

หัวข้อวิทยานิพนธ์	การศึกษาปริมาณหินปูนในปูนซีเมนต์ปอร์ตแลนด์ไอล์สโตนที่เหมาะสม
สำหรับงานโครงสร้างคอนกรีตเสริมเหล็กตามมาตรฐาน EN 197-1	
นักศึกษา	นายอดิศักดิ์ ยิมวัน
รหัสนักศึกษา	4810036097
ปริญญา	วิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชา	วิศวกรรมโยธา
พ.ศ.	2552
อาจารย์ผู้ควบคุมวิทยานิพนธ์	รศ. ดร.บุรณัชร นัตรวีระ

บทคัดย่อ

สำหรับงานคอนกรีตทั่วๆไปที่ไม่ต้องการกำลังอัดสูงนัก เช่น งานคอนกรีตสำหรับโครงสร้างทั่วไป งานหล่อขึ้นส่วนคอนกรีตสำเร็จรูปขนาดเล็กถึงขนาดกลาง เช่น แผ่นพื้น เสาเข็ม ห่อ เสา คอนกรีตบล็อก หรืองานคอนกรีตที่ผสมองที่หน้างานในปัจจุบันมีการใช้ทั้งปูนซีเมนต์ปอร์ตแลนด์ประเภทที่ 1 และพับการใช้ปูนซีเมนต์ผสมบ้างในบางพื้นที่ ปัญหาที่เกิดขึ้นกับปูนซีเมนต์ปอร์ตแลนด์ประเภทที่ 1 คือ กำลังอัดที่สูงเกินจำเป็น ในขณะที่เมื่อใช้ปูนซีเมนต์ผสมมักจะเกิดปัญหาความแข็งแรงของคอนกรีตที่ไม่เพียงพอ ความต้องการหลักของผู้บริโภคกลุ่มนี้คือปูนซีเมนต์ที่มีคุณภาพพอสมควรกับงาน ลดเบนไห้เร็ว เช่นเดียวกับการใช้ปูนซีเมนต์ปอร์ตแลนด์ประเภทที่หนึ่ง ความแข็งแรงที่มากกว่าปูนซีเมนต์ผสม และราคาที่ไม่แพงจนเกินไป ดังนั้นปูนซีเมนต์ปอร์ตแลนด์ไอล์สโตน (Portland Limestone Cement, PLC) จึงเป็นทางเลือกหนึ่งที่สามารถตอบสนองความต้องการดังกล่าวได้

งานวิจัยขึ้นนี้เป็นการศึกษาถึงการปริมาณหินปูนที่ใส่เพิ่มในสัดส่วนต่างๆ และการบดปูนให้ได้ความละเอียดต่างๆ เพื่อหาจุดเหมาะสมที่จะสามารถนำปูนซีเมนต์ปอร์ตแลนด์ไอล์สโตนมาใช้งานจริงได้ในอุตสาหกรรมการผลิตปูนซีเมนต์รวมทั้งงานคอนกรีต จากการศึกษาพบว่าสัดส่วนผสมที่สามารถนำมาใช้งานคอนกรีตได้อย่างมีประสิทธิภาพเมื่อเทียบกับปูนซีเมนต์ปอร์ตแลนด์ประเภทที่ 1 คือ ปริมาณของหินปูน 15-20 % ที่ความละเอียด 4,500-5,000 ตารางเซนติเมตรต่อกรัม ซึ่งจะเหมาะสมสำหรับการผลิตเป็นคอนกรีตผสมเสร็จทั้งที่ใส่น้ำยาและไม่ใส่น้ำยา แต่หากเมื่อผสมแล้วอยู่ลงไปในส่วนผสม กำลังอัดของคอนกรีตที่ได้มีค่าไม่สูงตามที่ออกแบบ ส่วนกรดของการน้ำไปผลิตเป็นคอนกรีตหล่อสำเร็จสามารถใช้งานได้เป็นอย่างดี และจากการทดสอบความคงทนในแข็งของ การต้านทานการซึมผ่านของชั้นเพทและคลอไรด์พบว่าปูนซีเมนต์ปอร์ตแลนด์ไอล์สโตนนี้มีความสามารถในการต้านทานทั้งชั้นเพทและคลอไรด์ได้ดีกว่าปูนซีเมนต์ปอร์ตแลนด์ประเภทที่ 1 ทั้งนี้ หากคำนวณในเชิงต้นทุน ประกอบกันแล้วปูนซีเมนต์ปอร์ตแลนด์ไอล์สโตนที่มีปริมาณหินปูน 20 % ความละเอียด 4,500 ตารางเซนติเมตรต่อกรัม จะมีประสิทธิภาพดีที่สุด

Thesis Title	THE STUDY OF SUITABLE LIMESTONE CONTENT IN PORTLAND LIMESTONE CEMENT FOR USING IN REINFORCED CONCRETE WORK COMPLY WITH EN 197-1
Student	Mr. Adisak Yimwan
Student ID.	4810036097
Degree	Master of Engineering
Program	Civil Engineering
Year	2009
Thesis Advisor	Assoc. Prof. Dr. Burachat Chatveera

Abstract

In sector that concrete was not required high performance such as conventional concrete, small to medium pre-cast elements, currently Ordinary Portland Cement (OPC) has familiarly been used and sometimes Mixed Cement was selected in some locations. Main problems the users faced is strength of concrete using OPC is too high, in the other hand; performance of concrete is not suitable enough when using Mixed Cement. Anyhow, primary needs which users concerned are the cement with suitable performance, fast setting as an OPC and also affordable cost. Therefore, Portland Limestone Cement (PLC) is one of the options that possibly meet those requirements.

The objective of this research is to study a suitable proportion of raw materials of Portland Limestone Cement by adjusting quantity of limestone and Blaine fineness in OPC and as well as maintain standard quality of EN 197-1. The study found that the adequate proportion of PLC can be used effectively compared with OPC is 15-20% of limestone content with $4,500-5,000 \text{ cm}^2/\text{g}$ of Blaine fineness range. These proportions are suitable for ready mixed concrete mixing with and without admixture. However, performance of concrete is not satisfied if fly ash was added in. In case that the PLC was applied in pre-cast concrete, it can meet the performance both strength and setting time as designed. But its workability is lower than OPC a little bit. In term of durability concern regarding resistance to penetration of sulfate, PLC showed more performance than OPC does. However, for chloride resistance, PLC showed lower performance than OPC.

In addition, PLC with 20% of limestone content and around $4,500 \text{ cm}^2/\text{g}$ of Blaine fineness is the best one in term of both performance and cost.