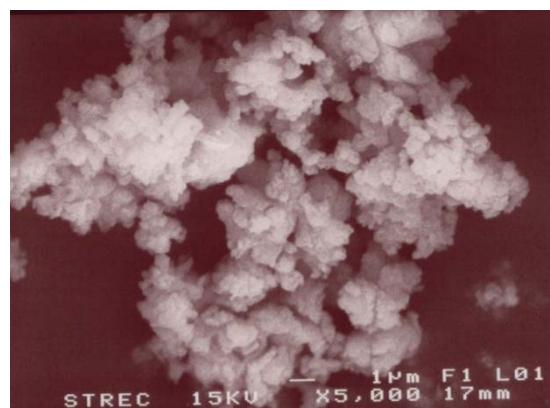
ตารางที่ 4.1-2 แสดงผลการวิเคราะห์พื้นที่ผิวจำเพาะของสารดูดซับเมื่อใช้เทคนิค BET เมื่อให้ความร้อนแก่เปลือกหอยนางรมที่อุณหภูมิเดียว กัน (700°C) ภายใต้บรรยากาศที่ไม่มีน้ำ การใช้อากาศจะเพิ่มพื้นที่ผิวจำเพาะของตัวดูดซับได้มากกว่า การใช้ในไตรเจน โดย OS-treated, air/ 700°C มีพื้นที่ผิวจำเพาะมากกว่าพื้นที่ผิวจำเพาะของ OS-treated, $\text{N}_2/700^\circ\text{C}$ เกิน 2 เท่า และเมื่อผสมไวน้ำลงไปด้วยจะทำให้พื้นที่ผิวจำเพาะของวัสดุดูดซับที่ได้มีค่ามากขึ้น โดย OS-treated, dried $\text{N}_2/700^\circ\text{C}$ มีพื้นที่ผิวจำเพาะน้อยที่สุด และ OS-treated, wet $\text{N}_2/700^\circ\text{C}$ มีพื้นที่ผิวจำเพาะมากที่สุด รูปที่ 4.1-2 แสดงลักษณะพื้นผิวทางภาพของอนุภาคเปลือกหอยนางรมที่ให้ความร้อนในบรรยากาศของอากาศและไนโตรเจน จะเห็นว่าชนิดของแก๊สที่ใช้มีผลทำให้ขนาดอนุภาคของสารดูดซับที่ได้แตกต่างกัน โดยเมื่อใช้อากาศอนุภาคจะยังคงมีขนาดใหญ่กว่าเมื่อใช้ในไตรเจน จากผล BET และ SEM สรุปได้ว่าการใช้อากาศจะได้สารดูดซับที่มีความพรุนมากกว่าการใช้ในไตรเจน โดยขนาดของรูพรุนภายในเฉลี่ยเมื่อใช้อากาศมีขนาดเล็กกว่าเมื่อใช้ในไตรเจน ดังนั้นตัวดูดซับที่เตรียมโดยใช้อากาศจึงมีข้อจำกัดด้านการแพร่ภายนอกมากกว่าตัวดูดซับที่เตรียมโดยใช้ในไตรเจน

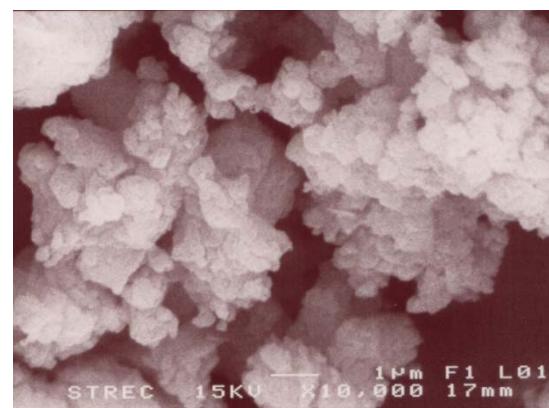
ตารางที่ 4.1-1 องค์ประกอบของสารดูดซับชี้วิเคราะห์ด้วยเทคนิค XRF


สารดูดซับ	ปริมาณของสารองค์ประกอบ (%wt)								
	CaCO_3	CaO	MgO	SiO_2	Fe_2O_3	SrO	Al_2O_3	CuO	Others
OS	93.300	-	1.270	1.910	0.622	0.307	0.839	0.487	1.752
OS-treated, air/ 700°C	-	97.000	0.917	0.588	0.252	0.244	0.235	0.232	0.532
OS-treated, $\text{N}_2/700^\circ\text{C}$	-	95.700	1.280	0.804	0.341	0.246	0.309	0.277	1.043


รูปที่ 4.1-1 สเปกตรัม XRD ของ (a) เปลือกหอยนางรมบด (b) เปลือกหอยนางรมที่ผ่านการให้ความร้อนที่ 700°C ในอากาศ

ตารางที่ 4.1-2 พื้นที่ผิวจำเพาะของสัตอุดซับที่ได้เมื่อให้ความร้อนเปลือกหอยนางรมที่ 700°C ภายใต้บรรยายกาศของแก๊สพานิจต่างๆ


วิธีเตรียมวัสดุอุดซับจาก OS	Surface area (m^2/g)
OS-treated, dried air/ 700°C	5.85
OS-treated, dried $\text{N}_2/700^{\circ}\text{C}$	2.39
OS-treated, wet $\text{N}_2/700^{\circ}\text{C}$	14.79


(a)

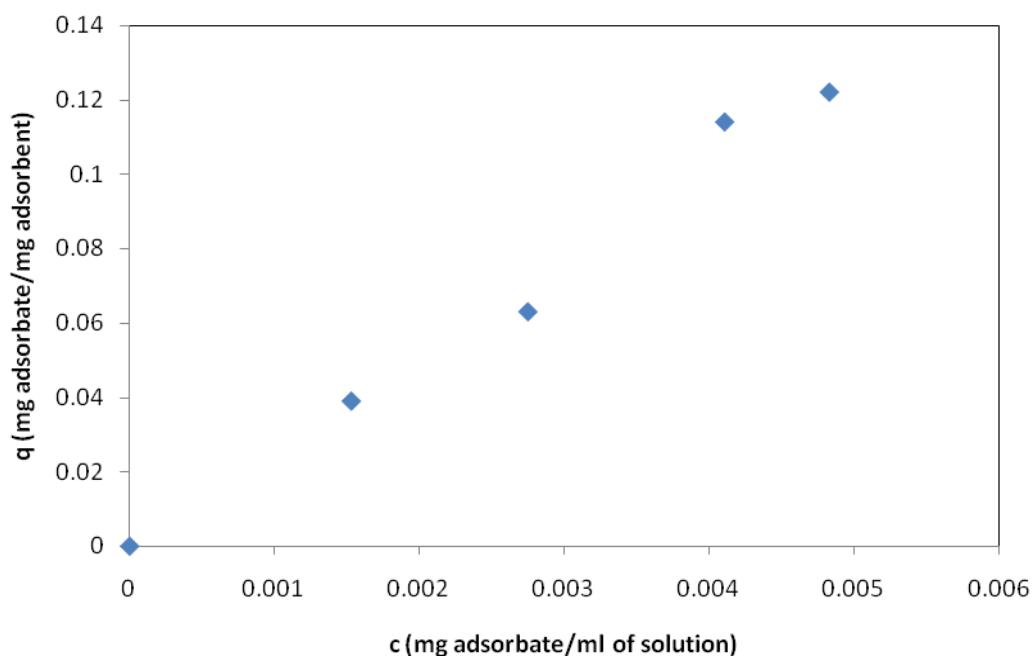
(b)

(c)

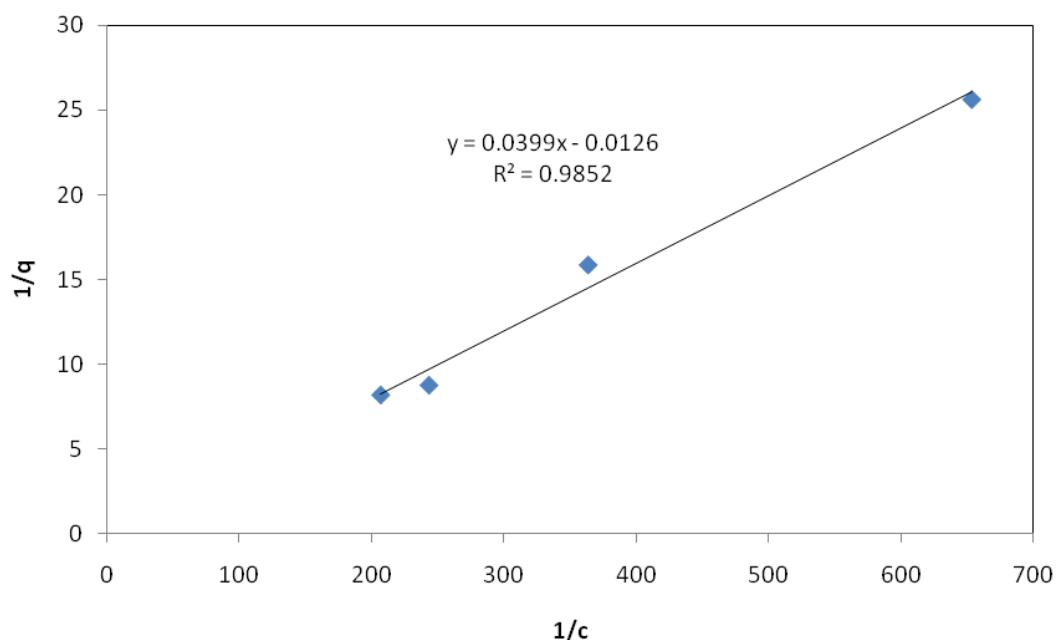
(d)

รูปที่ 4.1-2 ภาพถ่าย SEM ของเปลือกหอยนางรมที่ผ่านการให้ความร้อนที่ 700°C นาน 6 ชั่วโมง ในบรรยายกาศของ (a, b) อากาศ และ (c, d) ในไตรเจน

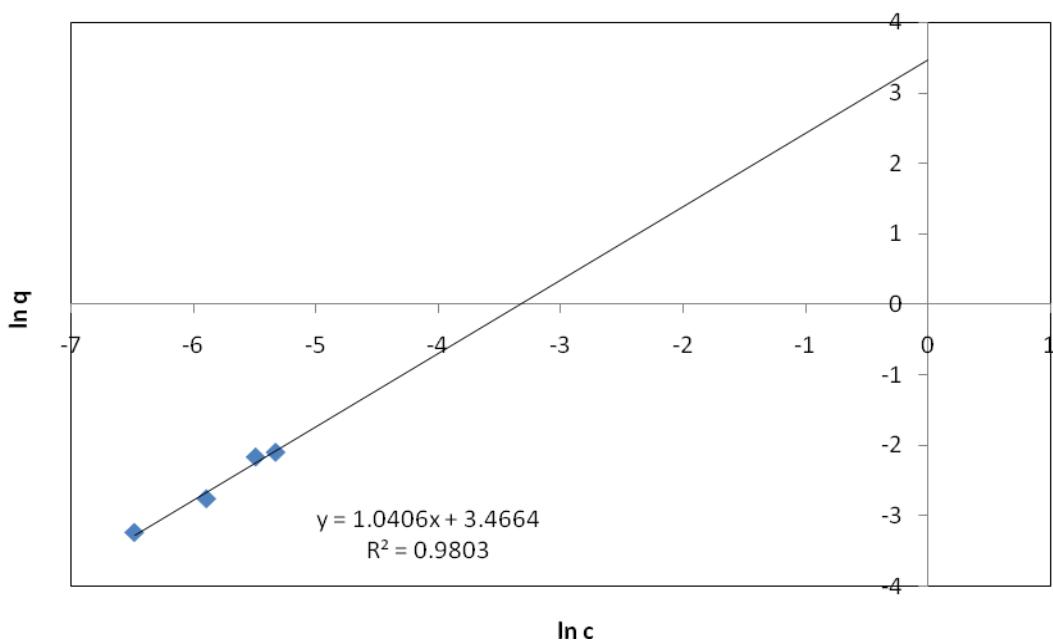
4.2 การสร้างเครื่องกรองห้าม PARTICULATE MATTER เพื่อใช้ในครัวเรือน


4.2.1 การทดลองแบบบวก

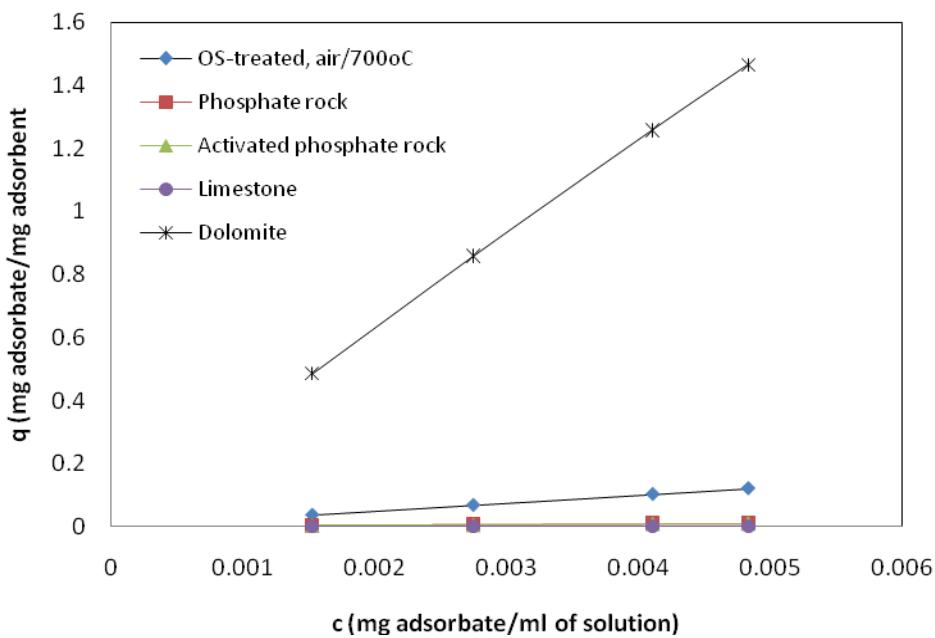
4.2.1.1 การดูดซับไออกอนตะกั่ว


รูปที่ 4.2-1 แสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายน้ำที่สมดุล (C) กับปริมาณของไออกอนตะกั่วที่ถูกดูดซับ (q) เนื่องจากความสัมพันธ์ไออกอเรียมที่ได้เมื่อชัดเจนว่าเป็นการดูดซับแบบใด สามารถอธิบายได้ทั้งความสัมพันธ์แบบ Langmuir และแบบ Frunellich จึงนำค่า q และค่า C ที่วัดได้ไปplot ตกราฟความสัมพันธ์เชิงเส้นตามรูปแบบของการดูดซับ Langmuir (รูปที่ 4.2-2) และการดูดซับ Frunellich (รูปที่ 4.2-3) จากการวิเคราะห์เปรียบเทียบผลการทดลองและค่าทางทฤษฎีพบว่าเมื่อพิจารณาว่าเป็นการดูดซับแบบ Langmuir จะได้ค่า R^2 (coefficient of determination) เท่ากับ 0.9852 ในขณะที่เมื่อพิจารณาว่าเป็นการดูดซับแบบ Frunellich จะได้ค่า R^2 เท่ากับ 0.9803

ผลการวิเคราะห์ดังกล่าวจึงสรุปได้ว่าแบบจำลองการดูดซับของ Langmuir และแบบจำลองการดูดซับแบบ Frunellich สามารถใช้ทำนายการดูดซับของไออกอนตะกั่วด้วยตัวดูดซับ (OS-treated, air/700°C) ได้ใกล้เคียงกัน แต่แบบจำลองการดูดซับของ Langmuir สามารถทำนายได้แม่นยำกว่าเล็กน้อย โดยมีพารามิเตอร์ K และ q_0 เท่ากับ 934 มิลลิกรัมต่อลิตร และ 23,474 มิลลิกรัมตะกั่วต่อกิโลกรัมตัวดูดซับ ตามลำดับ


ตารางที่ 4.2-1 แสดงการดูดซับตะกั่วด้วยสารดูดซับที่สังเคราะห์ในงานวิจัยนี้เปรียบเทียบกับสารดูดซับชนิดต่างๆ ที่รายงานในงานวิจัยอื่น จะเห็นว่าพัฒนาระบบการดูดซับตะกั่วด้วยสารดูดซับชนิดต่างๆ สามารถอธิบายได้ด้วยแบบจำลองไออกอเรียมการดูดซับแบบ Langmuir โดยสารดูดซับ OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้ความจุของตัวดูดซับ (q_0) สูงที่สุด อย่างไรก็ตามเมื่อนำค่า K และค่า q_0 จากตารางที่ 4.2-1 มาใช้คำนวณค่า q และที่ C ต่างๆ ด้วยแบบจำลอง Langmuir (รูปที่ 4.2-4) ปรากฏว่า Dolomite ในงานวิจัยที่ [1] ดูดซับตะกั่วได้ดีกว่า OS-treated, air/700°C มาก ในช่วงความเข้มข้นที่ทำการทดสอบ ทั้งนี้เนื่องมาจากแม้ว่าค่า q_0 ของ OS-treated, air/700°C จะสูงกว่าค่า q_0 ของ Dolomite แต่ค่า K ของ OS-treated, air/700°C ก็สูงกว่าค่า K ของ Dolomite มากเช่นกัน

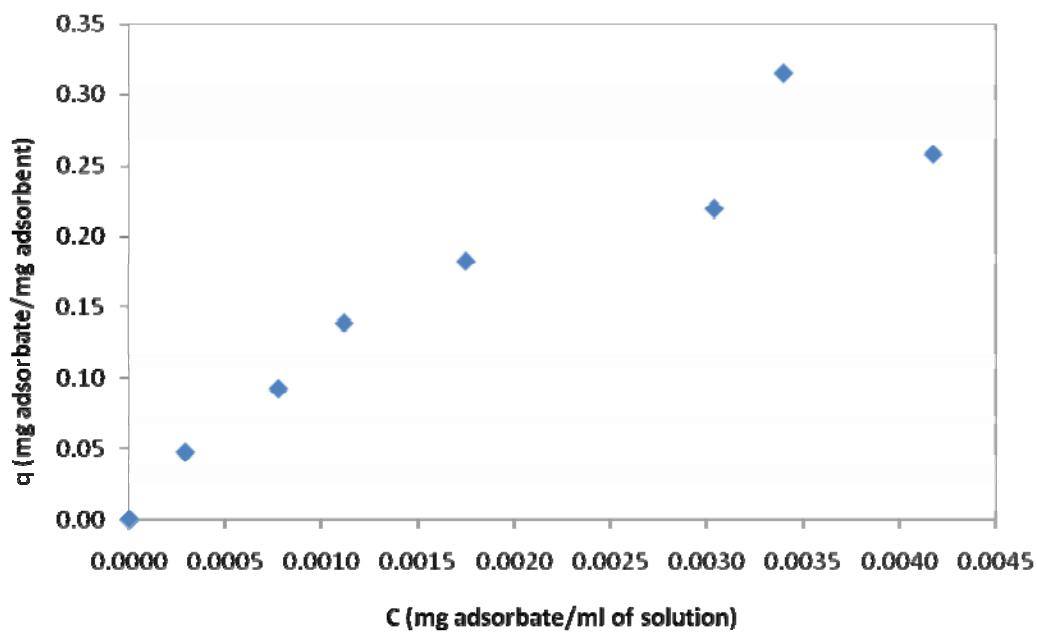
รูปที่ 4.2-1 ไฮโซเทอร์มการดูดซับของตะกั่ว (อุณหภูมิ 25°C)


รูปที่ 4.2-2 ความสมพันธ์เชิงเส้นของการดูดซับตะกั่วตามรูปแบบ Langmuir (อุณหภูมิ 25°C)

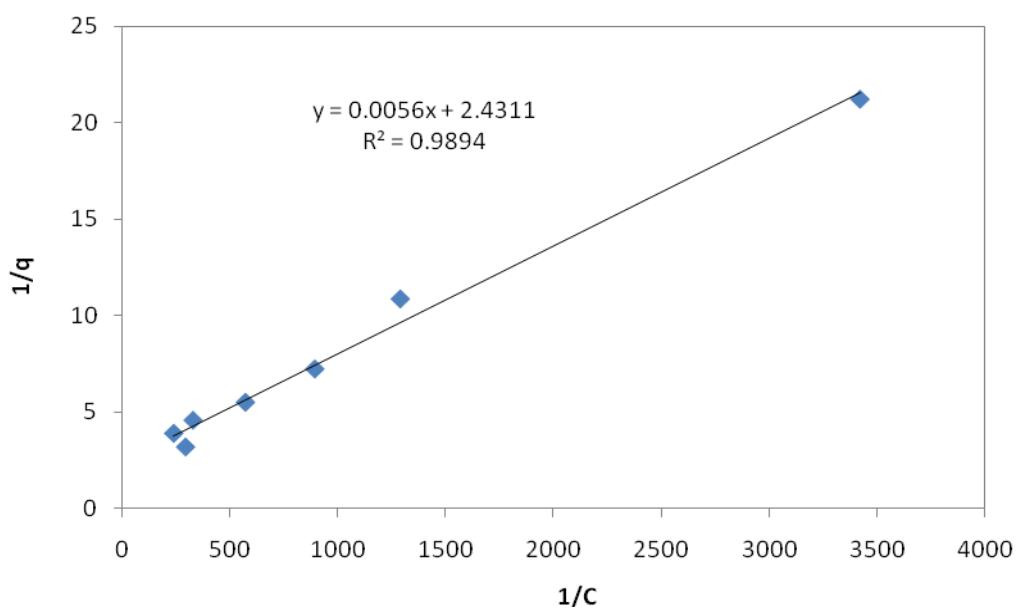
รูปที่ 4.2-3 ความสัมพันธ์เชิงเส้นของการดูดซับตะกั่วตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)

ตารางที่ 4.2-1 การดูดซับตะกั่วด้วยสารดูดซับชนิดต่างๆ

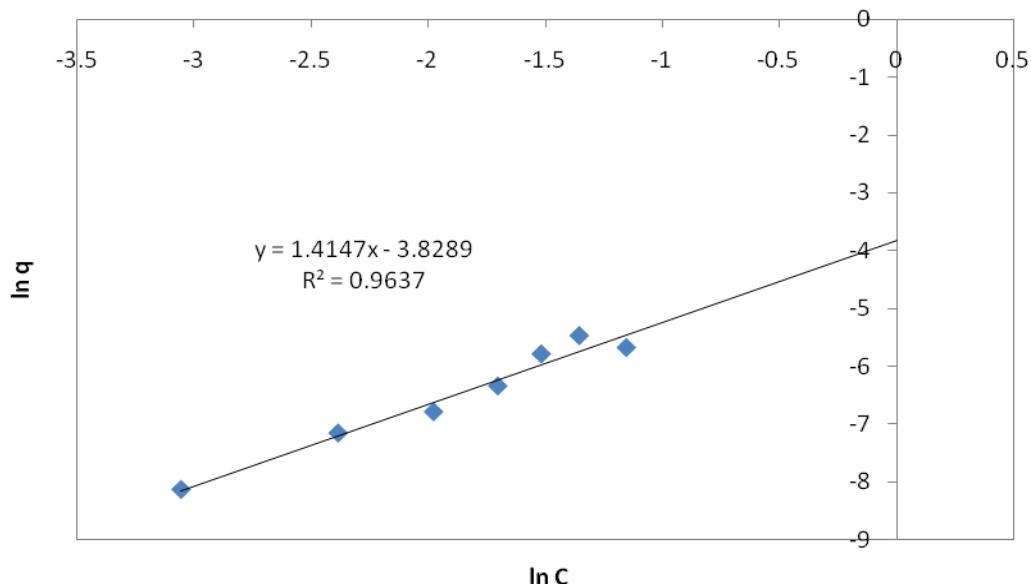
ชนิดสารดูดซับ	อ้างอิง	รูปแบบไฮโซเทอร์ม	R^2	q_0 (มก./ก.ตัวดูดซับ)	K (มก./ล.)	n	K_f (มล./มก.) $^{1/n}$
OS-treated, air/700°C	งานวิจัยนี้	ແລງເນື່ອຍ໌	0.99	23,474	934	-	-
Dolomite	[1]	ແລງເນື່ອຍ໌	0.97	21.76	0.067	-	-
Phosphate rock	[2]	ແລງເນື່ອຍ໌	0.99	12.78	5.88	-	-
Activated phosphate rock	[2]	ແລງເນື່ອຍ໌	0.99	15.47	5.26	-	-
		ຝຣຸນດລິຈ	0.99	-	-	2.63	2.66
Limestone	[3]	ແລງເນື່ອຍ໌	0.96	0.017	0.5	-	-


รูปที่ 4.2-4 ไอโซเทอร์มการดูดซับของตะกั่วของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองแลงเมียร์โดยใช้ค่า K และ ค่า q_0 จากตารางที่ 4.2-1 (Phosphate rock, Activated phosphate rock และ Limestone มีปริมาณการดูดซับใกล้เคียงกันจนแทบไม่เห็นความแตกต่าง)

4.2.1.2 การดูดซับไอออนของแอดเมียร์


รูปที่ 4.2-5 แสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายน้ำแอดเมียร์ที่สมดุล (C) กับปริมาณของไอออนแอดเมียร์ที่ถูกดูดซับ (q) เนื่องจากความสัมพันธ์ไอโซเทอร์มที่ได้ไม่ชัดเจนว่าเป็นการดูดซับแบบใด สามารถอธิบายได้ทั้ง ความสัมพันธ์แบบแลงเมียร์ (Langmuir) และแบบฟรุนเดลิช (Freundlich) จึงนำค่า q และค่า C ที่ได้ไปพลอตกราฟ ความสัมพันธ์เชิงเส้นตามรูปแบบการดูดซับแบบแลงเมียร์ (รูปที่ 4.2-6) และการดูดซับแบบฟรุนเดลิช (รูปที่ 4.2-7) จากการวิเคราะห์เปรียบเทียบผลการทดลองและค่าทางทฤษฎีพบว่าเมื่อพิจารณาว่าเป็นการดูดซับแบบแลงเมียร์จะได้ค่า R^2 เท่ากับ 0.9894 ในขณะที่เมื่อพิจารณาว่าเป็นการดูดซับแบบฟรุนเดลิชจะได้ค่า R^2 เท่ากับ 0.9637

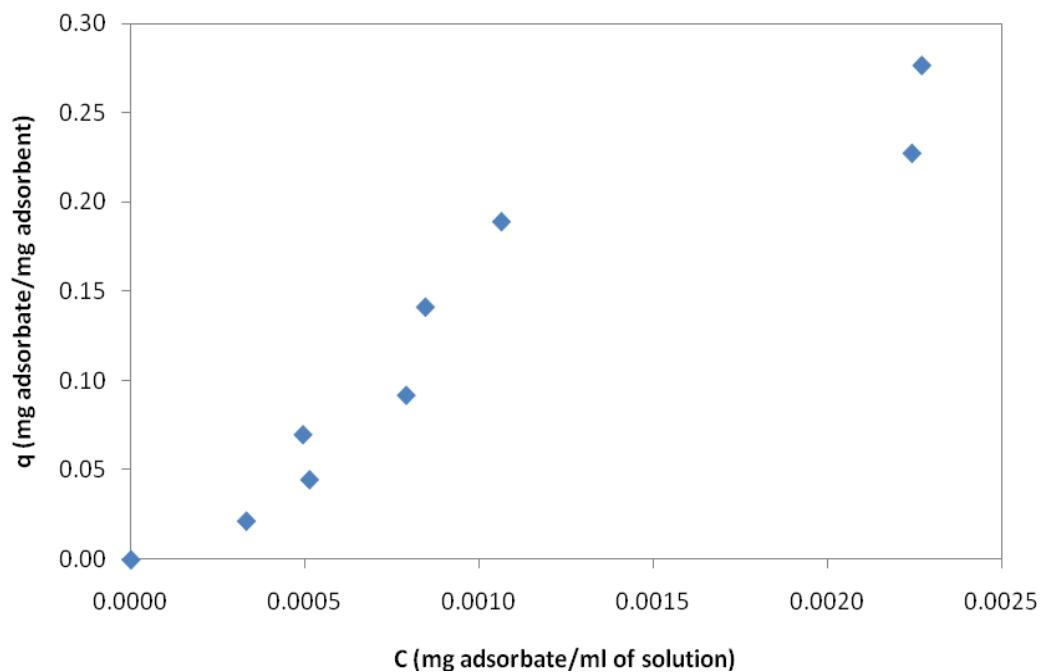
ผลการวิเคราะห์ดังกล่าวจึงสรุปได้ว่าแบบจำลองการดูดซับของแลงเมียร์และแบบจำลองการดูดซับแบบฟรุนเดลิช สามารถใช้สำหรับการดูดซับของไอออนแอดเมียร์ด้วยตัวดูดซับ (OS-treated, air/700°C) ได้ใกล้เคียงกัน แต่แบบจำลองการดูดซับของแลงเมียร์สามารถทำนายได้แม่นยำกว่าเล็กน้อย โดยมีพารามิเตอร์ K และ q_0 เท่ากับ 2.3 มิลลิกรัมต่อลิตร และ 410 มิลลิกรัมแอดเมียร์ต่อกิโลกรัมตัวดูดซับ ตามลำดับ


ตารางที่ 4.2-2 แสดงการดูดซับแอดเมียร์ด้วยสารดูดซับที่สังเคราะห์ในงานวิจัยนี้เปรียบเทียบกับสารดูดซับชนิดต่างๆ ที่รายงานในงานวิจัยอื่น จะเห็นว่าพฤติกรรมการดูดซับแอดเมียร์ด้วยสารดูดซับทุกชนิดสามารถอธิบายได้ด้วยแบบจำลองไอโซเทอร์มการดูดซับแบบแลงเมียร์ โดยสารดูดซับ OS-treated, air/700°C มีความสามารถในการดูดซับแอดเมียร์ที่สูด

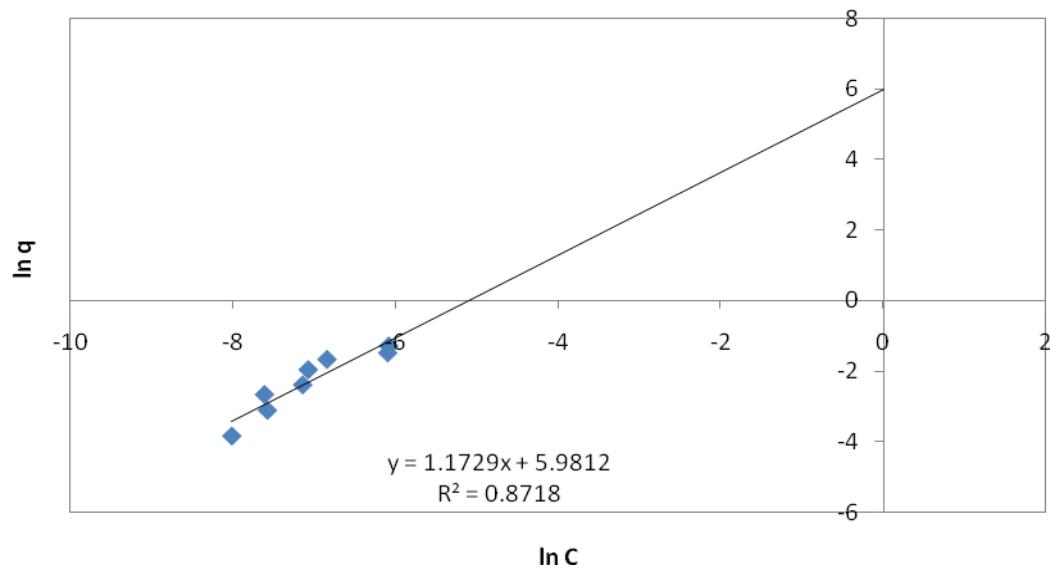
รูปที่ 4.2-5 ไอโซเทอร์มการดูดซึบของแคนเดเมียม (อุณหภูมิ 25°C)

รูปที่ 4.2-6 ความสัมพันธ์เชิงเส้นของการดูดซึบแคนเดเมียมตามรูปแบบ Langmuir (อุณหภูมิ 25°C)

รูปที่ 4.2-7 ความสัมพันธ์เชิงเส้นของการดูดซับแคนเดเมียมตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)

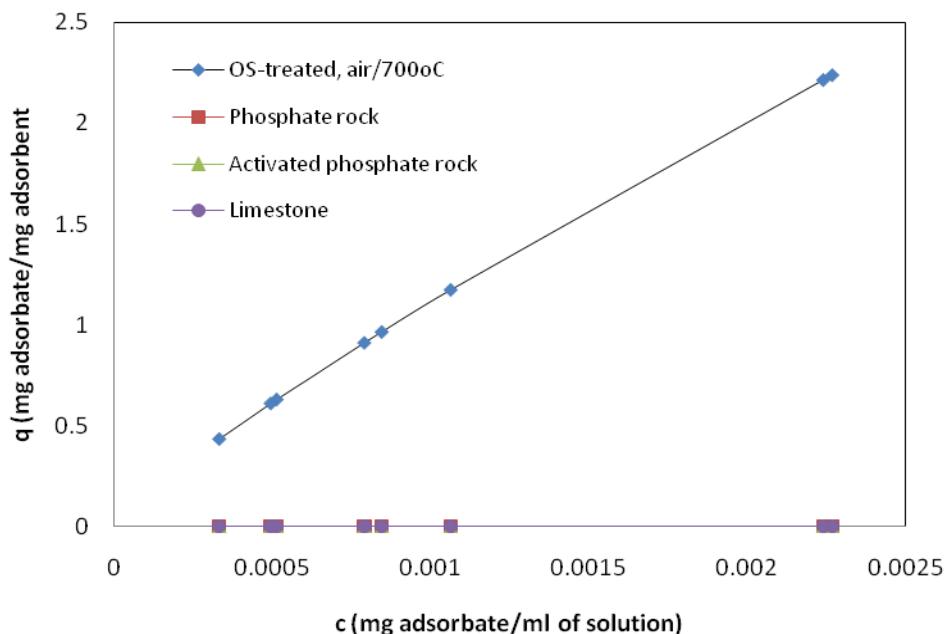

ตารางที่ 4.2-2 การดูดซับแคนเดเมียมด้วยสารดูดซับชนิดต่างๆ

ชนิดสารดูดซับ	อ้างอิง	รูปแบบ ไอโซเทอร์ม	R^2	q_0 (มก./ก.ตัวดูดซับ)	K	n	K_f (มล./มก.) ^{1/n}
OS-treated, air/700°C	งานวิจัยนี้	แลงเมียร์	0.99	410	2.3	-	-
Phosphate rock	[2]	แลงเมียร์	0.98	10.46	21.28	-	-
Activated phosphate rock	[2]	แลงเมียร์	0.98	13.56	25.00	-	-
Limestone	[3]	แลงเมียร์	0.97	0.018	0.41	-	-


4.2.1.3 การดูดซับไฮอนของสังกะสี

รูปที่ 4.2-8 แสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายน้ำของสังกะสีที่สมดุล (C) กับปริมาณของไฮอนของสังกะสีที่ถูกดูดซับ (q) จากรูปจะเห็นว่าความสัมพันธ์ไอโซเทอร์มมีแนวโน้มที่สอดคล้องกับไอโซเทอร์มแบบฟรุนเดลิช และเมื่อนำค่า q และค่า C ที่วัดได้ไปผลกราฟความสัมพันธ์เชิงเส้นตามรูปแบบของการดูดซับฟรุนเดลิชจะได้ดังรูปที่ 4.2-9 จากการวิเคราะห์เปรียบเทียบผลการทดลองและค่าทางทฤษฎีพบว่ามีค่า R^2 เท่ากับ 0.8718 และพารามิเตอร์ K_f และ n มีค่าเท่ากับ 395.84 (มลลิลิตรต่อมิลลิกรัม)^{1/0.85} และ 0.85 ตามลำดับ

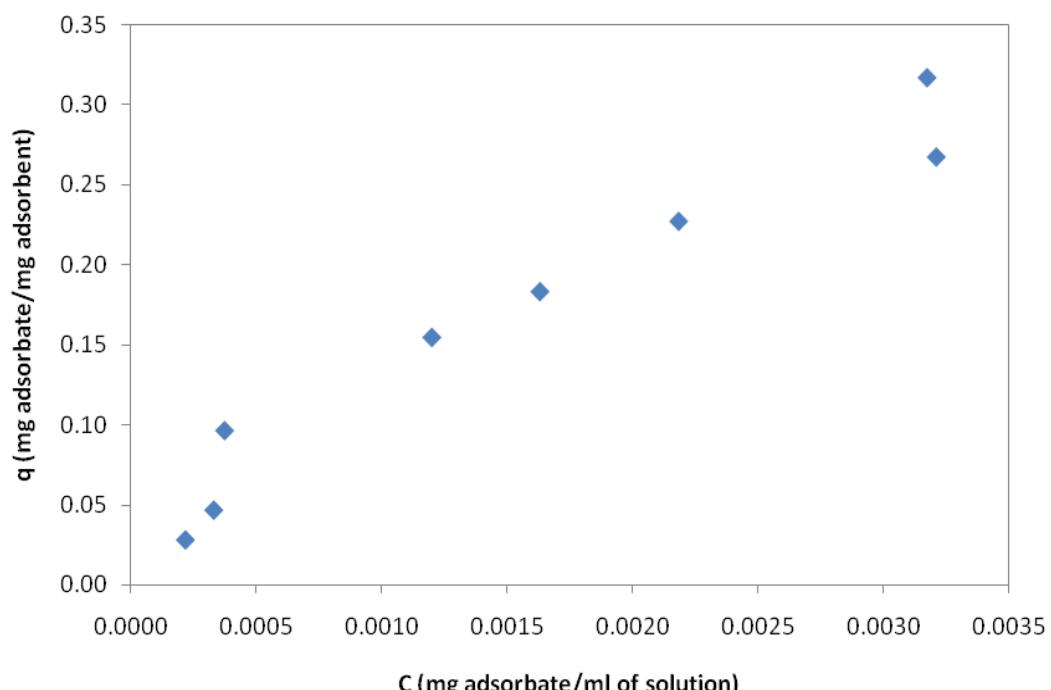
ตารางที่ 4.2-3 แสดงการดูดซับสังกะสีด้วยสารดูดซับที่สังเคราะห์ในงานวิจัยนี้เปรียบเทียบกับสารดูดซับชนิดต่างๆ ที่รายงานในงานวิจัยอื่น เมื่อพิจารณาค่าของพารามิเตอร์ K_f และ n ในแบบจำลองฟรุนเดลิช ($q = K_f C^{1/n}$) จะพบว่าสารดูดซับที่มีค่า K_f สูงและค่า n ต่ำจะความสามารถในการดูดซับสูง ดังนั้นจึงได้ทำการผลกราฟความสัมพันธ์ระหว่างค่า q และ ค่า C ซึ่งคำนวณจากแบบจำลองฟรุนเดลิชโดยใช้ค่า K_f และค่า n จากตารางที่ 4.2-3 โดยกราฟความสัมพันธ์ดังกล่าวแสดงดังรูปที่ 4.2-10 เมื่อเปรียบเทียบความสามารถในการดูดซับสังกะสีของสารดูดซับที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้กับสารดูดซับที่ใช้ในงานวิจัยของคณะอื่นจะเห็นชัดเจนว่าสารดูดซับ OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้สามารถดูดซับสังกะสีได้ดีกว่าสารดูดซับชนิดอื่นๆ เป็นอย่างมาก ในช่วงความเข้มข้นที่ทำการศึกษา


รูปที่ 4.2-8 ไฮโซเทอร์มการดูดซับของสังกะสี (อุณหภูมิ 25°C)

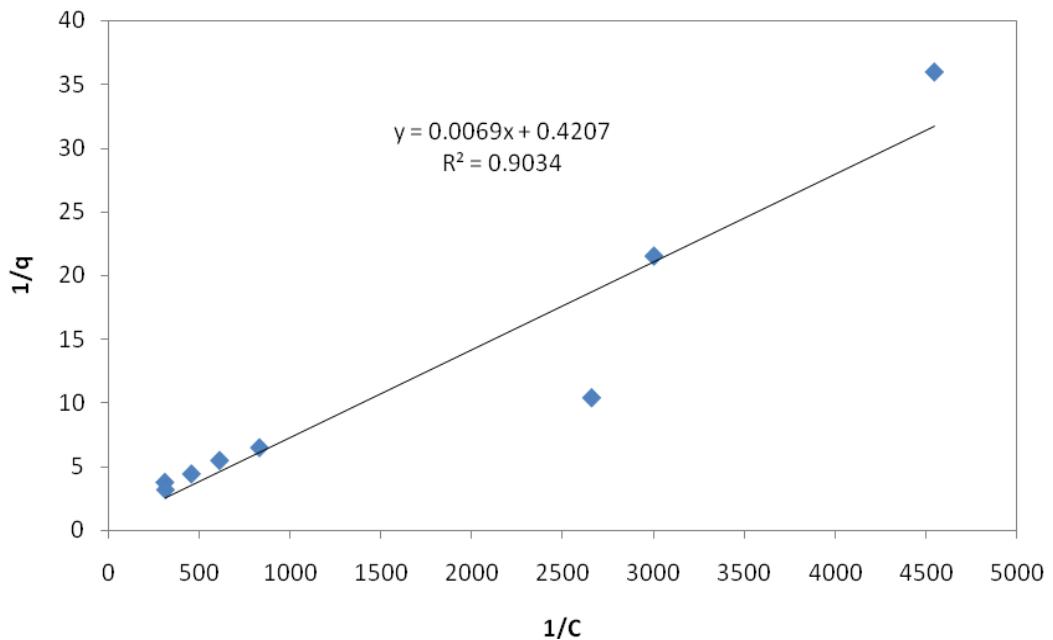
รูปที่ 4.2-9 ความสมพันธ์เชิงเส้นของการดูดซับสังกะสีตามรูปแบบลงเมียร์ (อุณหภูมิ 25°C)

ตารางที่ 4.2-3 การดูดซับสังกะสีด้วยสารดูดซับชนิดต่างๆ

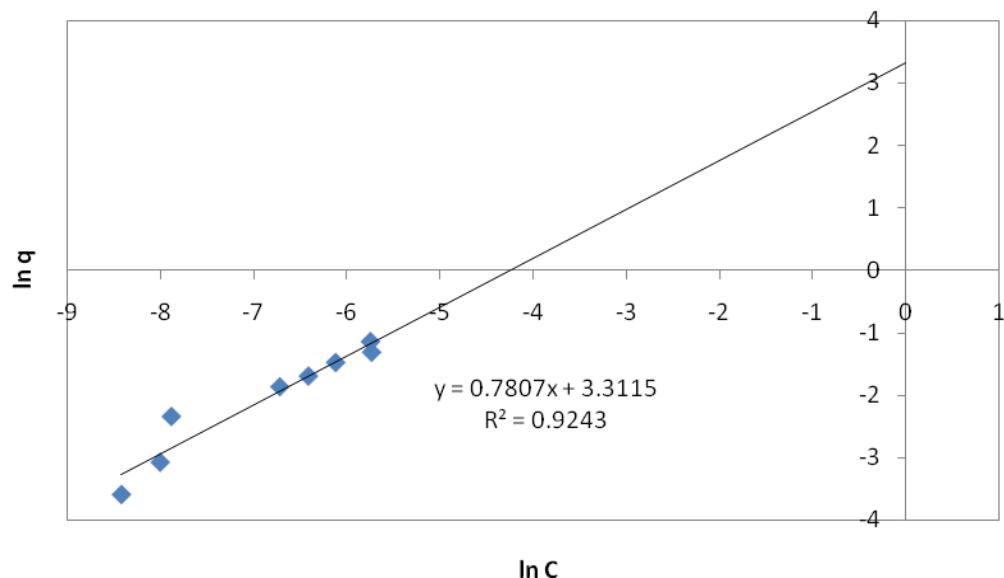
ชนิดสารดูดซับ	อ้างอิง	รูปแบบไฮโซเทอร์ม	R^2	q_0 (มก./ก.ตัวดูดซับ)	K (มก./ล.)	n	K_f (มล./มก.) $^{1/n}$
OS-treated, air/700°C	งานวิจัยนี้	ฟรุนเดลิช	0.87	-	-	0.85	395.84
Phosphate rock	[2]	แลงเมียร์	0.97	8.54	55.56	-	-
		ฟรุนเดลิช	0.97	-	-	1.59	0.24
Activated phosphate rock	[2]	แลงเมียร์	0.97	13.56	25.00	-	-
		ฟรุนเดลิช	0.97	-	-	1.54	0.31
Limestone	[3]	แลงเมียร์	0.98	0.012	1.7	-	-
		ฟรุนเดลิช	0.97	-	-	0.79	0.013


รูปที่ 4.2-10 ไฮโซเทอร์มการดูดซับของสังกะสีของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และ ค่า n จากตารางที่ 4.2-3 (Phosphate rock, Activated phosphate rock และ Limestone มีปริมาณการดูดซับใกล้เคียงกันจนแทบไม่เห็นความแตกต่าง)

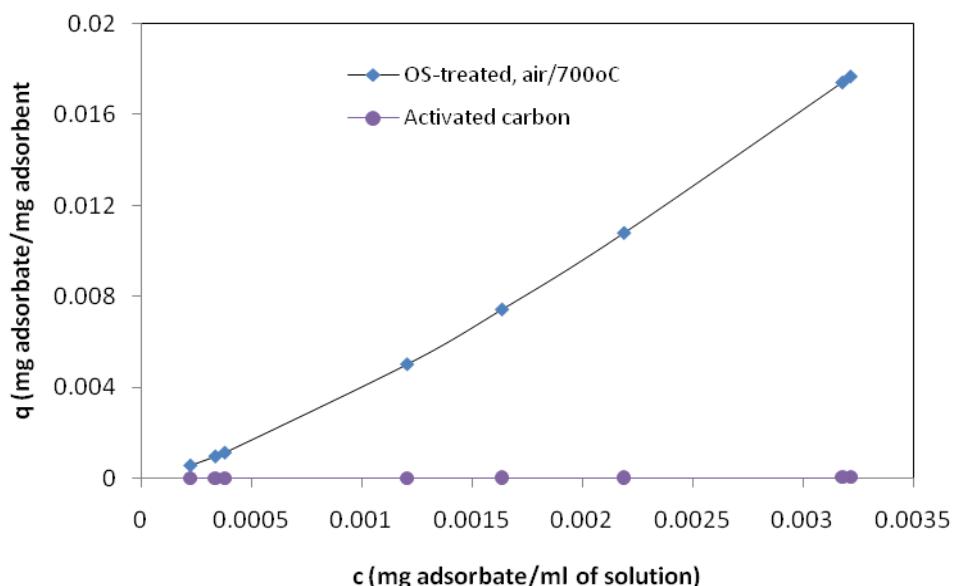
4.2.1.4 การดูดซับไออกอนของเหล็ก


รูปที่ 4.2-11 แสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายเหล็กที่สมดุล (C) กับปริมาณของไออกอนเหล็กที่ถูกดูดซับ (q) เนื่องจากความสัมพันธ์ไอโซเทอร์มที่ได้มาซึ่ดเจนว่าเป็นการดูดซับแบบได้ สามารถอธิบายได้ทั้งความสัมพันธ์แบบ Langmuir และแบบ Frumondlich จึงนำค่า q และ C ที่วัดได้ไปผลอตกราฟความสัมพันธ์เชิงเส้นตามรูปแบบของการดูดซับและเมียร์และการดูดซับ Frumondlich ดังแสดงในรูปที่ 4.2-12 และ 4.2-13 ตามลำดับ จากการวิเคราะห์เปรียบเทียบผลการทดลองและค่าทางทฤษฎีพบว่าเมื่อพิจารณาว่าเป็นการดูดซับแบบ Langmuir จะได้ค่า R^2 เท่ากับ 0.9034 ในขณะที่เมื่อพิจารณาว่าเป็นการดูดซับแบบ Frumondlich จะได้ค่า R^2 เท่ากับ 0.9243

ผลการวิเคราะห์ดังกล่าวสรุปได้ว่าแบบจำลองการดูดซับของ Langmuir และแบบ Frumondlich สามารถใช้ทำนายการดูดซับของไออกอนเหล็กด้วยตัวดูดซับ (OS-treated, air/700°C) ได้ใกล้เคียงกัน แต่แบบจำลองการดูดซับของ Frumondlich สามารถทำนายได้แม่นยำกว่า โดยมีพารามิเตอร์ K_f และ n เท่ากับ 27.41 (มิลลิตรต่อมิลลิกรัม)^{1/1.28} และ 1.28 ตามลำดับ


ตารางที่ 4.2-4 แสดงข้อมูลเปรียบเทียบการดูดซับเหล็กด้วย OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้ กับ Activated carbon จากงานวิจัยของคณานี [4] ซึ่งจากการเปรียบเทียบพบว่ายังไม่สามารถสรุปได้แน่ชัดว่าสารดูดซับชนิดใดสามารถดูดซับเหล็กได้ดีกว่ากัน เนื่องจากเมื่อพิจารณาจากค่า K_f นั้น พบว่า OS-treated, air/700°C น่าจะดูดซับเหล็กได้ดีกว่า Activated carbon และเมื่อพิจารณาจากค่า n แล้ว พบว่าผลที่ได้เป็นไปในทางกลับกัน จึงสร้างกราฟความสัมพันธ์ระหว่างค่า q และค่า C ที่คำนวนโดยใช้แบบจำลอง Frumondlich ที่มีค่า K_f และค่า n ดังแสดงในตารางที่ 4.2-4 ได้ กราฟความสัมพันธ์ดังแสดงในรูปที่ 4.2-14 จะเห็นได้ชัดเจนว่าความสามารถในการดูดซับเหล็กของสารดูดซับ OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้สูงกว่าความสามารถในการดูดซับเหล็กของ Activated carbon ที่ใช้ในงานวิจัยที่อ้างอิงเป็นอย่างมาก

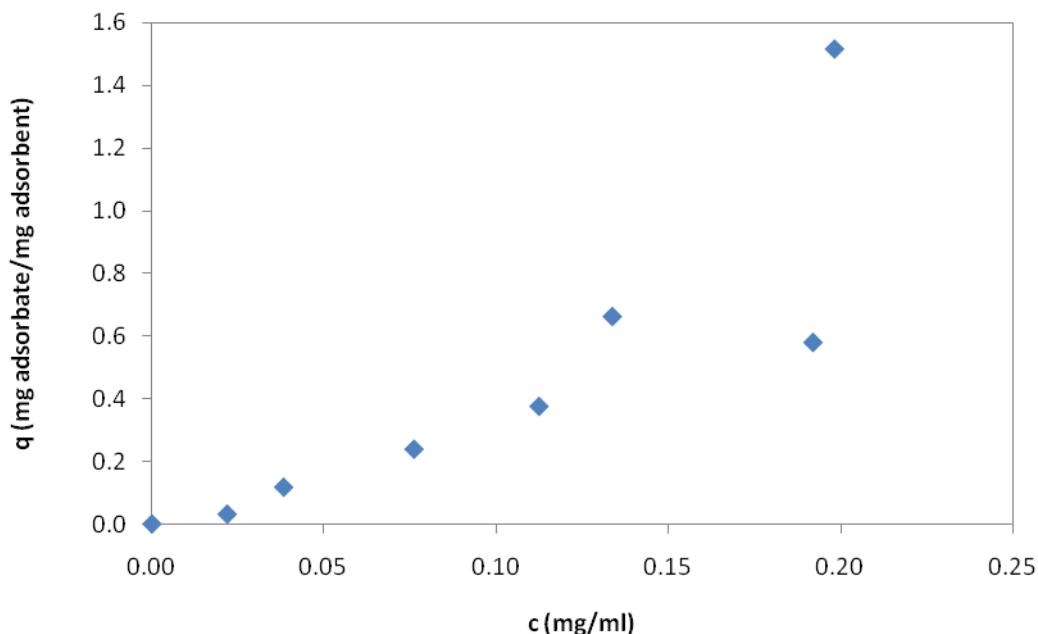
รูปที่ 4.2-11 ไอโซเทอร์มการดูดซับของเหล็ก (อุณหภูมิ 25°C)


รูปที่ 4.2-12 ความสัมพันธ์เชิงเส้นของการดูดซับเหล็กตามรูปแบบเมียร์ (อุณหภูมิ 25°C)

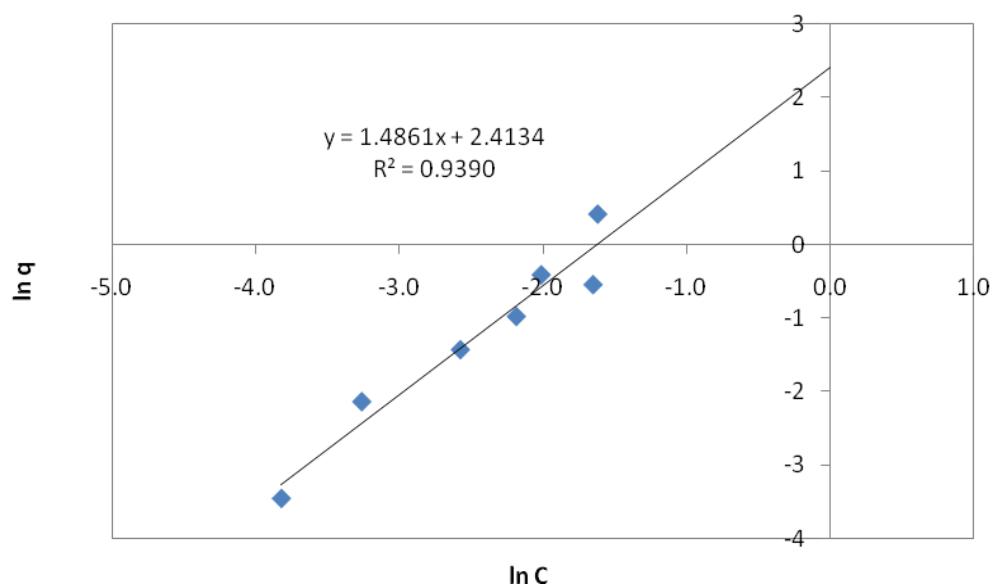
รูปที่ 4.2-13 ความสัมพันธ์เชิงเส้นของการดูดซับเหล็กตามรูปแบบฟรอนดลิช (อุณหภูมิ 25°C)

ตารางที่ 4.2-4 การดูดซับเหล็กด้วยสารดูดซับชนิดต่างๆ

ชนิดสารดูดซับ	อ้างอิง	รูปแบบไอโซเทอร์ม	R^2	q_0 (มก./ก.ตัวดูดซับ)	K (มก./ล.)	n	K_f (มล./มก.) $^{1/n}$
OS-treated, air/700°C	งานวิจัยนี้	ฟรุนเดลิช	0.92	-	-	1.28	27.41
Activated carbon	[4]	ແລງເມືຍຣີ	0.98	81.89	6.25×10^4	-	-
		ฟรุนเดลิช	0.98	-	-	2.00	3.484

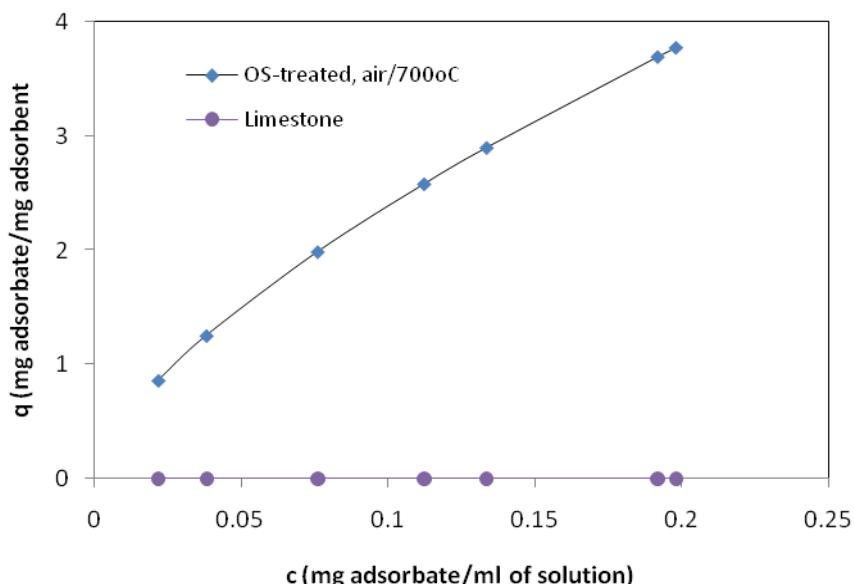

รูปที่ 4.2-14 ไอโซเทอร์มการดูดซับของเหล็กของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และค่า n จากตารางที่ 4.2-4

4.2.1.5 การดูดซับไอออนของโครเมียม


รูปที่ 4.2-15 แสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายน้ำมันที่สมดุล (C) กับปริมาณของไอออนเหล็กที่ถูกดูดซับ (q) สามารถอธิบายได้ด้วยความสัมพันธ์แบบฟรุนเดลิช (Freundlich) เมื่อนำค่า q และ C ที่วัดได้มาพลอตกราฟความสัมพันธ์เชิงเส้นตามรูปแบบของการดูดซับฟรุนเดลิช (รูปที่ 4.2-16) มีค่าพารามิเตอร์ K_f เท่ากับ 11.17 (มิลลิลิตรต่อมิลลิกรัม) $^{1/0.67}$ และมีค่า n เท่ากับ 0.67 เมื่อวิเคราะห์เปรียบเทียบผลการทดลองและค่าทางทฤษฎีพบว่าแบบจำลองที่ได้สามารถอธิบายพฤติกรรมการดูดซับได้ดีพอควรโดยมีค่า R^2 เท่ากับ 0.9243

ตารางที่ 4.2-5 แสดงข้อมูลเปรียบเทียบการดูดซับโครเมียมด้วย OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้ กับ Limestone จากงานวิจัยของคณะอื่น [4] ซึ่งจากการเปรียบเทียบพบว่ายังไม่สามารถสรุปได้แน่ชัดว่าสารดูดซับชนิดใดสามารถดูดซับโครเมียมได้ดีกว่ากัน เนื่องจากเมื่อพิจารณาจากค่า K_f นั้น พบว่า OS-treated, air/700°C น่าจะดูดซับโครเมียมได้ดีกว่า Limestone แต่เมื่อพิจารณาจากค่า n แล้ว พบว่าผลที่ได้เป็นไปในทางกลับกัน ดังนั้นจึงได้ทำการพลอตกราฟความสัมพันธ์ระหว่างค่า q และค่า c ซึ่งคำนวณจากแบบจำลองฟรุนเดลิชโดยใช้ค่า K_f และค่า n จากตารางที่

4.2-5 โดยกราฟความสัมพันธ์ดังกล่าวแสดงดังรูปที่ 4.2-17 ซึ่งจากการพ. เมื่อเปรียบเทียบความสามารถในการดูดซับโครงเมียมของสารดูดซับที่สังเคราะห์จากเปลือกหอยนางรมในงานวิจัยนี้กับสารดูดซับ Limestone ที่ใช้ในงานวิจัยของคนอื่น สามารถกล่าวได้ว่าในช่วงความเข้มข้นที่ทำการศึกษา สารดูดซับ OS-treated, air/700°C ที่สังเคราะห์จากเปลือกหอยนางรมจากงานวิจัยนี้สามารถดูดซับโครงเมียมได้ดีกว่าสารดูดซับ Limestone ในงานวิจัยที่อ้างอิงเป็นอย่างมาก


รูปที่ 4.2-15 ไอโซเทอร์มการดูดซับของโครงเมียม (อุณหภูมิ 25°C)

รูปที่ 4.2-16 ความสัมพันธ์เชิงเส้นของการดูดซับโครงเมียมตามรูปแบบฟรุนเดลิช (อุณหภูมิ 25°C)

ตารางที่ 4.2-5 การดูดซับโครงเมียมด้วยสารดูดซับชนิดต่างๆ

ชนิดสารดูดซับ	อ้างอิง	รูปแบบไฮโซเทอร์ม	R^2	q_0 (มก./ก.ตัวดูดซับ)	K (มก./ล.)	n	K_f (มล./มก.) ^{1/n}
OS-treated, air/700°C	งานวิจัยนี้ [3]	ฟรุนเดลิช	0.94	-	-	0.67	11.17
		แลงเมียร์	0.99	0.016	1.87	-	-
		ฟรุนเดลิช	0.97	-	-	0.71	0.016

รูปที่ 4.2-17 ไฮโซเทอร์มการดูดซับของโครงเมียมของสารดูดซับชนิดต่างๆ ซึ่งคำนวณจากแบบจำลองฟรุนเดลิช โดยใช้ค่า K_f และ ค่า n จากตารางที่ 4.2-5

4.2.1.6 ไฮโซเทอร์มการดูดซับของโลหะหนักชนิดต่างๆ

ตารางที่ 4.2-6 แสดงผลสรุปที่ได้จากการวิเคราะห์ข้อมูลการทดลองแบบงาที่อุณหภูมิ 25°C เพื่อกำหนดแบบจำลองไฮโซเทอร์มสำหรับใช้อธิบายพฤติกรรมการดูดซับของไฮอนโลหะหนักชนิดต่างๆ พร้อมค่าพารามิเตอร์ของแบบจำลอง (การดูดซับแบบแลงเมียร์: ค่าคงที่สมดุล (K) และปริมาณการดูดซับอิ่มตัว (q_0), การดูดซับแบบฟรุนเดลิช: ค่าคงที่สมดุล (K_f) และอันดับ (n)) และค่า R^2 ซึ่งแสดงความน่าเชื่อถือของแบบจำลองที่นำเสนอ

สารดูดซับ (OS-treated, air/700°C) มีพฤติกรรมการดูดซับต่างกันและแอดเมียร์เป็นแบบแลงเมียร์โดยสามารถดูดซับต่างกันได้ดีกว่าแอดเมียร์ และมีพฤติกรรมการดูดซับสังกะสี, เหล็ก และ โครงเมียมเป็นแบบฟรุนเดลิช โดยสามารถดูดซับสังกะสีได้ดีที่สุด รองลงมาคือ เหล็ก และ โครงเมียม ตามลำดับ

ตารางที่ 4.2-6 รูปแบบไอโซเทอร์มที่เหมาะสมสำหรับการดูดซับโลหะหนักนิดต่างๆ ด้วยกระบวนการแบบงา (อุณหภูมิ 25 °C)

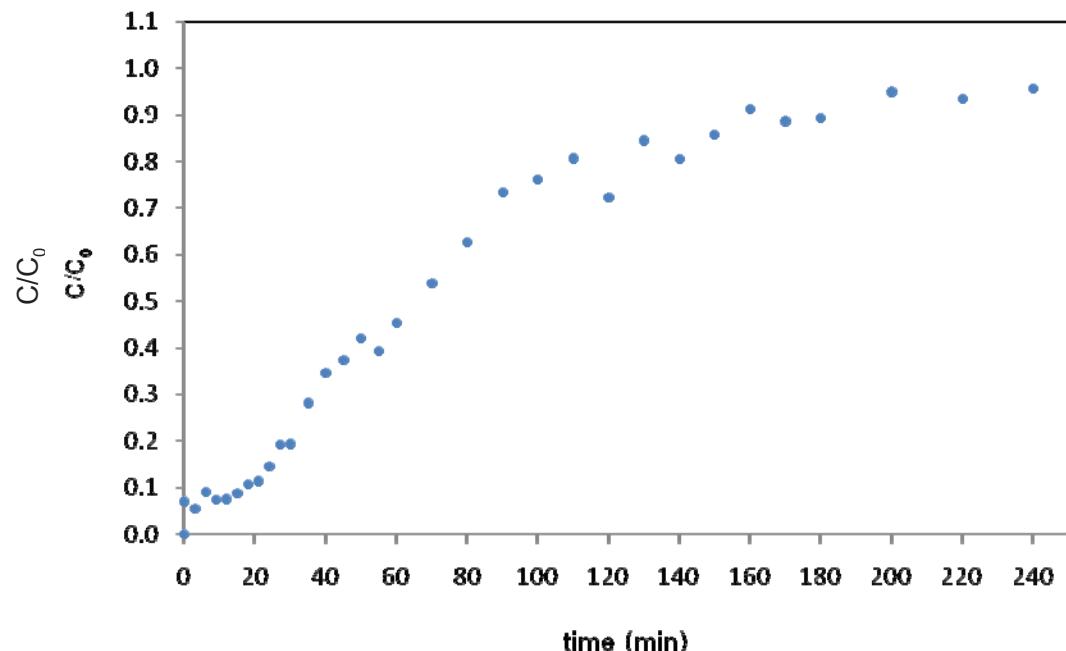
โลหะหนัก	รูปแบบไอโซเทอร์ม	q_0 (มก./ก.ตัวดูดซับ)	n	R^2	K (มก./ล.)	K_f (มล./มก.) ^{1/n}
ตะกั่ว	แลงเมียร์	23,474	-	0.9852	934	-
แคนเดเมียม	แลงเมียร์	410	-	0.9894	2.1	-
สังกะสี	ฟรุนเดลิช	-	0.85	0.8718	-	395.84
เหล็ก	ฟรุนเดลิช	-	1.28	0.9243	-	27.41
โคโรเมียม	ฟรุนเดลิช	-	0.67	0.9390	-	11.17

4.2.1.7 ประสิทธิภาพการดูดซับ

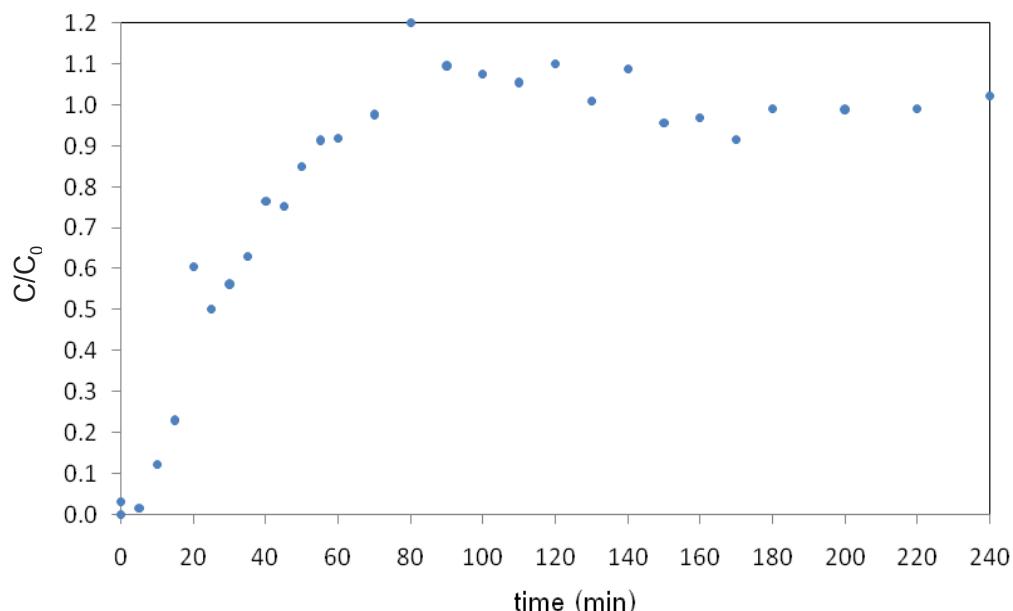
ตารางที่ 4.2-7 แสดงประสิทธิภาพการดูดซับโลหะหนักนิดต่างๆ ของสารดูดซับ OS-treated, air 700°C เมื่อทำการดูดซับแบบงา โดยประสิทธิภาพการดูดซับแบบงาคำนวณตามสมการที่ (4.2-3)

$$\text{Efficiency} = \frac{C_i - C}{C_i} \times 100 \% \quad (4.2-3)$$

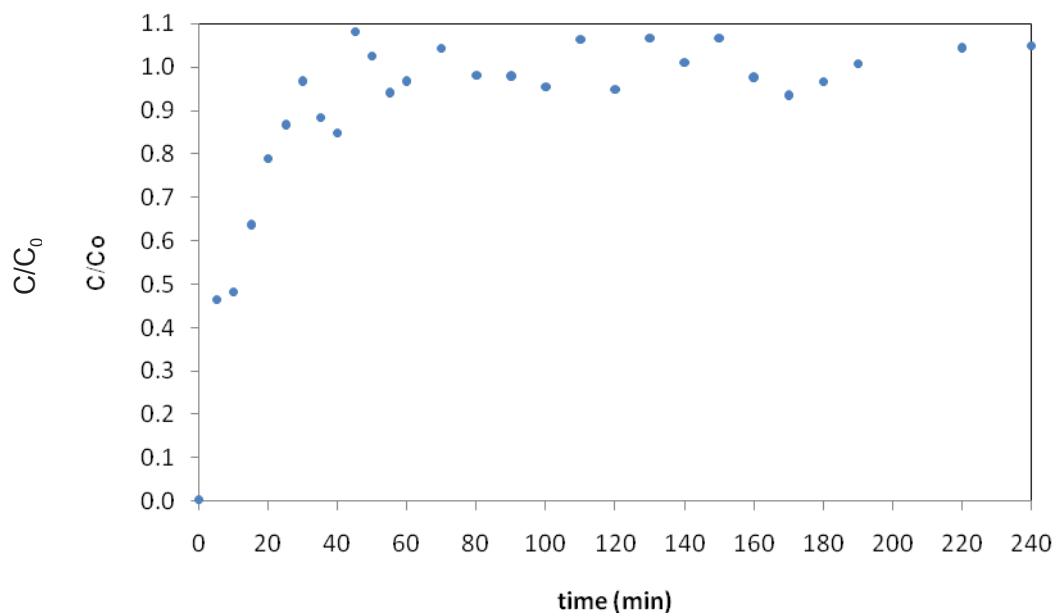
เมื่อ C_i คือ ความเข้มข้นเริ่มต้นของไอโอดินโลหะหนัก
 C คือ ความเข้มข้นของสารละลายน้ำที่สภาวะสมดุล

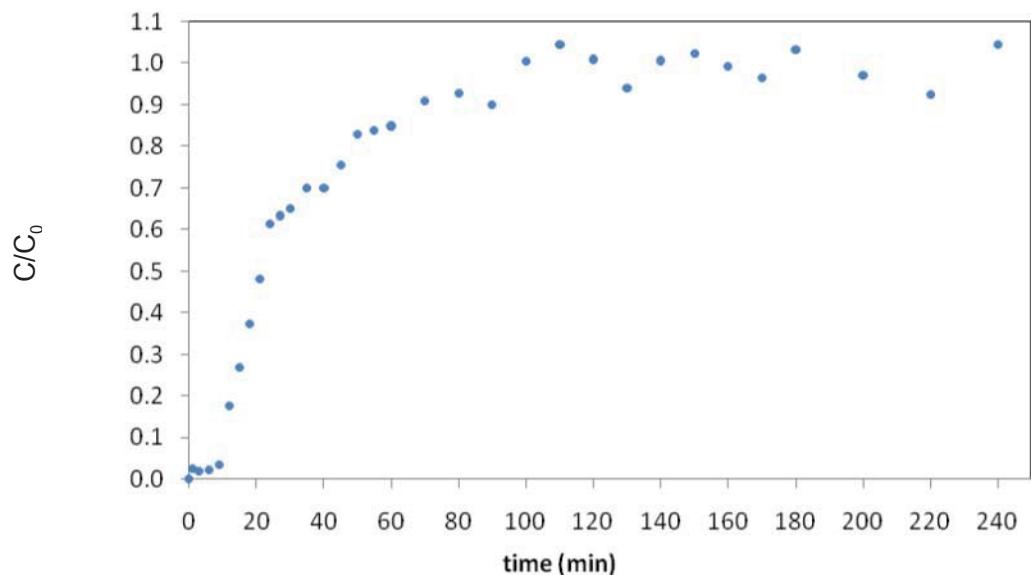

ตารางที่ 4.2-7 ประสิทธิภาพของการดูดซับแบบงาโดยเฉลี่ยของโลหะแต่ละชนิด

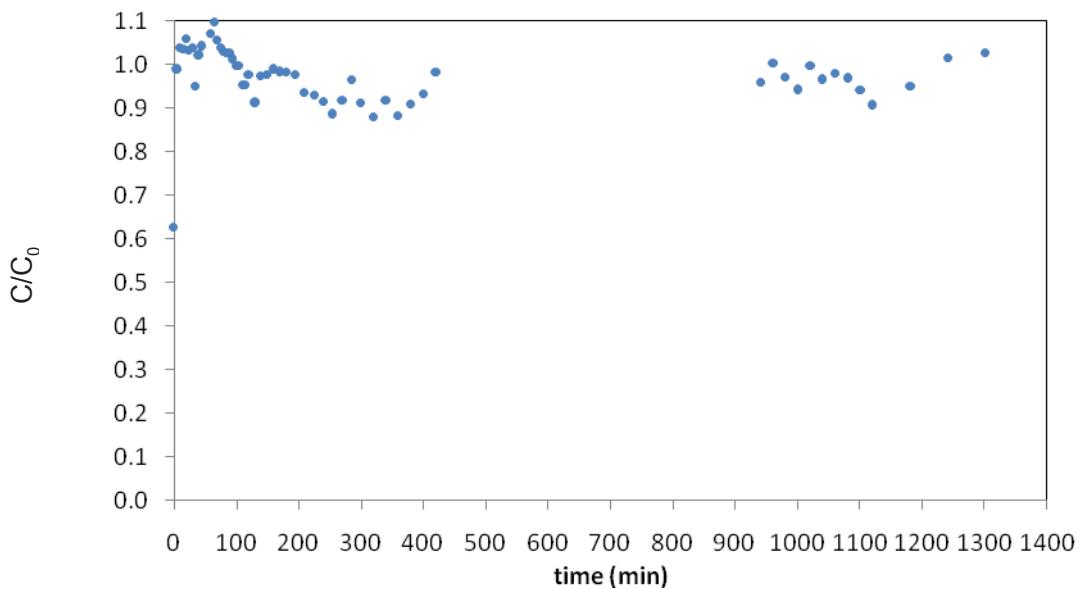
โลหะหนัก	ประสิทธิภาพการดูดซับแบบงาโดยเฉลี่ย (%)
ตะกั่ว	72.06
แคนเดเมียม	90.62
สังกะสี	91.82
เหล็ก	92.19
โคโรเมียม	24.30


ข้อมูลในตารางที่ 4.2-7 แสดงให้เห็นว่าในการดูดซับแบบงา OS-treated, air 700°C สามารถดูดซับเหล็ก สังกะสี และแคนเดเมียมได้ด้วยประสิทธิภาพดีที่ใกล้เคียงกันคือประมาณ 90% และสามารถดูดซับตะกั่วได้ในระดับรองลงมาคือ ที่ประสิทธิภาพการดูดซับประมาณ 72% และสามารถดูดซับโคโรเมียมได้ต่ำที่สุดคือ ที่ประสิทธิภาพการดูดซับเพียง 24%

4.2.2 การทดลองแบบต่อเนื่อง


สำหรับการทดลองการดูดซับแบบต่อเนื่องจะวิเคราะห์หาความเร็วในการดูดซับดังนี้ คือ หาค่าความเข้มข้นของสารละลายน้ำที่ปากทางออกหอดูดซับที่เวลาต่างๆ (C) และนำค่า C ที่ได้ไปเขียนกราฟเทียบกับเวลา (t) ได้กราฟเบรคทรูร์ (breakthrough curve) ซึ่งแสดงดังรูปที่ 4.2-18 ถึง 4.2-22


รูปที่ 4.2-18 กราฟเบรคทรูร์ของการดูดซับไออกอนของตะกั่ว (อุณหภูมิ 25°C)


รูปที่ 4.2-19 กราฟเบรคทรูร์ของการดูดซับไออกอนของแคนดเมียม (อุณหภูมิ 25°C)

รูปที่ 4.2-20 กราฟเบรคทรู์ของการดูดซับไอออนของสังกะสี (อุณหภูมิ 25°C)

รูปที่ 4.2-21 กราฟเบรคทรู์ของการดูดซับไอออนของเหล็ก (อุณหภูมิ 25°C)

รูปที่ 4.2-22 กราฟการดูดซับไอออนของโครเมียมในการทดลองแบบต่อเนื่อง (อุณหภูมิ 25°C)

เราสามารถประเมินความสามารถในการดูดซับโลหะหนักของสารดูดซับก่อนที่สารดูดซับจะเริ่มอิ่มตัวและไม่สามารถกำจัดโลหะหนักให้ได้ต่อไปจากการฟเบรคทรูจ์ของการดูดซับในรูปของปริมาณโลหะหนักที่ถูกดูดซับต่อน้ำหนักของสารดูดซับนับที่เวลาานานที่สุดที่น้ำที่ปากทางออกของคอลัมน์ยังมีความเข้มข้นโลหะหนัก (C) ไม่เกินค่ามาตรฐานน้ำบริโภคตามที่กฎหมายกำหนด ตารางที่ 4.2-8 แสดงผลการประเมินที่ได้สำหรับโลหะหนักแต่ละชนิด โดย

ค่ามาตรฐานตามที่กฎหมายกำหนด

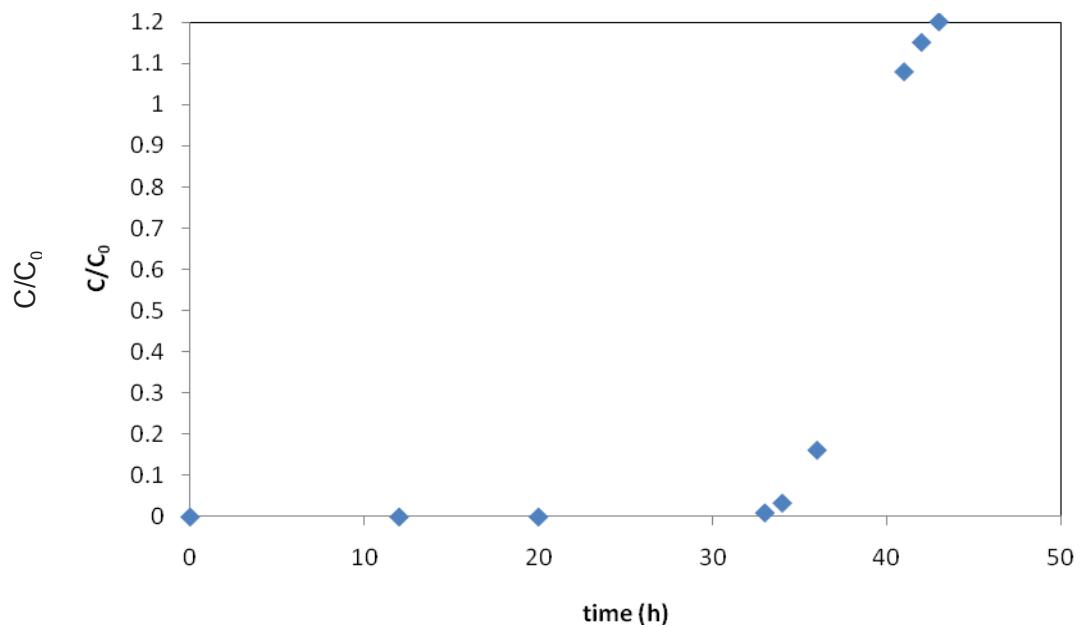
$$C/C_0 = \frac{\text{ค่าความเข้มข้นของโลหะหนักในน้ำเสียสมมติเริ่มต้น}}{\text{ค่าความเข้มข้นของโลหะหนักในน้ำเสียสมมติเริ่มต้น}} \quad (4.2-1)$$

และความสามารถในการดูดซับโลหะหนักคำนวณจากเวลาด้วยสมการที่ (4.2-2)

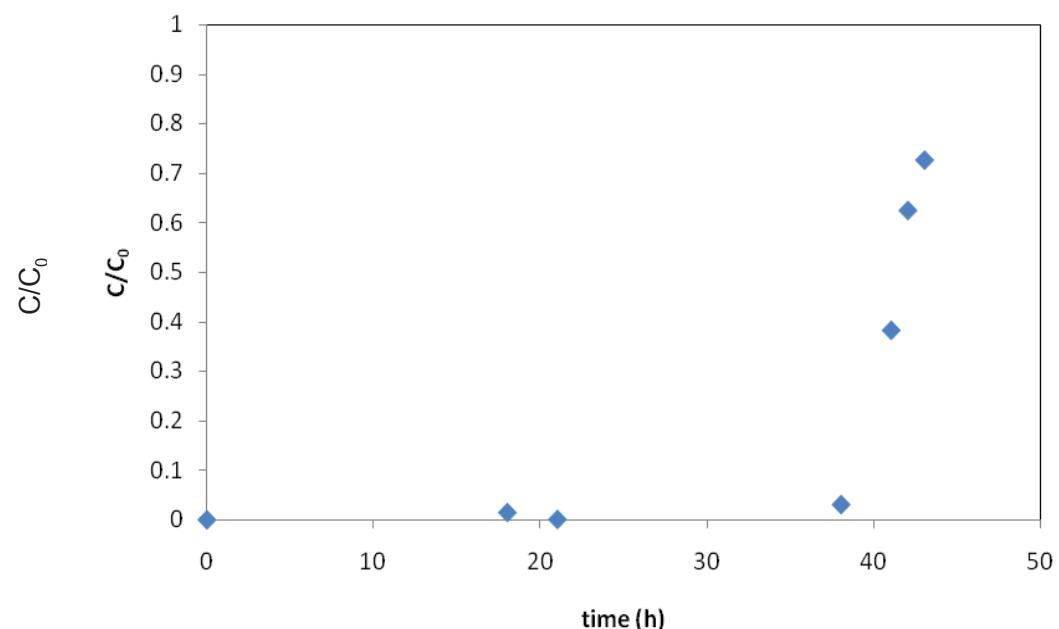
$$\text{ความสามารถในการดูดซับโลหะหนัก} = C_0 \times \text{อัตราการป้อนสาร} \times \text{เวลา} \quad (4.2-2)$$

ตารางที่ 4.2-8 เวลาสูงสุดที่สารดูดซับบำบัดน้ำได้ตามมาตรฐานน้ำบริโภคที่กฎหมายกำหนดและความสามารถในการดูดซับโลหะหนักแต่ละชนิด

ชนิดโลหะหนัก	ค่ามาตรฐานตามกฎหมาย (มก./ลิตร)	C/C ₀ (-)	เวลา (นาที)	ความสามารถในการดูดซับโลหะหนัก (มิลลิกรัมโลหะหนัก/กรัมตัวดูดซับ)
ตะกั่ว	< 0.05	0.008	*	-
แแคดเมียม	< 0.01	0.002	5	2.9
สังกะสี	< 5	0.8	*	-
เหล็ก	< 0.5	0.08	10	3.6
โครเมียม	< 0.05	0.008	-	-


หมายเหตุ * ไม่สามารถระบุเวลาได้แน่นชัดเนื่องจากสารดูดซับเริ่มอิ่มตัวในเวลารวดเร็วมาก

4.2.3 การทดลองโดยใช้เครื่องกรองน้ำตันแบบ

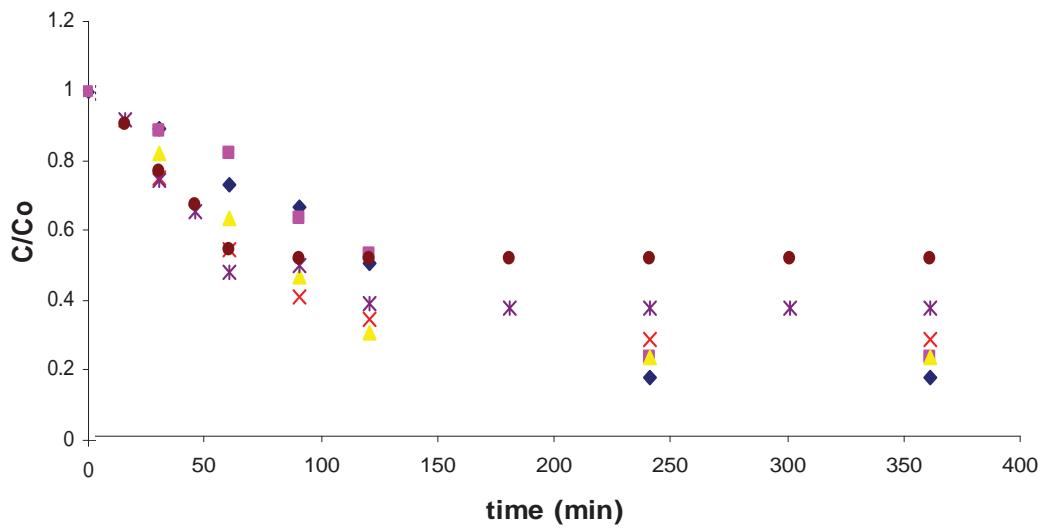

เครื่องกรองน้ำตันแบบที่ใช้ออกแบบโดยขยายขนาดอุปกรณ์ที่ใช้ทดสอบการดูดซับโลหะหนักแบบต่อเนื่อง เป็นคอลัมน์ที่มีเส้นผ่านศูนย์กลางภายใน 2.4 เซนติเมตร บรรจุตัวดูดซับหนัก 10 กรัม น้ำเสียสมดิที่ใช้มีตะกั่ว, แแคดเมียม, เหล็ก, สังกะสี และโครเมียมผสมรวมกัน โดยกำหนดให้ความเข้มข้นของโลหะหนักทุกชนิดมีค่าเท่ากันเท่ากับ 10 มิลลิกรัมต่อลิตร อัตราการป้อนน้ำเสียสมดิเท่ากับ 1 ลิตรต่อชั่วโมง

การดูดซับแแคดเมียมและการดูดซับสังกะสีสามารถแสดงกราฟเบรคทูจ์ได้ดังรูปที่ 4.2-23 และ 4.2-24 สำหรับการดูดซับของตะกั่วและเหล็กไม่สามารถวัดปริมาณการดูดซับได้ทั้งนี้เนื่องมาจากการผสมสารละลายของโลหะหนักทั้ง 5 ชนิดเข้าด้วยกันทำให้เกิดการตกตะกอนของตะกั่วและเหล็ก สำหรับโครเมียมพบว่าเกิดการดูดซับขึ้นน้อยมากสอดคล้องกับการทดลองการดูดซับโลหะหนักแบบต่อเนื่องในหัวข้อที่ 4.2.2

เมื่อพิจารณากราฟเบรคทูจ์ในการดูดซับแแคดเมียมและสังกะสีในรูปที่ 4.2-23 และ 4.2-24 พบว่าสารดูดซับหนัก 10 กรัม สามารถใช้ดูดซับแแคดเมียมและสังกะสีที่มีความเข้มข้นอย่างละ 10 มิลลิกรัมต่อลิตรได้นานประมาณ 33 และ 38 ชั่วโมง ตามลำดับ ก่อนที่เบดจะเริ่มอิ่มตัว ซึ่งจากการคำนวณพบว่าสารดูดซับปริมาณ 10 กรัมสามารถดูดซับแแคดเมียมได้ 330 มิลลิกรัมซึ่งเท่ากับประมาณ 2.9 มิลลิโมล และดูดซับสังกะสีได้ 380 มิลลิกรัมซึ่งเท่ากับประมาณ 5.8 มิลลิโมล ในเวลาเดียวกัน ดังนั้นโดยรวมแล้วจากล่ามได้ว่าสารดูดซับ 10 กรัมสามารถดูดซับโลหะหนักรวมได้ประมาณ 8.7 มิลลิโมลหรือคิดเป็น 0.87 มิลลิโมลต่อกรัมของสารดูดซับ

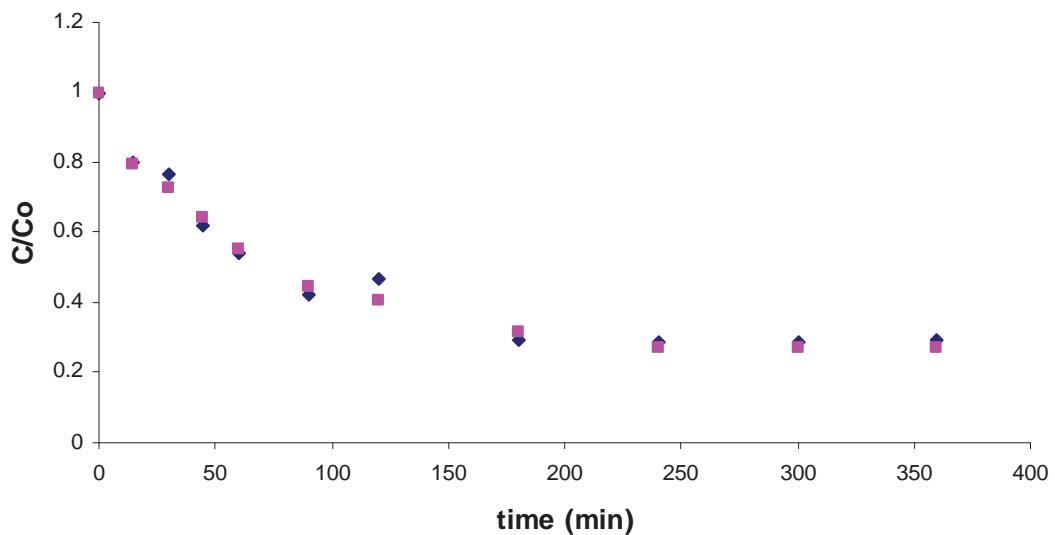
รูปที่ 4.2-23 กราฟเบรคทຽ์ของการดูดซับไออกอนแอดเมียนเมื่อใช้เครื่องกรองนำเสนอแบบ

รูปที่ 4.2-24 กราฟเบรคทຽ์ของการดูดซับไออกอนสังกะสีเมื่อใช้เครื่องกรองนำเสนอแบบ


4.3 การสร้างเครื่องบำบัดน้ำเสียสำหรับกำจัดฟอสเฟต

4.3.1 การทดลองแบบง่าย

รูปที่ 4.3-1 แสดงการเปลี่ยนแปลงของอัตราส่วนความเข้มข้นฟอสเฟตที่เหลือในน้ำเสียสมมติต่อความเข้มข้นเริ่มต้น


ของฟอสเฟตในน้ำเสียสมมติ ($\frac{C_0}{C}$) ที่เวลาต่างๆ เมื่อใช้เบล็อกหอยนางรมที่ปรับปรุงสมบัติโดยการให้ความร้อนที่ 700°C ภายใต้บรรยากาศของแก๊สไนโตรเจน (OS-treated, $\text{N}_2/700^{\circ}\text{C}$) เป็นสารดูดซับ และความเข้มข้นของฟอสเฟตในน้ำเสียสมมติเท่ากับ 15, 20, 40, 50, 75 และ 100 ppm พบว่าเมื่อความเข้มข้นเริ่มต้นของฟอสเฟตสูงทำให้การดูดซับเข้าสู่สมดุลเร็วๆ ความเข้มข้นเริ่มต้นของฟอสเฟตต่ำ และการดูดซับสำหรับทุกค่าความเข้มข้นเริ่มต้นเข้าสู่สมดุลก่อนเวลา 4 ชั่วโมง ดังนั้นในการทดลองภายใต้สภาวะอื่นๆ จึงถือว่าการดูดซับเข้าสู่สมดุลภายในเวลา 4 ชั่วโมง และเก็บตัวอย่างที่เวลา 6 ชั่วโมง เพื่อวิเคราะห์ปริมาณการดูดซับที่สภาวะสมดุล

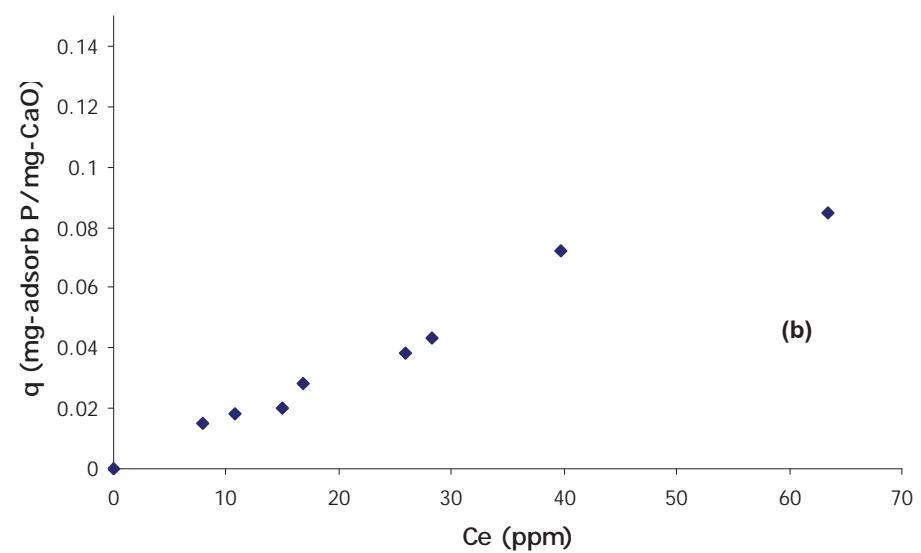
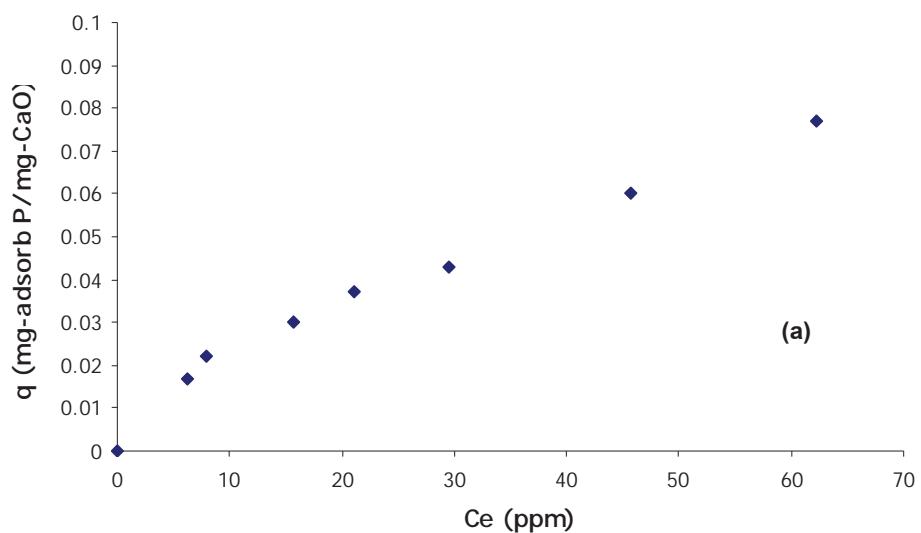
รูปที่ 4.3-2 แสดงให้เห็นกว่าสารดูดซับ OS-treated, $\text{N}_2/700^{\circ}\text{C}$ และสารดูดซับ OS-treated, $98.5\text{N}_2-1.5\text{H}_2\text{O}/700^{\circ}\text{C}$ มีพฤติกรรมเหมือนกัน จึงสรุปได้ว่าการเติมน้ำปริมาณเพียงเล็กน้อยไม่มีอิทธิพลต่อสมบัติของสารดูดซับที่ได้ ดังนั้นงานวิจัยนี้ จึงทำการทดลองหาไฮโซเทอร์มการดูดซับของสารดูดซับแต่ละชนิดยกเว้น OS-treated, $98.5\text{N}_2-1.5\text{H}_2\text{O}/700^{\circ}\text{C}$

รูปที่ 4.3-1 การดูดซับฟอสเฟตจากน้ำเสียสมมติวัยตัวดูดซับ (OS-treated, $N_2/700^\circ C$) ที่ $25^\circ C$ ความเข้มข้นเริ่มต้นต่างๆ

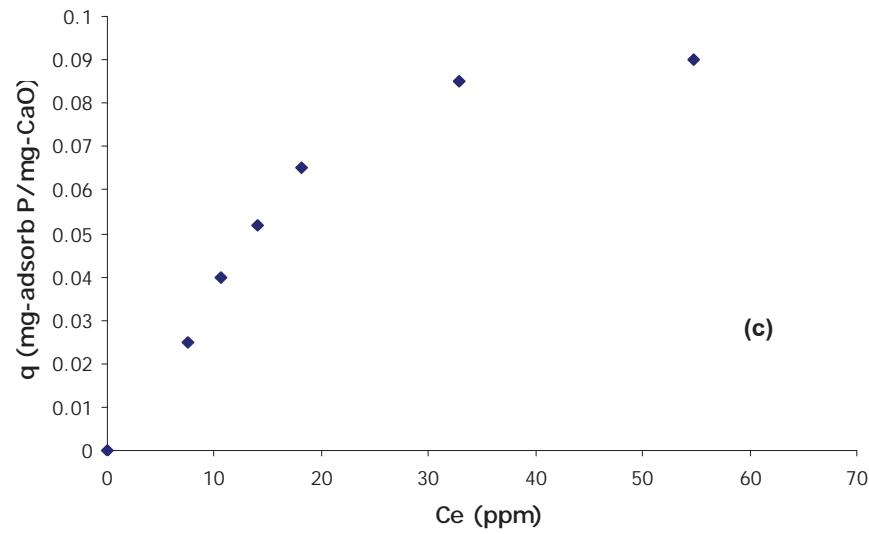
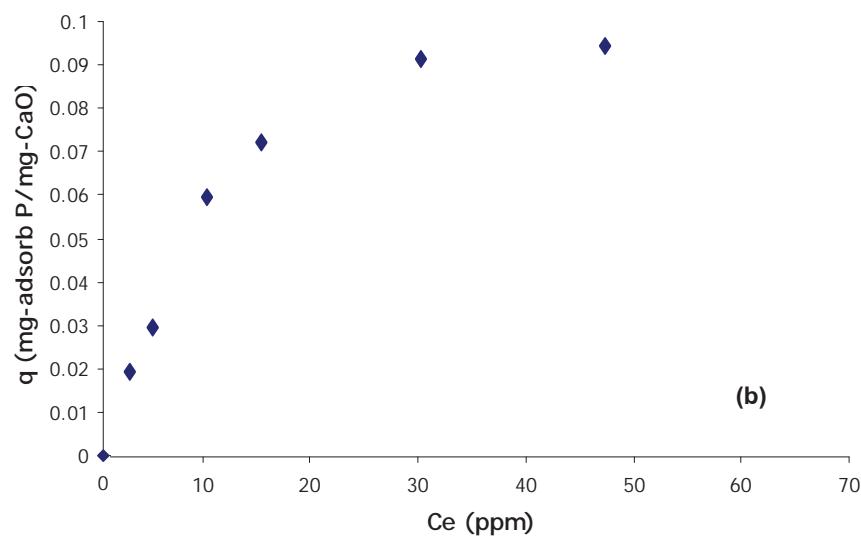
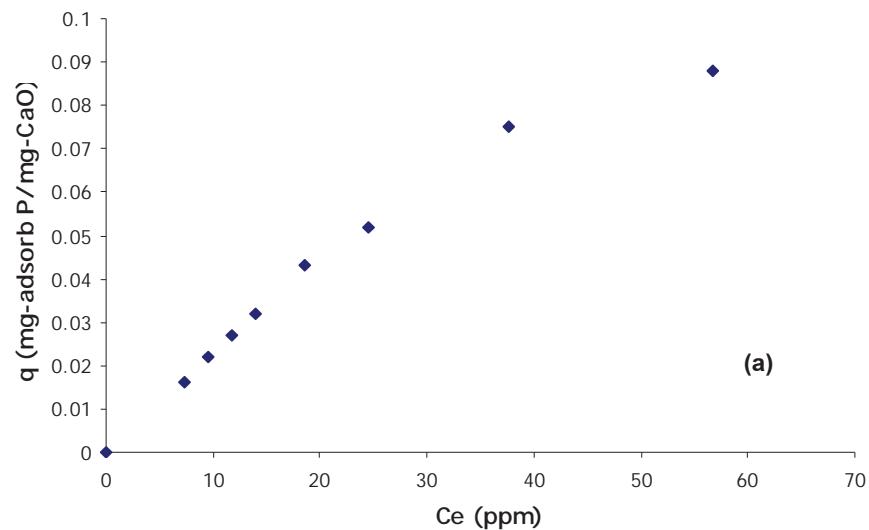
◆ 15 ppm ■ 20 ppm ▲ 40 ppm ✕ 50 ppm ✴ 75 ppm ● 100 ppm

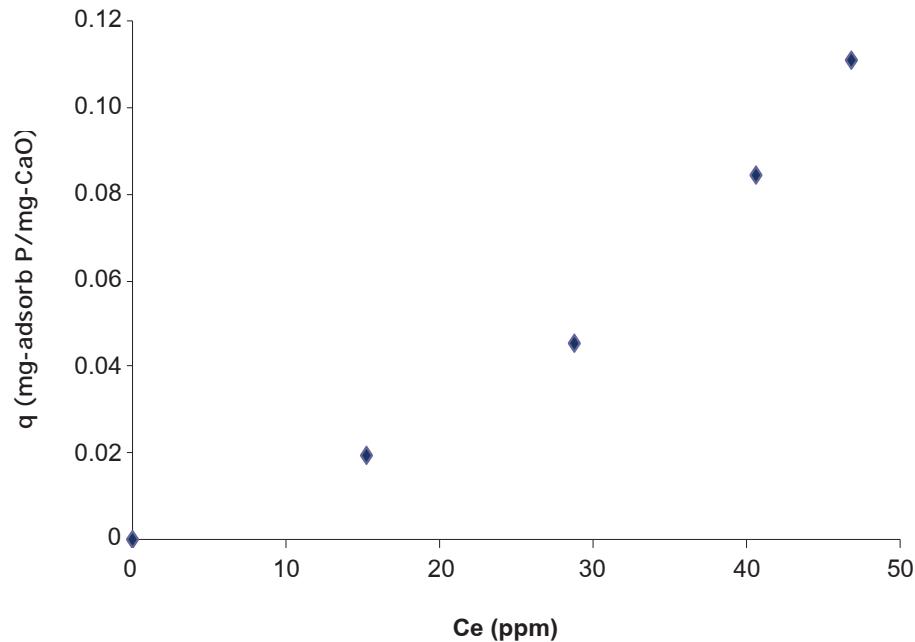

รูปที่ 4.3-2 การดูดซับฟอสเฟตจากน้ำเสียสมมติความเข้มข้นเริ่มต้น 50 ppm ที่ $25^\circ C$ ด้วยตัวดูดซับ

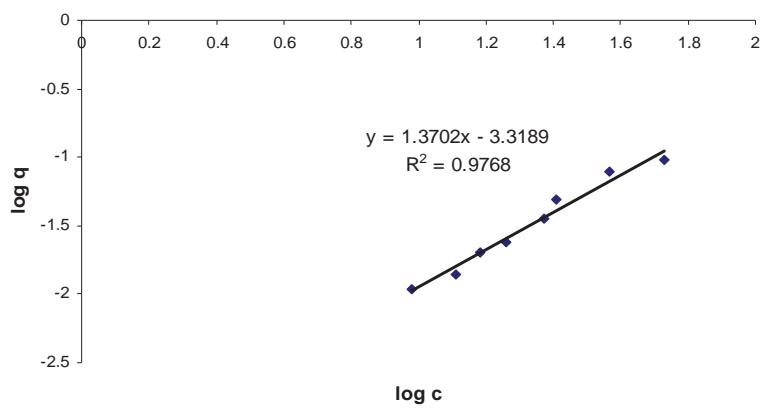
(◆) OS-treated, $N_2/700^\circ C$ และ (■) OS-treated, $98.5N_2-1.5H_2O/700^\circ C$

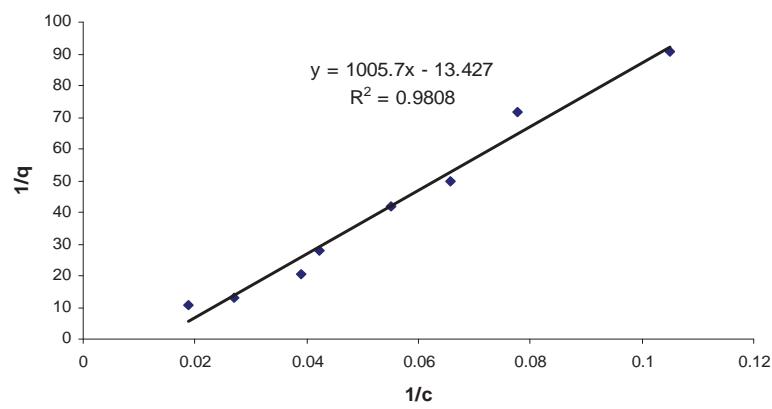


ไอโซเทอร์มการดูดซับ

รูปที่ 4.3-3, 4.3-4, 4.3-5 และ 4.3-6 แสดงไอโซเทอร์มการดูดซับฟอสเฟตในน้ำเสียสมมติของสารดูดซับ OS, OS-treated air, OS-treated N₂ และ OS-treated, 98.5N₂-1.5H₂O ตามลำดับ เมื่อนำผลการทดลองที่ได้ไปเขียนกราฟความสัมพันธ์รูปแบบเชิงเส้นของสมการไอโซเทอร์มฟรุนเดลิชและแมร์ไดผลดังแสดงในรูปที่ 4.3-7 ถึง 4.3-13 และได้ค่าคงที่สำหรับไอโซเทอร์มการดูดซับของสารดูดซับแต่ละชนิดดังแสดงในตารางที่ 4.3-1 ซึ่งสรุปได้ว่าสารดูดซับ CaO ที่ได้จากเปลือกหอยนางรมมีพฤติกรรมการดูดซับแตกต่างกันขึ้นกับชนิดของแก๊สเมื่อยที่ใช้ในการเปลี่ยนรูป CaCO₃ เป็น CaO

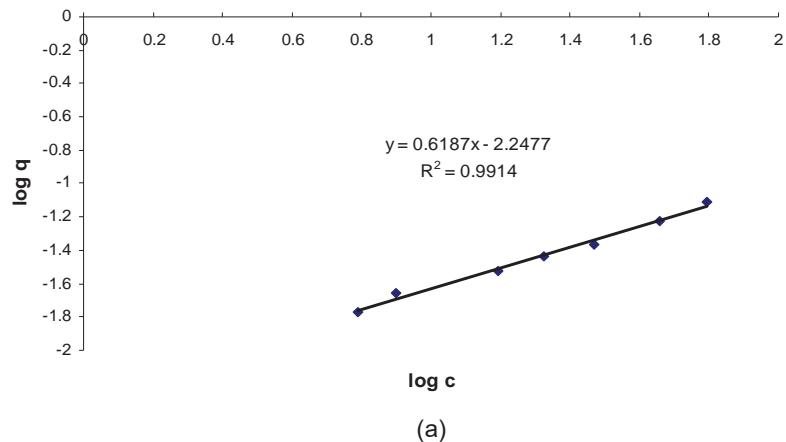



รูปที่ 4.3-14 แสดงการเปรียบเทียบไอโซเทอร์มการดูดซับของสารดูดซับแต่ละชนิดที่อุณหภูมิ 25°C จากรูปจะเห็นว่าสารดูดซับ OS-treated N₂/700°C เป็นสารดูดซับฟอสเฟตที่มีประสิทธิภาพสูงสุด ดังนั้นงานวิจัยในส่วนการออกแบบเครื่องทดสอบการดูดซับฟอสเฟตแบบป้อนสารต่อเนื่อง และเครื่องตันแบบสำหรับบำบัดน้ำเสียชุมชนจึงเลือก OS-treated N₂/700°C เป็นสารดูดซับ


รูปที่ 4.3-3 ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมบดเป็นสารดูดซับ (OS)

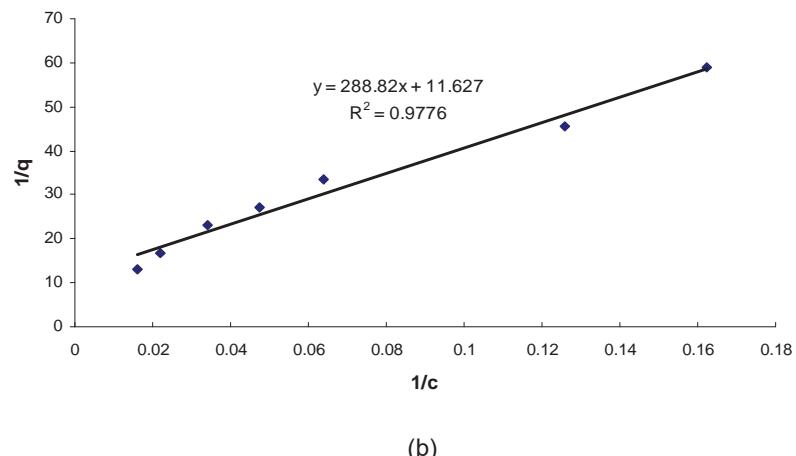

รูปที่ 4.3-4 ไอโซเทอร์มการดูดซับฟอสฟे�ตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ผ่านการปรับปรุงสมบัติด้วยอาการที่
(a) 700°C (OS-treated, air/ 700°C) และ (b) 800°C (OS-treated, air/ 800°C) เป็นสารดูดซับ


รูปที่ 4.3-5 ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ผ่านการปรับปรุงสมบัติด้วย N_2 ที่ (a) 600°C (OS-treated, $\text{N}_2/600^{\circ}\text{C}$), (b) 700°C (OS-treated, $\text{N}_2/700^{\circ}\text{C}$) และ (c) 800°C (OS-treated, $\text{N}_2/800^{\circ}\text{C}$) เป็นสารดูดซับ

รูปที่ 4.3-6 ไอโซเทอร์มการดูดซับฟอสเฟตที่ 25°C เมื่อใช้เปลือกหอยนางรมที่ปรับปรุงสมบัติด้วย N_2 ผสมไอน้ำในอัตราส่วน 1:1 ที่ 700°C (OS-treated, $\text{N}_2-\text{H}_2\text{O}/700^{\circ}\text{C}$)

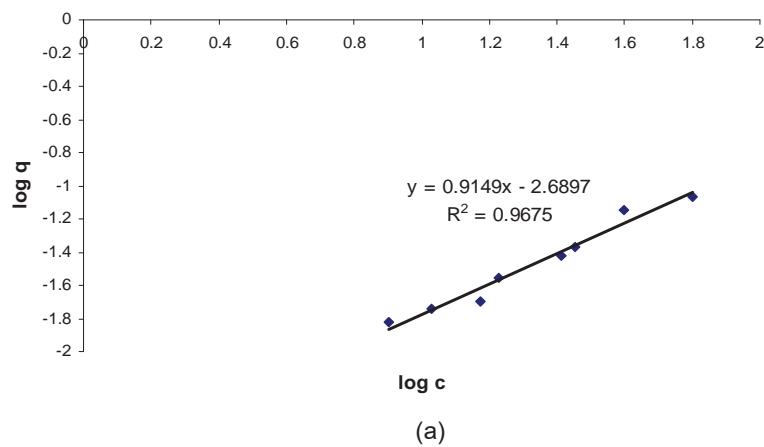


(a)

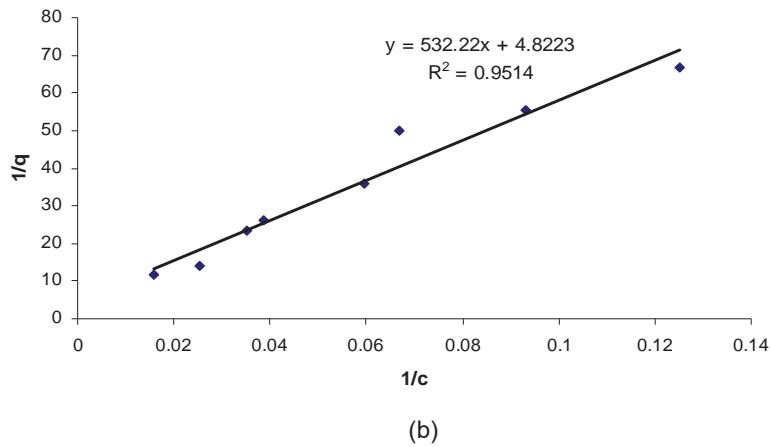


(b)

รูปที่ 4.3-7 ข้อมูลการดูดซับของสารดูดซับ OS-treated, $N_2/500^\circ C$ ในรูปความสัมพันธ์เชิงเส้นสำหรับ " Isotherm การดูดซับแบบ (a) Fruendlich และ (b) Langmuir

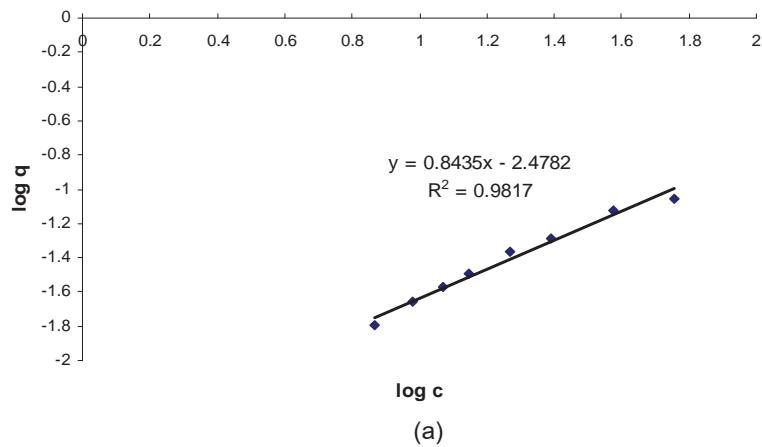


(a)

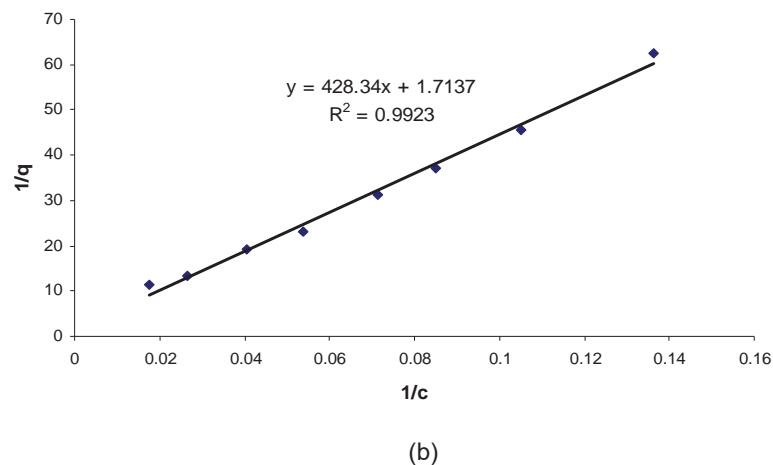


(b)

รูปที่ 4.3-8 ข้อมูลการดูดซับของสารดูดซับ OS-treated, air/700°C ในรูปความสัมพันธ์เชิงเส้นสำหรับ "อโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir

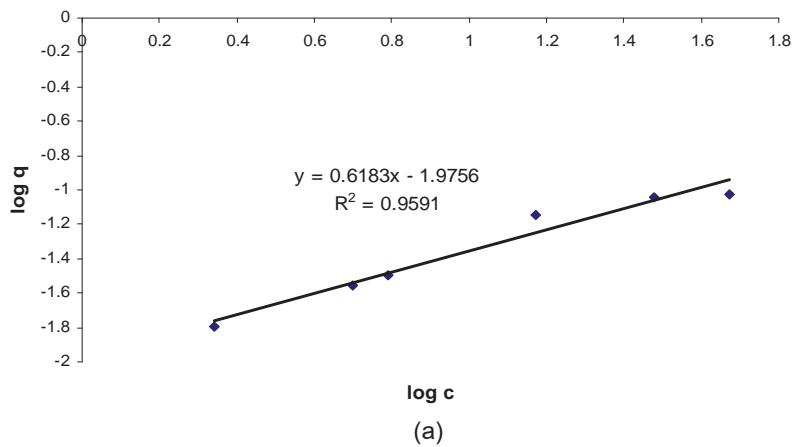


(a)

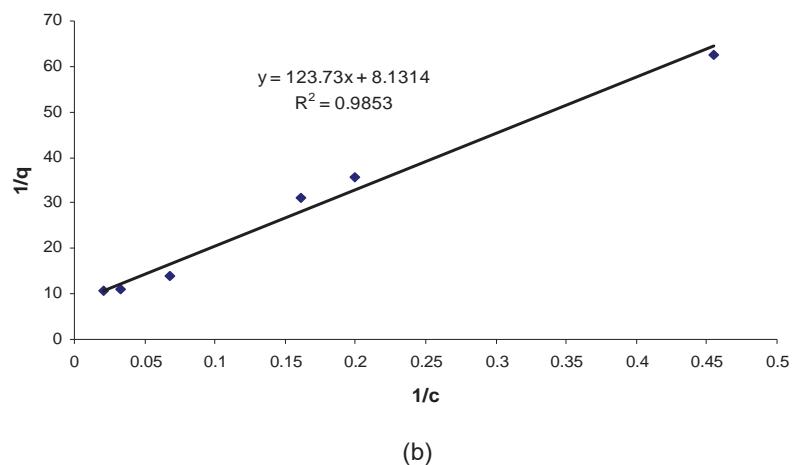


(b)

รูปที่ 4.3-9 ข้อมูลการดูดซับของสารดูดซับ OS-treated, air/800°C ในรูปความสมมติเชิงเส้นสำหรับไฮโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir

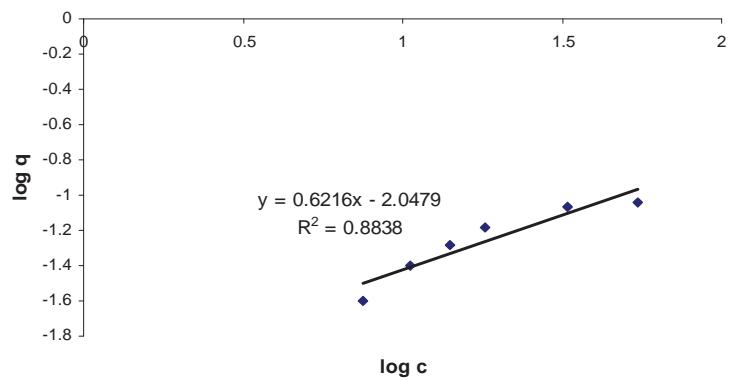


(a)

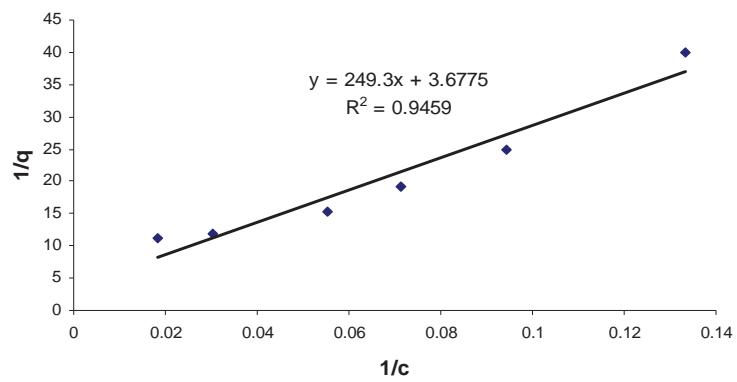


(b)

รูปที่ 4.3-10 ข้อมูลการดูดซับของสารดูดซับ OS-treated, $N_2/600^\circ C$ ในรูปความสัมพันธ์เชิงเส้นสำหรับ "อโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir

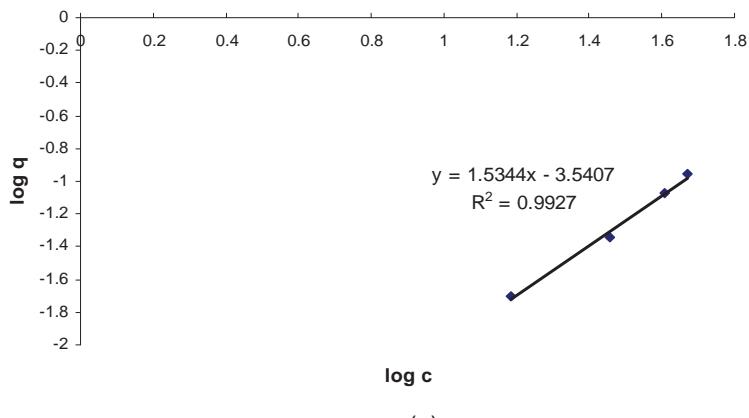


(a)

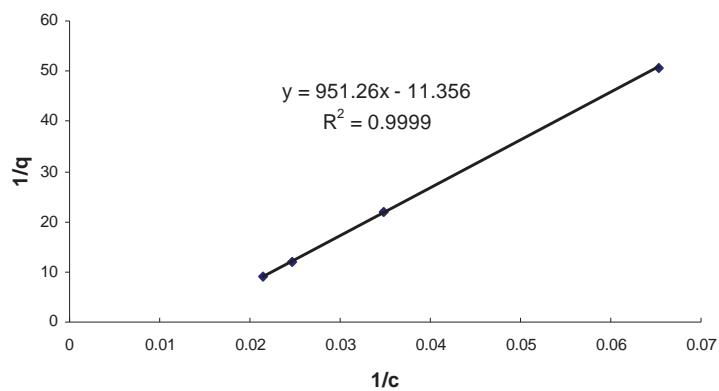


(b)

รูปที่ 4.3-11 ข้อมูลการดูดซับของสารดูดซับ OS-treated, $N_2/700^\circ C$ ในรูปความสัมพันธ์เชิงเส้นสำหรับ "อโซเทอร์มการดูดซับแบบ (a) Fruendlich และ (b) Langmuir

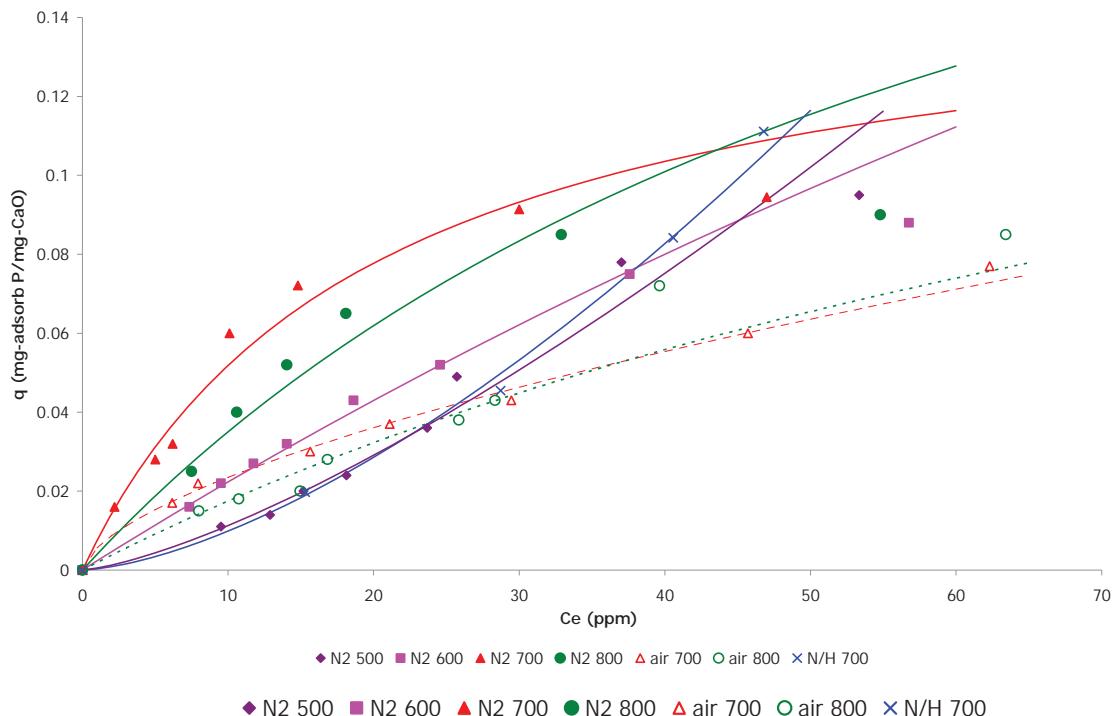


(a)



(b)

รูปที่ 4.3-12 ข้อมูลการดูดซับของสารดูดซับ OS-treated, $N_2/800^\circ C$ ในรูปความสัมพันธ์เชิงเส้นสำหรับ "อโซเทอร์มการดูดซับ" แบบ (a) Fruendlich และ (b) Langmuir



(a)

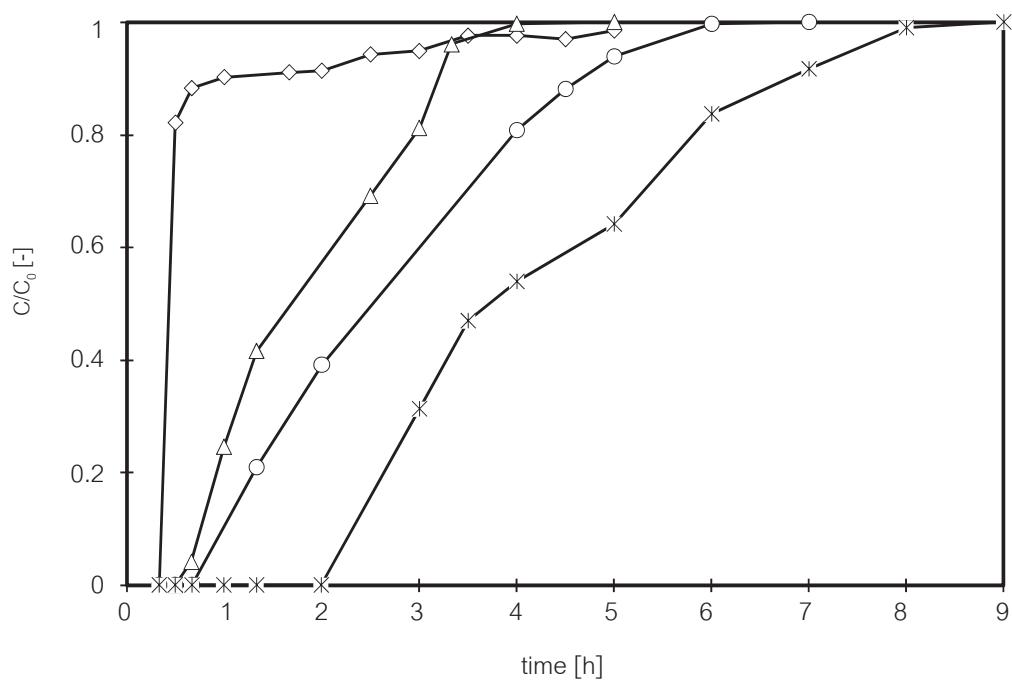
(b)

รูปที่ 4.3-13 ข้อมูลการดูดซับของสารดูดซับ OS-treated, $50\text{N}_2-50\text{H}_2\text{O}/700^\circ\text{C}$ ในรูปความสัมพันธ์เชิงเส้นสำหรับไฮโซเทอร์ม การดูดซับแบบ (a) Fruendlich และ (b) Langmuir

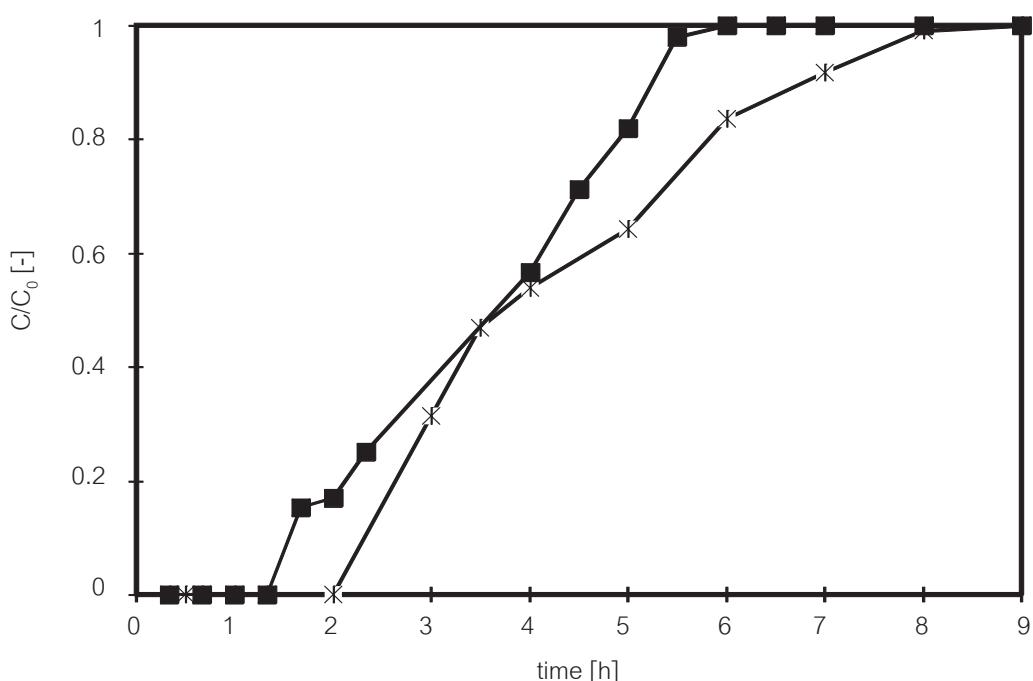
รูปที่ 4.3-14 เปรียบเทียบสมการไอโซเทอร์มการดูดซับ (ตารางที่ 4.3-1) กับผลการทดลองที่ 25°C ของสารดูดซับชนิดต่างๆ

ตารางที่ 4.3-1 ไอโซเทอร์มการดูดซับฟอสเฟตในน้ำเสียสมมติสำหรับสารดูดซับแต่ละชนิด

วัสดุดูดซับ	Freundlich			Langmuir		
	<i>n</i>	<i>K_F</i>	<i>R²</i>	<i>q₀</i>	<i>K_L</i>	<i>R²</i>
OS	0.7298	4.80×10^{-4}	0.9768	-	-	*
OS-treated-air-700	1.5625	5.22×10^{-3}	0.9960	0.0883	26.952	0.9820
OS-treated-air-800	1.0930	2.04×10^{-3}	0.9675	0.2074	110.366	0.9514
OS-treated-N ₂ -600	1.1855	3.33×10^{-3}	0.9817	0.5835	249.950	0.9923
OS-treated-N ₂ -700	1.6173	1.06×10^{-2}	0.9591	0.1230	15.216	0.9853
OS-treated-N ₂ -800	1.6088	8.96×10^{-3}	0.8838	0.2719	67.791	0.9459


ตารางที่ 4.3-2 ปริมาณการดูดซับฟอสเฟตอิ่มตัวของสารดูดซับชนิดต่างๆ

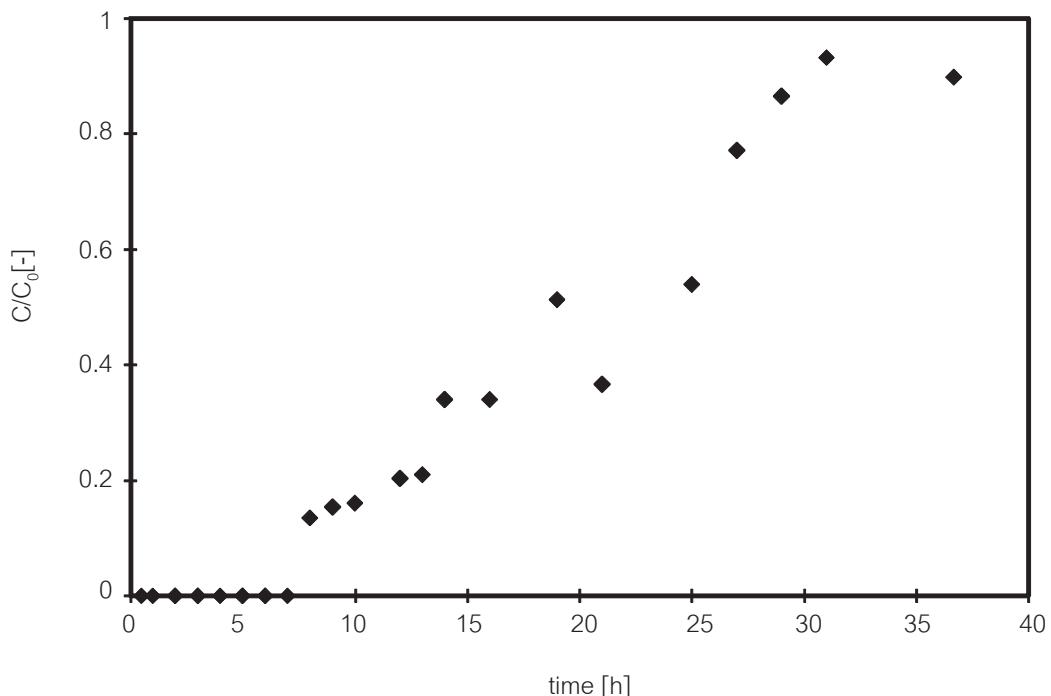
adsorbent	capacity (mg P/g)	ref.
fly ash	9.15	5
crab shell	108.9	6
red mud (acid-heat activated)	202.9	7
red mud (heat activated)	155.2	7
red mud	95.8	7
scallop shell	23	8
heat treated oyster shell	583.5	This work


4.3.2 การทดลองแบบต่อเนื่อง

รูปที่ 4.3-15 แสดงอัตราส่วนความเข้มข้นฟอสเฟตที่เหลือในน้ำเสียสมมติต่อความเข้มข้นฟอสเฟตเริ่มต้นในน้ำเสียสมมติ (C/C_0) ที่เปลี่ยนแปลงเทียบกับเวลาบำบัดน้ำเสีย เมื่อป้อนน้ำเสียสมมติด้วยอัตราการไหล 0.3 ลิตรต่อชั่วโมง โดยกำหนดให้ความเข้มข้นเริ่มต้นของฟอสเฟตในน้ำเสียสมมติมีค่า 15, 20, 25 และ 100 ppm พบว่าเมื่อฟอสเฟตมีความเข้มข้นสูง (100 ppm) สารดูดซับอิ่มตัวอย่างรวดเร็วภายในครึ่งชั่วโมง แต่เมื่อความเข้มข้นต่ำลงจะทำให้สามารถบำบัดน้ำเสียให้อยู่ภายใต้มาตรฐานที่กำหนด (2 ppm) ได้นานขึ้น โดยเมื่อน้ำเสียสมมติมีฟอสเฟตเข้มข้น 15 ppm ซึ่งเป็นความเข้มข้นที่ใกล้เคียงกับค่าที่พบในน้ำทิ้งชุมชน สารดูดซับจำนวน 0.3 g สามารถใช้บำบัดน้ำเสียสมมติให้มีปริมาณฟอสเฟตต่ำกว่าค่าที่กำหนด ($C/C_0 = 0.13$) ได้นาน 2 ชั่วโมง

รูปที่ 4.3-16 อิทธิพลของขนาดอนุภาคของสารดูดซับที่ใช้ต่อประสิทธิภาพการดูดซับ เมื่ออัตราการป้อนน้ำเสียสมมติเท่ากับ 0.3 ลิตรต่อชั่วโมง และความเข้มข้นของฟอสเฟตในน้ำเสียสมมติมีค่า 15 ppm ผลการทดลองแสดงให้เห็นว่า วัสดุดูดซับที่มีอนุภาคขนาด 1 – 3 mm มีประสิทธิภาพในการดูดซับฟอสเฟตต่ำกว่าวัสดุดูดซับที่มีอนุภาคขนาดเล็กกว่า 1 mm เล็กน้อย โดยวัสดุดูดซับขนาด 1 – 3 mm สามารถใช้บำบัดน้ำเสียให้มีปริมาณฟอสเฟตต่ำกว่าค่าตามมาตรฐาน 1.5 ชั่วโมง เมื่อพิจารณาประกอบกับสภาพการใช้งานจริงซึ่งจะเกิดความดันต่อกครือมสูงเมื่อใช้ออนุภาคขนาดเล็กในเครื่องบำบัดขนาดใหญ่และต้องเสียเวลาบดและคัดขนาดซ้ำเมื่อใช้สารดูดซับขนาดเล็ก ดังนั้นงานวิจัยนี้จึงเลือกใช้วัสดุดูดซับขนาด 1-3 mm ทำการศึกษาเพื่อยายระบบดูดซับฟอสเฟตในน้ำเสียต่อไป

รูปที่ 4.3-15 อัตราส่วนความเข้มข้นฟอสเฟตที่เหลือในน้ำเสียสมมติต่อความเข้มข้นฟอสเฟตเริ่มต้น
(ความเข้มข้นฟอสเฟตเริ่มต้น ; \diamond : 15 , \triangle : 20, \circ : 25, $*$: 100 พีพีเอ็ม)



รูปที่ 4.3-16 อิทธิพลของขนาดอนุภาควัสดุดูดซับที่มีต่อประสิทธิภาพการดูดซับฟอสเฟตในน้ำเสียสมมติ
(อนุภาคนาด; $*$: 1 มม., \blacksquare : 1- 3 มม.)

4.3.3 เครื่องบำบัดน้ำเสียครัวเรือนตันแบบ

เมื่อติดตั้งเครื่องบำบัดน้ำเสียครัวเรือนตันแบบตามรูปที่ 3.3-7 และจึงทำการทดสอบประสิทธิภาพการบำบัดน้ำเสียโดยป้อนน้ำเสียครัวเรือนที่มีความเข้มข้นฟอสเฟตเท่ากับ 12 ppm เข้าสู่เครื่องบำบัดด้วยอัตราการไหลเท่ากับ 1 ลิตรต่อชั่วโมง บรรจุวัสดุดูดซับ 15 กรัม พบว่าเครื่องบำบัดน้ำเสียที่ออกแบบสามารถบำบัดน้ำเสียให้มีปริมาณฟอสเฟตตามเกณฑ์มาตรฐานน้ำทึบที่กฎหมายอนุญาตให้ปล่อยทึบสูงสุดเท่ากับ 10 ชั่วโมง อย่างไรก็ตามประสิทธิภาพการดูดซับฟอสเฟตของเครื่องบำบัดน้ำเสียครัวเรือนตันแบบยังต่ำกว่าประสิทธิภาพการดูดซับฟอสเฟตของชุดทดสอบแบบต่อเนื่องในระดับห้องปฏิบัติการ (หัวข้อ 4.3.2) ถึง 17 เท่า โดยการทดสอบการดูดซับด้วยระบบต่อเนื่องในระดับห้องปฏิบัติการสามารถดูดซับฟอสเฟตได้ $0.014 \text{ g}_P / (\text{g}_{\text{CaO}} \cdot \text{h})$ และเครื่องตันแบบดูดซับฟอสเฟตได้เพียง $0.0008 \text{ g}_P / (\text{g}_{\text{CaO}} \cdot \text{h})$ ดังนั้นเมื่อต้องการขยายขนาดของเครื่องบำบัดน้ำเสียจึงไม่ควรขยายขนาดโดยการใช้ท่อขนาดใหญ่ที่บรรจุวัสดุดูดซับได้มากขึ้นเพียงท่อเดียว แต่ควรใช้ท่อขนาดเล็กบรรจุวัสดุดูดซับปริมาณไม่มากหลายท่อต่อขนาดกันจึงจะทำให้เครื่องดูดซับมีประสิทธิภาพในการบำบัดน้ำเสียสูง

ตารางที่ 4.3-3 แสดงผลการประเมินราคาเครื่องบำบัดน้ำเสียครัวเรือนตันแบบขนาด 50 ลิตร

รูปที่ 4.3-17 การเปลี่ยนแปลงอัตราส่วนความเข้มข้นฟอสเฟตที่เหลือต่อความเข้มข้นฟอสเฟตเริ่มต้น $[C/C_0]$ เมื่อใช้ตัวอย่างเป็นน้ำเสียจากครัวเรือน

ตารางที่ 4.3-3 ราคาเครื่องบำบัดน้ำเสียครัวเรือน (ตันแบบขนาด 50 ลิตร)

หน่วยปฏิบัติงาน	วัสดุ/อุปกรณ์	ราคา (บาท)
1.ถังดักไขมัน	1.1 ถังพลาสติกขนาด 45 ลิตร 1.2 ท่อ PVC 1.3 ตะแกรงแสตนเลส	200 200 500
2.ชุดกรอง	2.1 กรวดหยาบ 2.2 กรวดละเอียด 2.3 ทรายหยาบ 2.4 ทรายละเอียด 2.5 ถ่าน ^ๆ 2.6 สำลี 2.7 ถังพลาสติกบรรจุสารกรอง	45 45 20 20 20 35
3.ท่อบรรจุวัสดุดูดซับ	3.1 ท่อพลาสติก ($\varnothing = 5$ cm) 3.2 ตะแกรงลวดแสตนเลส ($\varnothing = 1$ mm) 3.3 ท่อและข้อต่อ PVC	200 100 300
	รวม	1,685

5. สรุปและข้อเสนอแนะ

เบล็อกหอยนางรมเหลือทิ้งสามารถใช้เป็นวัตถุดิบในการสังเคราะห์สารดูดซับที่มีองค์ประกอบเป็น CaO ได้ โดยวิธีการเตรียมที่ไม่ยุ่งยากซับซ้อนและไม่ต้องใช้สารเคมีอันตราย สารดูดซับที่สังเคราะห์ได้มีประสิทธิภาพในการกำจัดโลหะหนัก (ตะกั่ว, แคนเดเมียม, สังกะสี, เหล็ก และโคโรเมียม) และฟอสเฟตในน้ำสูงกว่าสารดูดซับชนิดอื่น เช่น เถ้าโลย เบล็อกปู เบล็อกหอย ที่เตรียมด้วยวิธีเดียวกัน และที่ผ่านการปรับปรุงประสิทธิภาพโดยการระดูนด้วยสารเคมี (อ้างอิงจากข้อมูลงานวิจัยในฐานข้อมูล) อย่างไรก็ได้สารดูดซับที่สังเคราะห์ได้มีขนาดอนุภาคเล็กมาก อาจไม่เหมาะสมกับการใช้งานในลักษณะนำไปบรรจุในหอดูดซับขนาดใหญ่ จึงต้องพัฒนาเพิ่มเติม เช่น ทำการขีนรูปสารดูดซับให้กล้ายเป็นอนุภาคขนาดใหญ่ หรือปรับปรุงรูปแบบของเครื่องดูดซับให้เป็นลักษณะการใช้งานในถังกวน ซึ่งนอกจากจะสามารถใช้งานได้จริงในระดับครัวเรือนและชุมชนแล้ว ยังสามารถนำไปประยุกต์ใช้กับการกำจัดน้ำเสียที่เกิดจากอุตสาหกรรมได้อีกด้วย

6. เอกสารอ้างอิง

- [1] E. Pehlivan, A.M. Özkan, S. Dinc, S. Parlayici, "Adsorption of Cu²⁺ and Pb²⁺ ion on dolomite powder", *Journal of Hazardous Materials*, 167(2009)1044-1049.
- [2] Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, "Heavy metal removal from aqueous solutions by activated phosphate rock", *Journal of Hazardous Materials*, 156(2008)412-420.
- [3] H.A. Aziz, M. N. Adlan, K.S. Ariffin, "Heavy metals (Cd, Pb, Zn, Ni, Cu, and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone", *Bioresource Technology*, 99(2008)1578-1583.
- [4] J.C. Moreno-Pirajan, V.S. Garcia-Cuello, L. Giraldo, "The removal and kinetic study of Mn, Fe, Ni, and Cu ions from wastewater onto activated carbon from coconut shells", *Adsorption*, 17(2011)505-514.
- [5] K. Xu, T. Deng, J. Liu, W. Peng, "Study on the phosphate removal from aqueous solution using modified fly ash" *Fuel*, 89 (2010) 3668-3674.
- [6] D. J. Jeon, S. H. Yeom, "Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate", *Bioresource Technology*, 100 (2009) 2646-2649.
- [7] C.-J. Liu, Y.-Z. Li, Z.-K. Zhao, Z.-Y. Chen, Z.-G. Zhang, Z.-P. Jia, "Adsorption removal of phosphate from aqueous solution by active red mud", *Journal of Environmental Science*, 19 (2007) 1166-1170.
- [8] S. H. Yeom, K.-Y. Jung "Recycling wasted scallop shell as an adsorbent for the removal of phosphate", *Journal of Industrial and Engineering Chemistry*, 15 (2009) 40-44.

ภาคผนวก

ภาคผนวก ก. บทความสำหรับการเผยแพร่

1. ต้นฉบับบทความวิจัยเรื่อง “การเตรียมวัสดุดูดซับจากเปลือกหอยนางรมเหลือทิ้งเพื่อใช้กำจัดฟอสเฟตในน้ำเสีย” ตีพิมพ์ ในวิชาสาร拉丁กระนัง ปีที่ 28 ฉบับที่ 4 ธันวาคม 2554 หน้า 31-36
2. ต้นฉบับบทความวิจัยเรื่อง “Recycling oyster shell as adsorbent for phosphate removal” นำเสนอในงานประชุม วิชาการ TiChE International Conference 2011

การเตรียมวัสดุดูดซับจากเปลือกหอยนางรมเหลือทิ้ง เพื่อใช้กำจัดฟอสเฟตในน้ำเสีย

Preparation of Adsorbents From Oyster Shell Wastes For Phosphate Removal from Wastewater

รัตนกร ยวงศ์สวัสดิ์¹

¹ สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลกรุงเทพ
เลขที่ 2 ถนนนนทบุรี แขวงทุ่งมหาเมฆ เขตสาทร กรุงเทพ 10120

Email address: ratanaporn.y@rmutk.ac.th

วสัยรัตน์ จันทร์อันพร² และดวงกมล ณ ระนอง²

² สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
เลขที่ 1 ซอยคลองกรุง 1 แขวงลาดกระบัง เขตคลองเตย กรุงเทพ 10520

Email address: kswalair@kmitl.ac.th, dnaranong@hotmail.com

บทคัดย่อ

งานวิจัยนี้นำเปลือกหอยนางรมเหลือทิ้งมาสังเคราะห์เป็นวัสดุดูดซับเพื่อใช้กำจัดฟอสเฟตในน้ำเสีย ผลการทดลองแสดงว่าเมื่อเปลือกหอยนางรมถูกเผาภายใต้บรรยากาศของแก๊สไนโตรเจนที่อุณหภูมิสูง (≥ 873 K) แคลเซียมคาร์บอเนตในเปลือกหอยนางรมจะเปลี่ยนเป็นแคลเซียมออกไซด์ โดยชนิดของแก๊สและอุณหภูมิที่ใช้มีผลต่อถักยังคงทางกายภาพและค่าความจุฟอสเฟตของวัสดุดูดซับที่ได้ ไอโซเทอร์มการดูดซับฟอสเฟตของวัสดุดูดซับเหล่านี้มีค่าคงที่ ($K_{d, \text{Langmuir}}$) ที่ 873 K คือ 583.5 mg-P/g ซึ่งสูดในงานวิจัยนี้ได้จากการเผาเปลือกหอยนางรมภายใต้บรรยากาศของไนโตรเจนที่ 873 K โดยมีค่าเท่ากับ 583.5 mg-P/g

Abstract

In this study, an oyster shell waste was used as a raw material to synthesize an adsorbent for phosphate removal from wastewater. Experimental results showed that calcium carbonate was transformed into calcium oxide when the oyster shell was treated under inert atmosphere at high temperature (≥ 873 K). Both the type of atmospheric gas and the treating temperature significantly affected the physical properties and the adsorption capacity toward phosphate of the obtained adsorbents. The adsorption isotherms of the obtained adsorbents were corresponded well with Langmuir or Freundlich models and the adsorption parameters in each isotherm depended on the synthesis condition. The adsorbent with the highest adsorption capacity toward phosphate was obtained when the oyster shell was treated under nitrogen atmosphere at the temperature of 873 K. Its adsorption capacity was 583.5 mg-P/g .

Key words: phosphate removal, wastewater, oyster shell, adsorption isotherm, calcium oxide

1. บทนำ

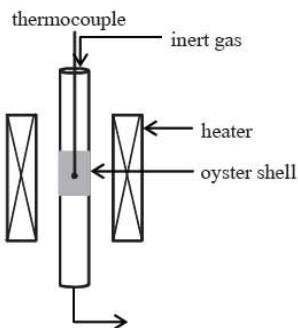
ปัจจุบันน้ำเสียที่ถูกปล่อยทิ้งจากแหล่งชุมชนมีปริมาณมากและมีแนวโน้มเพิ่มขึ้นจากการเพิ่มจำนวนประชากรและการขยายตัวของชุมชน จากข้อมูลของกรมควบคุมมลพิษพบว่าในปี พ.ศ. 2552 มีปริมาณ 15,000 ล้านลิตรต่อวัน [1-2] และมีการประมาณว่าในปี พ.ศ. 2555 จะมีปริมาณถึง 24,306 ล้านลิตรต่อวัน [2] น้ำเสียชุมชนนี้ฟอสเฟตเพิ่มขึ้น 4 – 15 ppm [1] ถ้าถูกปล่อยสู่แหล่งน้ำธรรมชาติโดยไม่ได้รับการบำบัดจะทำให้เกิดปรากฏการณ์ Eutrophication [3] ซึ่งมีผลทำให้ออกซิเจนในน้ำลดลงอย่างมากและระบบนิเวศน์เสียสมดุลในที่สุด เพื่อป้องกันปัญหาดังกล่าวจึงมีการออกกฎหมายควบคุมคุณภาพน้ำโดยกำหนดความเข้มข้นสูงสุดของฟอสเฟตที่อนุญาตให้ปล่อยสู่แหล่งน้ำธรรมชาติได้ไว้ไม่เกิน 2 ppm [4]

การกำจัดฟอสเฟตในน้ำทิ้งสามารถทำได้หลายวิธีโดยการตัดก่อนด้วยสารเคมีเป็นวิธีที่นิยมใช้ในการบำบัดน้ำทิ้งโรงงานอุตสาหกรรม และสารเคมีที่ใช้มีหลายชนิด เช่น สารส้ม (alum) [5], $Al(OH)_3$ [5] และ ferric chloride [6] ซึ่งการตัดก่อนมีข้อเสียคือ ต้องควบคุมค่าความเป็นกรด-เบส (pH) ให้เหมาะสม มีประสิทธิภาพในการกำจัดฟอสเฟตค่อนข้างต่ำ และเกิดตะกอนที่จะต้องนำไปกำจัดต่อเป็นปริมาณมาก การกำจัดด้วยวิธีทางชีวภาพ [7] อาจทำภายได้สภาวะ aerobic หรือ anaerobic แต่มีประสิทธิภาพในการกำจัดฟอสเฟตต่ำ มีความซับซ้อนในการปฏิบัติงาน และมีค่าใช้จ่ายสูง ดังนั้นการตัดก่อนและการกำจัดด้วยวิธีทางชีวภาพจึงไม่เหมาะสมที่จะนำมาใช้กำจัดฟอสเฟตในน้ำเสียแต่ละครัวเรือน

เมื่อพิจารณาข้อจำกัดข้างต้นจะเห็นว่าการดูดซับเป็นวิธีที่เหมาะสมที่จะนำมาใช้บำบัดน้ำเสียครัวเรือน เพราะเป็นวิธีที่ทำได้ง่าย สามารถติดตั้งเพื่อใช้งานตามครัวเรือนในแหล่งชุมชนทั่วไป ที่ผ่านมีงานวิจัย [8-11] ที่นำวัสดุดูดซับชนิดต่างๆ (pumice, activated alumina, fly ash และ red mud) มาทดสอบการดูดซับฟอสเฟตในน้ำเสียพบว่าสามารถทำให้น้ำที่ผ่านการบำบัดมีความเข้มข้นของฟอสเฟตต่ำกว่าเกณฑ์ที่กำหนดได้ แต่เมื่อพิจารณาความจุในการดูดซับฟอสเฟต (adsorption capacity toward

phosphate) ของวัสดุดูดซับเหล่านี้พบว่าโดยทั่วไปมีค่าต่ำและสามารถทำให้เพิ่มขึ้นได้โดยใช้ความร้อนหรือสารเคมีปรับปรุงโครงสร้างและคุณสมบัติของวัสดุดูดซับ

การเพาะเลี้ยงสัตว์น้ำตามชายฝั่งทะเลอย่างมากในภาคใต้และภาคตะวันออกของประเทศไทยทำให้มีอุตสาหกรรมการแปรรูปอาหารทะเลและชุมชนขยายเพิ่มขึ้นอย่างรวดเร็ว เปลือกหอยนางรมเหลือทิ้งจากการแปรรูปหอยนางรมสามารถนำไปใช้ประโยชน์ได้จำกัดทำให้เกิดปัญหาสิ่งแวดล้อมตามมา เนื่องจากเปลือกหอยต่างๆ รวมทั้งเปลือกหอยนางรมมีแคลเซียมคาร์บอนেตเป็นองค์ประกอบหลักสามารถนำมาใช้กำจัดฟอสเฟตในน้ำได้ [12- 15] งานวิจัยนี้จึงมีจุดมุ่งหมายที่จะนำเปลือกหอยนางรมเหลือทิ้งมาพัฒนาเป็นวัสดุดูดซับที่มีความจุฟอสเฟตสูงเพื่อใช้บำบัดน้ำเสียครัวเรือนโดยนำมาปรับปรุงสมบัติโดยการให้ความร้อนที่อุณหภูมิต่างๆ ภายใต้บรรยากาศที่มีแก๊สเสียหายให้หล่อผ่าน วัสดุดูดซับที่ได้จะถูกนำไปทดสอบการดูดซับฟอสเฟตในน้ำเสียสมมติด้วยชุดทดสอบแบบกําเพื่อหาไอโซเทอร์มการดูดซับที่ใช้ประเมินความสามารถในการดูดซับที่สมดุล


2. การทดลอง

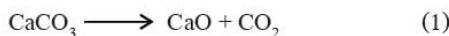
2.1 การเตรียมวัสดุดูดซับ

งานวิจัยนี้ใช้เปลือกหอยนางรมที่มาจากการจังหวัดสุราษฎร์ธานี เปลือกหอยนางรมจะถูกนำมาไปถังด้วยน้ำสะอาด ตากแดด และอบแห้ง แล้วจึงนำมาด้วยเครื่องบดแบบใบมีดตัด และคัดขนาดให้อยู่ระหว่าง 1 – 3 mm

นำเปลือกหอยนางรมบด 2 กวัน บรรจุลงในท่อเก็บควาทซ์และติดตั้งอุปกรณ์ตามรูปที่ 2.1 จากนั้นป้อนอากาศ (หรือแก๊สในไตรเจน) ผ่านเบดดิ้งอัตราการไหล $60 \text{ cm}^3/\text{min}$ พร้อมทั้งให้ความร้อน ร้อนอุณหภูมิกที่ที่ 773, 873, 973 และ 1073 K เป็นเวลา 4 ชั่วโมง นำวัสดุดูดซับที่ได้เก็บไว้ใน dessicator วัสดุดูดซับที่ได้ถูกตั้งชื่อ ด้วยสัญลักษณ์ OS-treated-gas-T เช่น OS-treated-air-973 หมายถึงวัสดุดูดซับที่ได้จากการให้ความร้อนเปลือกหอยนางรมภายใต้บรรยากาศของอากาศที่ 973 K

โครงสร้างผลึก, สัมบูรณ์พื้นผิว และพื้นที่ผิวจำเพาะของวัสดุดูดซับที่ได้จะถูกวิเคราะห์ด้วยเทคนิค XRD, SEM

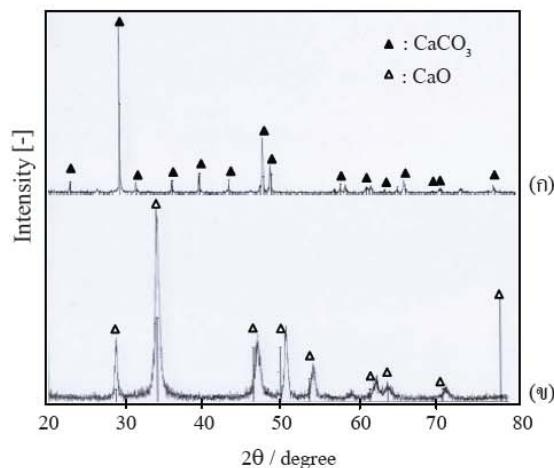
รูปที่ 2.1 อุปกรณ์ที่ใช้สังเคราะห์วัสดุคุณชั้บ

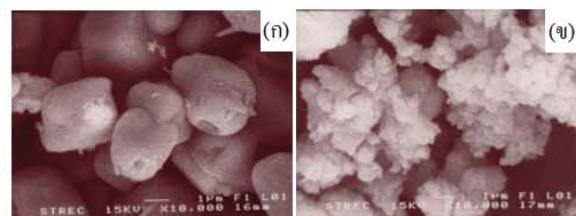

2.2 การคุณชั้บฟอสเฟตแบบแก๊ส

เตรียมน้ำเสียสมนติที่มีฟอสเฟตเข้มข้น 5–100 ppm ปริมาตร 200 ml โดยผสม Anhydrous KH_2PO_4 (Ajax Finechem Pty Ltd.) ลงในน้ำกลั่น จากนั้นเติมวัสดุคุณชั้บหนัก 0.1 กรัม ลงไปในน้ำเสียสมนติแล้วปั่นกวนโดยใช้เครื่องกวนแบบแม่เหล็กด้วยความเร็วรอบประมาณ 200 rpm จากนั้นเก็บตัวอย่างทุก 20 นาที เพื่อนำมาวิเคราะห์ปริมาณฟอสเฟตที่เหลืออยู่ด้วยวิธีกรดแอกซิร์บิก [16]

3. ผลการทดลอง

3.1 สมบัติของวัสดุคุณชั้บ


เมื่อนำเปลือกหอยนางรมบด (OS) ไปวิเคราะห์ด้วยเทคนิค XRD จะได้สเปกตรัมดังรูปที่ 3.1 (ก) ซึ่งเป็นโครงสร้างของ CaCO_3 และเมื่อนำเปลือกหอยนางรมบดหลังการให้ความร้อนภายใต้บรรยากาศของอากาศที่ 973 K (OS-treated-air-973 K) ไปวิเคราะห์ด้วยเทคนิค XRD จะได้สเปกตรัมดังรูปที่ 3.1 (ข) ซึ่งเป็นโครงสร้างของ CaO โดยไม่มีโครงสร้างของ CaCO_3 เหลืออยู่ แสดงว่าระหว่างการให้ความร้อนที่ 973 K CaCO_3 ในเปลือกหอยนางรมเปลี่ยนเป็น CaO ตามสมการที่ (1) อย่างสมบูรณ์


นอกจากนี้ยังพบว่าการให้ความร้อนที่ 873 และ 1073 K จะได้ผลเช่นเดียวกับกรณี 973 K แต่การให้ความร้อนที่อุณหภูมิ 773 K แม้จะนานมากกว่า 10 ชั่วโมง ก็ยังไม่ทำให้เกิดการเปลี่ยนแปลงตามสมการที่ (1) จึงสรุปว่าการให้ความร้อนที่อุณหภูมิอย่างน้อย 873 K สามารถเตรียมวัสดุคุณชั้บที่มีองค์ประกอบเป็น CaO จากเปลือกหอยนางรมได้แต่การให้ความร้อนที่อุณหภูมิ 773 K จะได้วัสดุคุณชั้บที่มีองค์ประกอบเป็น CaCO_3 ในงานวิจัยนี้ไม่พบความแตกต่างขององค์ประกอบที่เกิดจากการเลือกใช้แก๊สต่างชนิดกัน

รูปที่ 3.2 (ก) และ (ข) แสดงภาพถ่าย SEM ของ CaO ที่สังเคราะห์ภายใต้บรรยากาศของอากาศและในไตรเจนที่อุณหภูมิ 973 K พบว่าเมื่อใช้แก๊สต่างชนิดกันจะทำให้ขนาดอนุภาคของวัสดุคุณชั้บที่ได้มีขนาดและลักษณะพื้นผิวของอนุภาคแตกต่างกัน โดย OS-treated-air-973 ($\phi_{avg} = 2.8 \mu\text{m}$) มีขนาดอนุภาคใหญ่กว่า OS-treated- N_2 -973 ($\phi_{avg} = 0.3 \mu\text{m}$)

พื้นที่ผิวจำเพาะของ OS-treated-air-973 และ OS-treated- N_2 -973 ตามสมการ BET มีค่าเท่ากับ 5.85 และ 2.39 m^2/g ตามลำดับ

รูปที่ 3.1 สเปกตรัม XRD ของ (ก) OS; (ข) OS-treated air-973

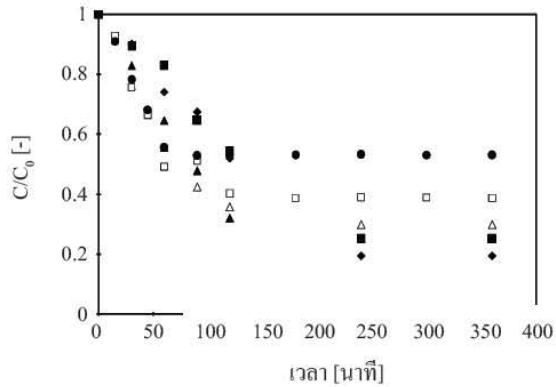
รูปที่ 3.2 ภาพถ่าย SEM ของ (ก) OS-treated-air-973; (ข) OS-treated- N_2 -973

3.2 การคุณภาพฟอสเฟตแบบบก

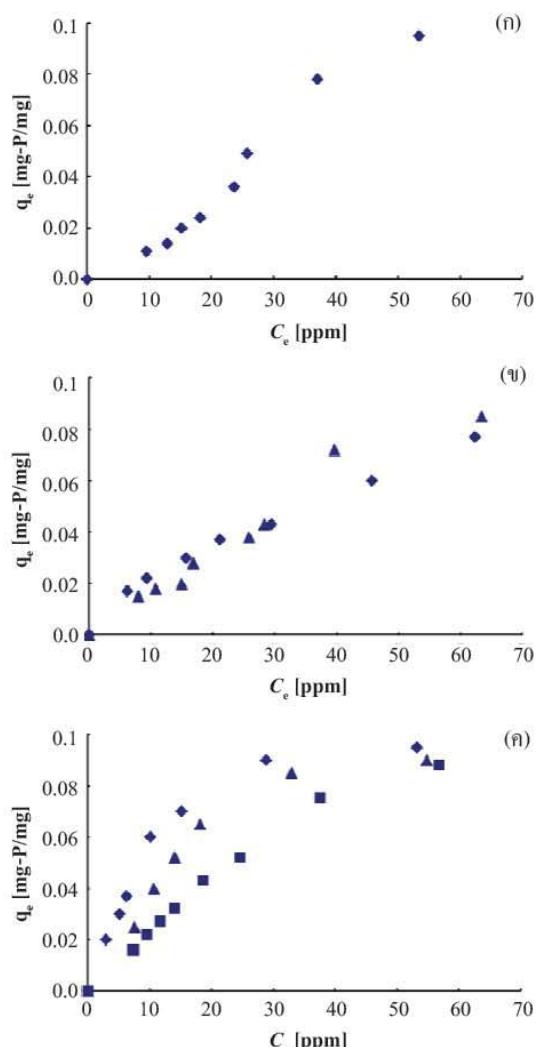
รูปที่ 3.3 แสดงการทดลองของความเข้มข้นฟอสเฟตในน้ำเสียสมมติ (C/C_0) เทียบกับเวลา เมื่อทำการทดลองโดยใช้ความเข้มข้นเริ่มต้นของฟอสเฟต (C_0) ในช่วง 15-100 ppm ผลการทดลองแสดงให้เห็นว่าค่า C_0 ที่ใช้มีผลต่อเวลาที่ทำให้การคุณภาพเข้าสู่สมดุลโดยเมื่อ C_0 มีค่าสูงจะทำให้การคุณภาพเข้าสู่สมดุลเร็ว ซึ่งทุกการทดลองแบบบกในงานวิจัยนี้พบว่าการคุณภาพเข้าสู่สมดุลภายใน 4 ชั่วโมง

3.3 ไฮโซเทอร์มการคุณภาพฟอสเฟต

รูปที่ 3.4 (ก), (ข) และ (ก) เป็นความสัมพันธ์ระหว่างปริมาณฟอสเฟตที่ถูกคุณภาพที่สมดุล (q_e) กับความเข้มข้นของสารละลายฟอสเฟตที่สมดุล (C_e) ที่ 301 K เมื่อใช้ OS, OS-treated-air-T และ OS-treated-N₂-T ตามลำดับ เมื่อพิจารณาความสัมพันธ์ในรูปที่ 3.4 (ก)-(ก) จะเห็นว่า การคุณภาพฟอสเฟตในน้ำเสียสมมติของวัสดุคุณภาพแต่ละตัวมีพุทธิกรรมคล้ายกับการคุณภาพตามแบบจำลองของแลงเมียร์ (Langmuir Adsorption Model; สมการที่ 2) และฟรุนเดลิช (Freundlich Adsorption Model; สมการที่ 3) ดังนี้ในงานวิจัยนี้จึงนำผลการทดลองการคุณภาพที่สมดุลที่อุณหภูมิคงที่ที่ได้มาวิเคราะห์เพื่อสร้างสมการอธินายการคุณภาพตามแบบจำลองทั้งสอง โดยแปลงสมการที่ (2) และ (3) เป็นสมการเชิงเส้น (linear equation) ดังสมการที่ (4) และ (5) ตามลำดับ


$$q_e = \frac{q_0 C_e}{K_L + C_e} \quad (2)$$

$$q_e = K_F C_e^{1/n} \quad (3)$$

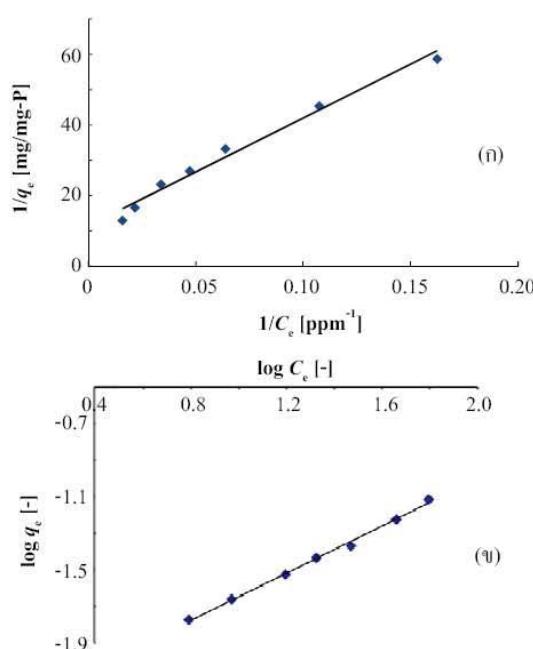

$$\frac{1}{q_e} = \frac{K_L}{q_0 C_e} + \frac{1}{q_0} \quad (4)$$

$$\log(q_e) = \log(K_F) + \frac{1}{n} \log(C_e) \quad (5)$$

รูปที่ 3.5 (ก) และ (ข) แสดงตัวอย่างกราฟเชิงเส้นที่ใช้ในการวิเคราะห์แบบจำลองที่เหมาะสมในการอธินายพุทธิกรรมการคุณภาพของ OS-treated-air-973

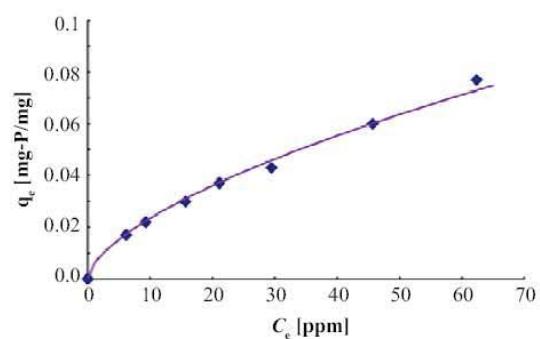
รูปที่ 3.3 การคุณภาพฟอสเฟตในน้ำเสียสมมติที่ 301 K ด้วยตัวคุณภาพ OS-treated-N₂-973 เมื่อความเข้มข้นเริ่มต้นของฟอสเฟต (C_0) เท่ากับ (◆) 15; (■) 20; (▲) 40; (△) 50; (□) 75; (●) 100 ppm

รูปที่ 3.4 ไฮโซเทอร์มการคุณภาพฟอสเฟตที่ 301 K ของ (ก) OS; (ข) OS-treated-air-973, OS-treated-air-1073; (ก) OS-treated-N₂-873, OS-treated-N₂-973, OS-treated-N₂-1073


ตารางที่ 3.1 ไอโซเทอร์มการคุดชับฟอสฟท์ในน้ำเสียสมมติ ที่ 301 K ของวัสดุคุดชับที่เตรียมจากเปลือกหอยนางรม

วัสดุคุดชับ	Freundlich			Langmuir		
	<i>n</i>	<i>K_F</i>	<i>R²</i>	<i>q₀</i>	<i>K_L</i>	<i>R²</i>
OS	0.7298	4.80×10^{-4}	0.9768	-	-	*
OS-treated-air-973	1.5625	5.22×10^{-3}	0.9960	0.0883	26.952	0.9820
OS-treated-air-1073	1.0930	2.04×10^{-3}	0.9675	0.2074	110.366	0.9514
OS-treated-N ₂ -873	1.1855	3.33×10^{-3}	0.9817	0.5835	249.950	0.9923
OS-treated-N ₂ -973	1.6173	1.06×10^{-2}	0.9591	0.1230	15.216	0.9853
OS-treated-N ₂ -1073	1.6088	8.96×10^{-3}	0.8838	0.2719	67.791	0.9459

หมายเหตุ: * ค่า *q₀* และ *K_L* ที่คำนวณได้เป็นมิ่นค่า ติดลบ แสดงว่าแบบจำลองไม่ใช้รูปแบบที่ใช้ในการคำนวณ ซึ่งไม่ใช่เป็นต้องผลลัพธ์และค่า *R²*


ตารางที่ 3.2 ค่าความจุฟอสฟท์ของวัสดุคุดชับชนิดต่างๆ เปรียบเทียบกับ OS-treated-N₂-973

adsorbent	capacity (mg-P/g)	ref.
fly ash	9.15	[10]
red mud	95.8	[11]
red mud (acid-heat activated)	202.9	[11]
red mud (heat activated)	155.2	[11]
scallop shell	23.0	[12]
crab shell	108.9	[15]
OS-treated-N ₂ -973	583.5	this work

รูปที่ 3.5 ความสัมพันธ์เชิงเส้นของ *q_e* กับ *C_e* สำหรับแบบจำลองการคุดชับแบบ (ก) และเมียร์ และ (ข) ฟรุนเดลิชเมื่อใช้ OS-treated-air-973

เส้นตรงในรูปที่ 3.6 แสดงผลการคำนวณเมื่อใช้แบบจำลองและสัญลักษณ์แสดงผลการทดลองซึ่งจะเห็นว่า แบบจำลองสามารถอธิบายพฤติกรรมการคุดชับของ OS-treated-air-973 ได้ดี โดยมีค่า *R²* = 0.9914 ตารางที่ 3.1 แสดงผลการวิเคราะห์โดยสรุปสำหรับวัสดุคุดชับแต่ละตัว ที่ใช้ในงานวิจัยนี้จะเห็นว่าชนิดของแก๊สที่ใช้ในการเตรียม วัสดุคุดชับมีผลต่อพฤติกรรมการคุดชับของวัสดุคุดชับที่ได้ โดยเมื่อใช้อากาศวัสดุคุดชับจะมีพฤติกรรมการคุดชับ

รูปที่ 3.6 ไอโซเทอร์มการคุดชับฟอสฟท์ในน้ำเสียสมมติ ที่ 301 K ของ OS-treated-air-973; สัญลักษณ์แทนผลการทดลอง; เส้นตรงแทนผลการคำนวณ โดยใช้แบบจำลองฟรุนเดลิชและค่าคงที่ในตารางที่ 3.1

เป็นแบบฟรุนเดลิช และเมื่อใช้ในตรีเจน วัสดุคุดชับจะมีพฤติกรรมการคุดชับเป็นแบบແลงเมียร์ วัสดุคุดชับที่มีความจุสูงสุดในช่วงความเข้มข้นที่พิจารณาในงานวิจัยนี้ คือ OS-treated-N₂-873 ตารางที่ 3.2 และแสดงค่าความจุฟอสฟท์ของวัสดุคุดชับที่ถูกพัฒนาขึ้นในงานวิจัยอื่น จะเห็นได้ว่าวัสดุคุดชับที่สังเคราะห์ได้ในงานวิจัยนี้มีค่าความจุในการคุดชับฟอสฟท์สูงที่สุด และสูงกว่า red mud ที่ผ่านการกรองด้วยความร้อนและกรด HCl ของงานวิจัยที่ Lui และคณะ [11] ถึง 2.8 เท่า จึงยังกล่าวได้ว่าวัสดุคุดชับและวิธีการที่ใช้สังเคราะห์ในงานวิจัยนี้ได้ผลดีและเป็นมิตรกับสิ่งแวดล้อมที่สุดเมื่อเปรียบเทียบกับงานวิจัยอื่น เนื่องจาก การกรองด้วยความร้อนอย่างเดียวโดยไม่ต้องใช้สารเคมี

4. สรุป

เปลือกหอยนางรมเหลือทิ้งสามารถนำมาสังเคราะห์เป็นวัสดุดูดซับที่มีความจุในการดูดซับฟอสฟे�ตสูงได้โดยให้ความร้อนที่อุณหภูมิไม่ต่ำกว่า 873 K ภายใต้สภาวะที่มีอากาศหรือในไตรเจนไหลผ่าน วัสดุดูดซับที่ได้มี CaO เป็นองค์ประกอบหลัก และมีค่าความจุในการดูดซับฟอสฟे�ตสูงสุด (583.5 mg-P/g) เมื่อเตรียมโดยให้ความร้อนที่ 873 K ภายใต้บรรยากาศที่มีไนโตรเจนไหลผ่าน

5. กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนเงินทุนจากสำนักงานส่งเสริมและสนับสนุนการวิจัย (โครงการ RDG5220067)

6. รายการสัญลักษณ์

C ความเข้มข้นฟอสฟे�ตที่เวลาใดๆ [ppm]
 C_0 ความเข้มข้นฟอสฟे�ตที่เวลาเริ่มต้น [ppm]
 C_e ความเข้มข้นฟอสฟे�ตที่สมดุล [ppm]
 K_L ค่าคงที่ในแบบจำลองແลงเมียร์ [-]
 K_F ค่าคงที่ในแบบจำลองฟรุนดลิช [-]
 n ค่าคงที่ในแบบจำลองฟรุนดลิช [-]
 q_0 ค่าการดูดซับสูงสุดในแบบจำลองແลงเมียร์ [mg-P/g]
 q_e ปริมาณฟอสฟे�ตที่ถูกดูดซับบนตัวดูดซับที่สมดุล [mg-P/g]

7. เอกสารอ้างอิง

[1] http://www.pcd.go.th/info_serv/water_wt.html#s1
[2] http://www.dmr.go.th/ewt_news.php?nid=15055
[3] <http://www.eoearth.org/article/Eutrophication>
[4] ประกาศกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม, ราชกิจจานุเบกษา, 2 มิถุนายน 2553
[5] D. A. Georgantas and H. P. Grigoropoulou, "Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide", *J. Colloid Interf. Sci.*, 315 (2007) 70-79
[6] A. H. Caravelli, E. M. Contreras and N. E. Zaritzky, "Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges", *J. Hazard. Mater.*, 177 (2010) 199-208
[7] C. Sommariva, A. Converti and M. Del Borghi "Increase in phosphate removal from wastewater by alternating aerobic and anaerobic conditions", *Desalination*, 108 (1996) 255-260
[8] M. Özcar, "Adsorption of phosphate from aqueous solution onto alunite", *Chemosphere*, 51 (2003) 321-327
[9] A. N. Onar, N. Balkaya and T. Akyüz, "Phosphate Removal by Adsorption" *Environ. Technol.*, 17 (1996) 207-213
[10] K. Xu, T. Deng, J. Liu and W. Peng, "Study on the phosphate removal from aqueous solution using modified fly ash", *Fuel*, 89 (2010) 3668 - 3674
[11] C.J. Liu, Y.Z. Li, Z.K. Luan, Z.Y. Chen, Z.G. Zhang and Z.P. Jia, "Adsorption removal of phosphate from aqueous solution by active red mud", *J. Environ. Sci.* 19 (2007) 1166 - 1170
[12] S. H. Yeom and K.-Y. Jung, "Recycling wasted scallop shell as an adsorbent for the removal of phosphate", *J. Ind. Eng. Chem.*, 15 (2009) 40-44
[13] C. W. Lee, H. B. Kwon, H. P. Jeon and B. Koopman, "A new recycling material for removing phosphorus from water", *Journal of Cleaner Production*, 17 (2009) 683-687
[14] H.-B. Kwon, C.-W. Lee, B.-S. Jun, J.-D. Yun, S.-Y. Weon and B. Koopman, "Recycling waste oyster shells for eutrophication control", *Resour. Conserv. Recy.*, 41 (2004) 75-82
[15] J.J. Dong and H.Y. Sung, "Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate", *Bioresource Technol.* 100 (2009) 2646 - 2649
[16] มั่นสิน ตัณฑุลเวศน์, มั่นรักย์ ตัณฑุลเวศน์ "คู่มือวิเคราะห์คุณภาพน้ำ", พิมพ์ครั้งที่ 5, โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย

Recycling oyster shell as adsorbent for phosphate removal

Ratanaporn Yuangsawad^{1*}, Duangkamol Na-Ranong²

¹Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep
2 Nanglinchee Rd., Thungmahamek, Satorn, Bangkok, 10120

²Department of Chemical Engineering, Faculty of Engineering, King's Mongkut Institute of Technology Ladkrabang
1 Chalongkrung Rd., Ladkrabang, Bangkok, 10520

*e-mail: ratanaporn.y@rmutk.ac.th

Abstract – The utilization of oyster shell wastes as the adsorbent for phosphate removal was studied. Oyster shell after thermal treatment has high CaO content which is active component for the phosphate adsorption from wastewater. The treating conditions influencing the adsorption capacity were investigated. The results indicated that the treating temperature and type of inert gas strongly effected on the phosphate removal capacity. The maximum adsorption capacity calculated from Langmuir isotherm was 583.5 mg-P/g when the oyster shell treated at 873 K in N₂ atmosphere was used as the adsorbent. The obtained adsorbent was successfully used for phosphate removal in the continuous system as well.

Keywords: Oyster shell, phosphate removal, adsorption, CaO, wastewater

1. INTRODUCTION

Recently, the amount of domestic wastewater has been discharged increasingly. In 2007, the wastewater was discharged to the surroundings about 15,000 million liters/day and it is likely to reach 20,000 million liters/day by 2017 [1]. The household wastewater contains 4 – 15 mg/l of phosphate and the discharge of high concentration of phosphate into the river, sea or other reservoirs cause the rapid growth of algae called the eutrophication phenomena [2]. Therefore, the maximum allowable of phosphate in the discharged wastewater was set as 2 mg/l.

The methods for removal of phosphate from the wastewater have been proposed by many researchers [2-5]. The chemical precipitation with alum, Al(OH)₃ and ferric oxide are widely used to remove phosphate at industrial level [3]. However, a toxic

chemical was also generated and difficult to handle these wastes. The phosphate removal by adsorption is an attractive

method due to the environmental friendly and simplicity operation [4-9]. The adsorption material such as dolomite, red mud, fly ash are considered as a low cost adsorbent and can be used to remove the phosphate economically but these materials have low capacity [4-6].

The oyster shell enriched with CaCO₃ seems to be the one of the suitable materials for phosphate removal because CaO which is an active component for phosphate adsorption could be produced from CaCO₃ [7]. Furthermore, a large amount of oyster shells discharging from the restaurant as waste cause the environmental problem as well. Therefore, the recycling of the abundant oyster shells into the useful materials can be the method to reduce the oyster shells wastes.

The objective of this research was to study the feasibility of the recycling oyster shell wastes as the absorbent for phosphate removal. The effect of the treatment condition on the phosphate removal was investigated. In the addition, the phosphate removal in the continuous system was also performed.

2. METHODOLOGY

2.1. Materials

Oyster shells (OS) were obtained from Surat Thani province. The dried shell was crushed into the size of 1-3 mm. The obtained powder was treated under the different atmospheric gas (dry N₂, wet N₂, dry air and wet air). The treating temperature was varied in the range of 773 – 1073 K. The treated oyster shell was denoted as OS-treated, gas-T hereafter.

2.2. Adsorption studies

The test of phosphate adsorption over the treated oyster shells was divided into 2 parts. The first part was the batch experiment and the second part was the continuous experiment. Standard phosphate solution was prepared from dissolving anhydrous KH₂PO₄ (Ajax Finechem Pty Ltd.) in the distilled water to obtain the 15 – 100 mg/l of phosphate solution. For the batch experiment, 0.1 g of treated oyster shell was mixed with 200 ml of standard solution and magnetically stirred. The solution was collected every 20 min in order to measure the residue phosphate according to the ascorbic method [8] with UV-Vis spectrophotometer.

The second part was the continuous experiment, the 15 mg/l of phosphate solution was fed into the stainless tube which packed with the 0.3 g of adsorbent. The volumetric flow rate was 300 cm³/h. The phosphate concentration at the outlet was measured by the same method employed in the case of batch experiment.

3. RESULTS AND DISCUSSIONS

3.1. Properties of oyster shell and treated oyster shell

Fig.1 shows the XRD patterns of the oyster shell (OS) and treated oyster shell under the temperature of 973 K in air atmosphere (OS-treated, air-973). The peaks corresponding to the CaCO₃ was found in the XRD pattern of OS and the peak corresponding to the CaO appeared in the XRD pattern of OS-

treated, air-973. The results indicated that CaCO₃ existed in the oyster shell transformed into the CaO after the thermal treating at a high enough temperature. These results corresponded to the XRF results as showed in Table 1. The oyster shell had 93% of CaCO₃. After treating at the temperature of 973 K, the oyster shell treated under air and N₂ atmosphere contained 97 and 95.7% of CaO respectively. The previous studies reported that the efficiency of phosphate removal increased with the increasing of CaO content [7]. Therefore, the obtained adsorbent material in this study seems suitable for phosphate removal.

Fig.2 shows the SEM image of the OS-treated, air-973 and OS-treated, N₂-973. It was found that the surfaces of oyster shells treated under the air atmosphere were smooth and had the larger size particle than those of oyster shell treated under the N₂ atmosphere.

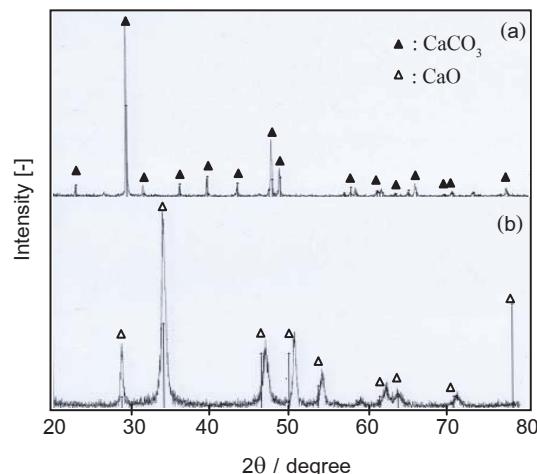


Fig. 1 XRD spectrum of (a) OS and (b) OS-treated, air-973

Table 1 The composition of OS and OS treated from XRF

Sample	CaCO ₃ [%]	CaO [%]	Others [%]
OS	93.3	-	6.7
OS treated, air-973	-	97.0	3.0
OS treated, N ₂ -973	-	95.7	4.3

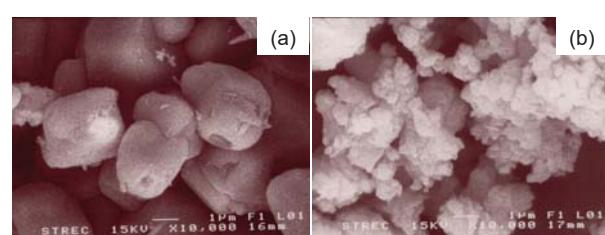


Fig.2 Scanning electron microscopy (SEM) micrograph of
(a) OS-treated, air-973; (b) OS-treated, N₂-973

3.2. Phosphate removal

Fig.3 showed the effect of treating temperature on the percentage of phosphate removal. It could be seen that at a lower temperature of 873 K, the percentage of phosphate removal was approximately 50% and the adsorption capacity increased to 80% when the treating temperature was raised to 973 K. After reaching the maximum value, the percentage of phosphate removal dropped to 40% when the treating temperature increased to 1073 K. The results suggested that the treating temperature strongly affected on the removal capacity of the adsorbent.

In order to study the effect of water and type of inert gas on the phosphate removal, the oyster shell was treated under the difference of gas atmosphere (dried N₂, dried air and wet N₂). It was found that the adsorption capacity of OS-treated, air-973 was lower than those of OS-treated, N₂-973 about 1.7 times as showed in Fig.4. In the addition, the difference of adsorption capacity was no observed when a small amount of water was added (Fig.4). It could be said that the addition of water showed negligible effect on the capacity of adsorbent in this study.

Fig.5 shows the adsorption of phosphate by OS-treated, N₂-973 at various initial phosphate concentrations. It could be seen that phosphate quickly adsorbed over OS-treated, N₂-973 in the first 120 min. After that the concentration of phosphate was almost constant and the adsorption reached equilibrium at 180 min for all initial phosphate concentrations. Therefore, the phosphate concentration at the time of 180 min was selected to investigate the adsorption isotherm.

In order to describe the adsorption behavior of OS treated, the Langmuir and Freundlich isotherm equation was employed as listed in eq.(1) –(4).

Langmuir equation;

$$q_e = \frac{q_0 C_e}{K_L + C_e} \quad (1)$$

$$\frac{1}{q_e} = \frac{K_L}{q_0 C_e} + \frac{1}{q_0} \quad (2)$$

Freundlich equation;

$$q_e = K_F C_e^{1/n} \quad (3)$$

$$\log (q_e) = \log (K_F) + \frac{1}{n} \log (C_e) \quad (4)$$

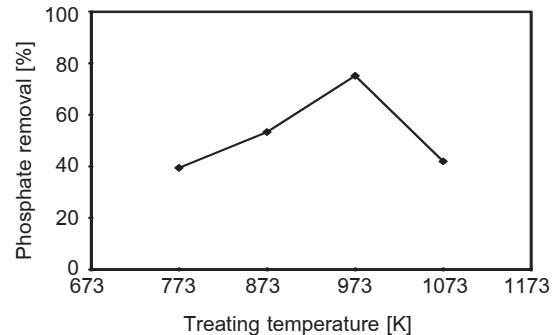


Fig.3 Effect of treating temperature on the phosphate removal ($C_0 = 25 \text{ mg/l}$, N₂ as inert gas)

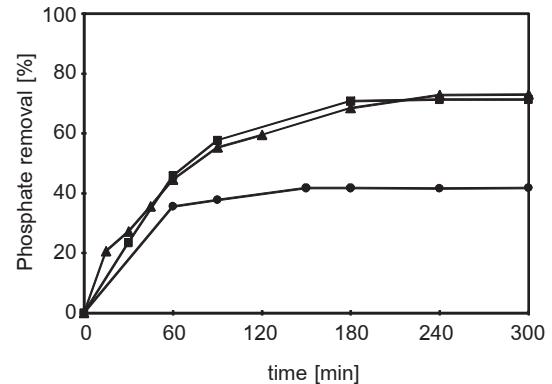


Fig.4 The percentage of phosphate removal at various atmospheric conditions ($C_0 = 50 \text{ mg/l}$);
 OS-treated, N₂-973, OS-treated, air-973 and
 OS-treated, 1.5%H₂O+N₂-973

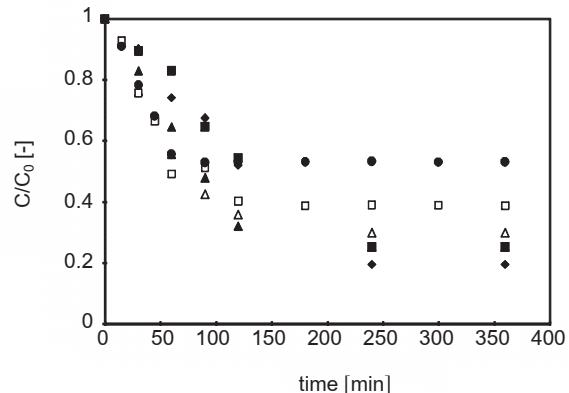


Fig.5 Phosphate removal with time at various initial phosphate concentrations (OS-treated, N₂-973 as adsorbent)
 $C_0 = (\diamond) 15; (\blacksquare) 20; (\blacktriangle) 40; (\triangle) 50; (\square) 75$ and $(\bullet) 100 \text{ mg/l}$

The linear form of Langmuir and Freundlich isotherm equation (eq.2 and 4) were used to estimate the adsorption isotherm constants and the correlation coefficients (R^2). Table 2 shows the adsorption isotherm equation and its constants with the highest value of R^2 for each adsorbent. It should be noted that the oyster shell treated under air atmosphere fitted better with Freundlich equation. Contrary to the treating in air, the oyster shell treated under N₂ atmosphere was well fitted by Langmuir equation. These results indicated that the type of inert gas had strongly effect on the adsorption behavior of the adsorbent and the phosphate adsorbed over the oyster treated under N₂ atmosphere was the monolayer adsorption.

Furthermore, the adsorption constants listed in Table 2 also indicated the adsorption capacity of the adsorbent. The maximum adsorption capacity determined by Langmuir isotherm equation was 583.5 mg-P/g obtained from OS-treated, N₂-873 which greater than the adsorption capacity of 108.9 and 23 mg-P/g obtained from the treated crab shell and scallop shell, respectively [9-10]. Fig.6 shows the adsorption isotherm of the OS-treated, N₂-873, the symbol represented the data obtained from the experiment and the line represented the calculated data from Langmuir isotherm equation and its constants from Table 2. The result shows that the adsorption model showed a good correlation between the experimental and calculation results.

Table 2 Adsorption isotherm equation and its constants of OS and OS treated

adsorbent	Isotherm equation	constants	R^2
OS	Freundlich	$n = 0.7298$ $K_f = 4.8 \times 10^{-4}$	-
OS-treated, air-973	Freundlich	$n = 1.5625$ $K_f = 5.22 \times 10^{-3}$	0.98
OS-treated, air-1073	Freundlich	$n = 1.0930$ $K_f = 2.04 \times 10^{-3}$	0.95
OS-treated, N ₂ -873	Langmuir	$q_0 = 0.5835$ $K_L = 249.95$	0.99
OS-treated, N ₂ -973	Langmuir	$q_0 = 0.1230$ $K_L = 15.216$	0.99
OS-treated, N ₂ -1073	Langmuir	$q_0 = 0.2719$ $K_L = 67.7910$	0.97
			0.94

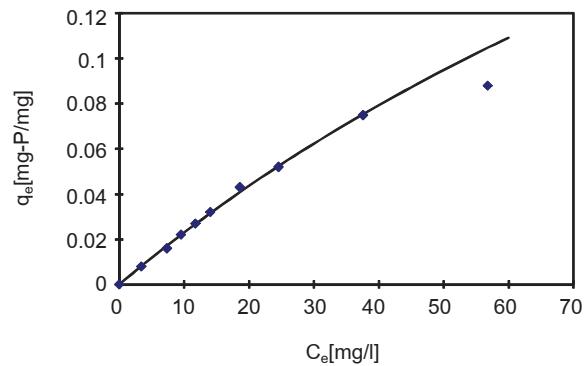


Fig.6 Langmuir isotherm of the phosphate adsorption on the OS-treated, N₂-873

In order to study the possibility of the using of the treated oyster shell as the adsorbent for phosphate removal from household wastewater, the phosphate adsorption in the continuous system was carried out. Fig. 6 shows the adsorption of phosphate when the phosphate solution was continuously feed through the bed of OS-treated, N₂-973. The result shows that the adsorbent could be used to maintain the phosphate concentration under the regulation limit (2 mg/l or $C/C_0 = 0.13$) for 2 hours when the initial concentration of phosphate solution was 15 mg/l.

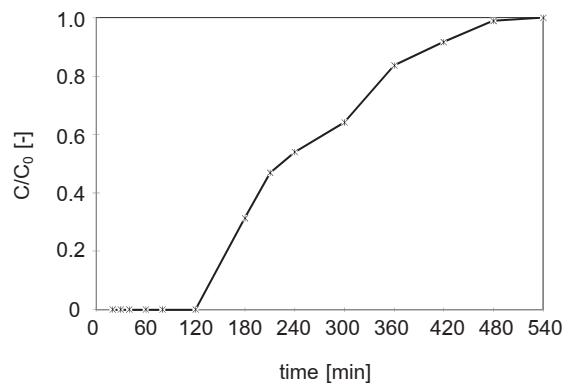


Fig. 7 Phosphate adsorption on the OS-treated, N₂-973 in the continuous experiment ($C_0 = 15 \text{ mg/l}$)

REFERENCES

4. CONCLUSION

The waste oyster shell could be used as the adsorbent for phosphate removal. The adsorption capacity of the adsorbent was strongly affected by the treating temperature and type of inert gas. The highest adsorption capacity of 583.5 mg-P/g was obtained when the oyster shell was treated at the temperature of 873 K under N₂ atmosphere. Furthermore, the obtained adsorbent was also successfully used for phosphate removal in the continuous system.

5. ACKNOWLEDGEMENT

This research was supported by grant No. RDG5220067 from the Thailand Research Fund (TRF).

6. NOMENCLATURE

C	concentration of phosphate (mg/l)
C ₀	initial concentration of phosphate (mg/l)
q _e	amount of adsorbed phosphate per gram of adsorbent (mg-P/g)
C _e	phosphate concentration in the solution at equilibrium (mg/l)
q ₀ , K _L	adsorption isotherm constant for the Langmuir equation
n, K _f	adsorption isotherm constant for the Freundlich equation

- [1] http://www.pcd.go.th/info_serv/water_wt.html#s1
- [2] B. Grzmil, J. Wronkowski, Removal of phosphates and fluorides from industrial wastewater, *Desalination* 189(2006) 261-268 .
- [3] A. H. Caravelli, E. M. Contreras and N. E. Zaritzky, Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges, *J. Hazard. Mater.*, 177 (2010) 199–208
- [4] C.J. Liu, Y.Z. Li, Z.K. Luan, Z.Y. Chen, Z.G. Zhang and Z.P. Jia, Adsorption removal of phosphate from aqueous solution by active red mud, *J. Environ. Sci.*, 19(2007), 1166-1170.
- [5] S. Karaca, A. Gürses, M. Ejder and M. Açıkyıldız, Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite, *J. Hazard. Mater.*, 128(2006), 273 – 279.
- [6] K. Xu, T. Deng, J. Liu and W. Peng, Study on the phosphate removal from aqueous solution using modified fly ash, *Fuel*, 89 (2010) 3668 – 3674.
- [7] A. N. Onar, N. Balkaya and T. Akyüz, Phosphate removal by adsorption, *Environ. Technol.*, 17 (1996) 207–213.
- [8] <http://www.umass.edu/tei/mwwp/acrobat/sm4500P-E.pdf> "Standard method for the examination of water and wastewater".
- [9] D.J. Jeon, S.H. Yeom, Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate, *Bioresource Technol.*, 100(2009), 2646-2649.
- [10] S.H. Yeom, K.Y. Jeong, Removal of phosphate using a packed-bed containing scallop shell, *J. Ind. Eng. Chem.*, 15(1), 40-44.

ภาคผนวก ข. กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์
แนะนำโครงการแก่ผู้นำชุมชนที่มีโครงการสร้างเครื่องบำบัดน้ำเสียครัวเรือนรับทราบ มีวิธีทัศน์ประกอบ (แผ่น CD)

ภาคผนวก ค. ตารางเปรียบเทียบวัตถุประสงค์ กิจกรรมที่วางแผน กิจกรรมที่ดำเนินการมา และผลที่ได้รับ

วัตถุประสงค์	กิจกรรมที่วางแผน	กิจกรรมที่ดำเนินมา	ผลที่ได้รับ
1. กำหนดวิธีการและสภาวะที่เหมาะสมและง่ายต่อการผลิตสารดูดซับจากเปลือกหอยนางรม	1.1 ติดตั้งเครื่องมือที่ใช้ในการผลิตสารดูดซับ	1.1.1 ติดตั้งชุดสังเคราะห์สารดูดซับสำหรับใช้เตรียมในห้องปฏิบัติการ 1.1.2 ออกแบบ-สร้างเครื่องสังเคราะห์สารดูดซับขนาดใหญ่	1.1.1 ชุดสังเคราะห์สารดูดซับที่ใช้ในห้องปฏิบัติการ 1.1.2 ชุดสังเคราะห์สารดูดซับที่ใช้ในงานภาคสนาม
	1.2 เตรียมสารดูดซับจากเปลือกหอยนางรม	1.2.1 เตรียมสารดูดซับด้วยวิธีทางความร้อนโดยเปลี่ยนอุณหภูมิและชนิดของแก๊สพานิชเคราะห์ໂໂຄງสร้างองค์ประกอบของสารดูดซับที่ได้ด้วย XRF, BET, XRD	1.2.1 สารดูดซับที่มีองค์ประกอบหลักเป็น CaO (97%) มีความพูน, พื้นที่ผิวจำเพาะสูงกว่าเปลือกหอยนางรม
2. ทดสอบประสิทธิภาพในการลดไฮอนโลหะหนักและฟอสเฟตในน้ำเสีย	2.1 ออกแบบและติดตั้งเครื่องมือแบบง่ายที่ใช้ทดสอบการดูดซับ	2.1.1 ออกแบบชุดทดสอบการดูดซับแบบง่ายให้สามารถควบคุมอุณหภูมิขณะทำการทดลองได้	2.1.1 ชุดทดสอบการดูดซับแบบง่ายขนาด 200 ml ควบคุมอุณหภูมิให้คงที่ขณะทำการทดลองได้
	2.2 ทดสอบการดูดซับโดยใช้น้ำเสียสมมติด้วยระบบแบบง่าย	2.2.1 ทดสอบการดูดซับของตะกั่ว, แคนเดเมียม, เหล็ก, สังกะสี และโคโรเมียม ที่ 25°C โดยเปลี่ยนความเข้มข้นเริ่มต้นต่างๆ 2.2.2 ทดสอบการดูดซับของฟอสเฟตที่ 25°C ที่ความเข้มข้นเริ่มต้นต่างๆ ด้วยตัวดูดซับที่เตรียมภายใต้สภาวะต่างๆ	2.2.1 ไอโซเทอร์มการดูดซับของโลหะแต่ละชนิด 2.2.2 ไอโซเทอร์มการดูดซับฟอสเฟตของสารดูดซับแต่ละตัว พบว่าสารดูดซับที่เตรียมโดยใช้อากาศที่ 700 C มีความเหมาะสมที่สุดในการบำบัดฟอสเฟตในน้ำเสียครัวเรือน
	2.3 ออกแบบและติดตั้งเครื่องมือแบบป้อนสารต่อเนื่อง	2.3.1 ออกแบบและติดตั้งเครื่องมือแบบป้อนสารต่อเนื่อง	2.3.1 ชุดทดสอบการดูดซับที่ทำงานโดยป้อนสารต่อเนื่องสามารถควบคุมอุณหภูมิให้คงที่ได้
	2.4 ทดสอบการดูดซับโดยใช้น้ำเสียสมมติด้วยระบบแบบป้อนสารต่อเนื่อง	2.4.1 ทดสอบการดูดซับของตะกั่ว, แคนเดเมียม, เหล็ก, สังกะสี และโคโรเมียม ที่ 25°C ภายใต้สภาวะต่างๆ 2.4.2 ทดสอบการดูดซับของฟอสเฟตที่ 25°C ที่ความเข้มข้นเริ่มต้นต่างๆ ด้วยตัวดูดซับที่เตรียมภายใต้สภาวะต่างๆ	2.4.1 กราฟเบรคทรูจ์ของการดูดซับตะกั่ว, แคนเดเมียม, เหล็ก, สังกะสีสำหรับโคโรเมียมการดูดซับเกิดน้อยมากไม่สามารถกวัดได้ 2.4.2 กราฟเบรคทรูจ์ของการดูดซับฟอสเฟต
	2.5 ทดสอบการดูดซับโดยใช้ตัวอย่างน้ำที่เก็บจากชุมชน	2.5.1 ทดสอบการดูดซับโดยหันและกำหนดสภาวะที่เหมาะสมเมื่อใช้ตัวอย่างน้ำในชุมชน 2.5.2 ทดสอบการดูดซับฟอสเฟตและกำหนดสภาวะที่เหมาะสมเมื่อใช้ตัวอย่างน้ำเสียครัวเรือน	2.5.1 ไม่สามารถหาตัวอย่างน้ำในชุมชนที่มีโลหะหนักได้ 2.5.2 สารดูดซับ 0.3 กรัม ใช้บ่อบน้ำที่มีฟอสเฟตเข้มข้น 15 ppm ให้มีความเข้มข้นต่ำกว่าที่กำหนดได้ 600 ml

ตารางเปรียบเทียบวัตถุประสงค์ กิจกรรมที่วางแผน กิจกรรมที่ดำเนินการมา และผลที่ได้รับ (ต่อ)

วัตถุประสงค์	กิจกรรมที่วางแผน	กิจกรรมที่ดำเนินมา	ผลที่ได้รับ
3. สร้างเครื่องกรองน้ำเพื่อใช้ในครัวเรือน	3.1 ออกแบบ/ประเมินราคาโดยละเอียด/สร้างเครื่องกรองน้ำ	3.1.1 ออกแบบ ประกอบ และประเมิน ราคาเครื่องกรองน้ำ	3.1.1 เครื่องกรองน้ำขนาดเล็กราคาประมาณ 300 บาท
	3.2 ทดสอบประสิทธิภาพ	3.2.1 ทดสอบประสิทธิภาพโดยใช้น้ำเสียสมมติ	3.2.1 ภาพเบรคทูร์ของการดูดซับ แอดเมียร์และตั้งกะตี 3.2.2 น้ำเสียสมมติที่มีโลหะทั้ง 5 ชนิด เกิดการตกรอกกอน 3.2.3 การดูดซับโครงเมียร์เกิดน้อยมาก
4. สร้างเครื่องตันแบบสำหรับบำบัดน้ำเสียชุมชน	4.1 ออกแบบ/ประเมินราคาโดยละเอียด/สร้างเครื่องตันแบบ	4.1.1 ออกแบบ ประกอบ และประเมิน ราคาเครื่องตันแบบ	4.1.1 เครื่องตันแบบขนาด 50 ลิตร ราคาประมาณ 1,700 บาท
	4.2 ทดสอบประสิทธิภาพ	4.2.1 ทดสอบประสิทธิภาพในการ บำบัดน้ำเสียที่มีฟอสฟे�ตเข้มข้น 12 ppm	4.2.1 เครื่องตันแบบบำบัดน้ำเสียด้วย อัตราการไหล 1 ลิตรต่อชั่วโมง ให้ผ่านเกณฑ์ที่กฎหมายกำหนด ได้นาน 10 ชั่วโมง
5. ถ่ายทอดเทคโนโลยี	5.1 ติดต่องค์กรบริหารงานส่วน ห้องถีนเพื่อเผยแพร่ผลงาน	5.1.1 ติดต่องค์กรห้องถีน	5.1.1 ผู้นำชุมชนแสดงความสนใจที่จะ นำไปปรับใช้ในชุมชน