บทคัดย่อ

งานวิจัยนี้ เป็นความพยายามที่จะประยุกต์ใช้สารต้านการเสื่อมสภาพที่ได้จากธรรมชาติ มาทดแทนสาร ต้านการเสื่อมสภาพที่ได้จากการสังเคราะห์ของสารจำพวกอนุพันธ์ของปิโตรเคมีต่างๆ สำหรับยางธรรมชาติเกรด ทางการค้า โดยเริ่มต้นทำการเลือกยาง STR5L เป็นตัวแทนยางที่สีอ่อน สะอาด และผ่านการอบแห้งมาภายใต้ อุณหภูมิสูง ส่วนยาง RSS3 แทนยางที่มีสีเข้ม ค่อนข้างปนเปื้อนและผ่านการรมควันมาที่อุณหภูมิไม่สูงนัก มาทำ การผสมกับกรดอะมิโนชนิดอะลานีน และ *N-*(1, 3-dimethylbutyl)-*N'*-phenyl-*p*-phenylenediamine หรือ 6-PPD ผ่านระบบวัลคาในเซชันแบบกำมะถันชนิด Conventional system ทำการวัลคาในเซชันที่อุณหภูมิ 160 องศา เซลเซียส โดยเลือกใช้ระยะเวลาการวัลคาในซ์ในยางแต่ละสูตรตามข้อมูลที่ได้จากเครื่อง MDR ที่ t₉₅ จากนั้นแบ่งตัว อย่างยางที่ผ่านการทำให้สุกแล้วออกเป็น 2 ส่วน ส่วนแรกนำไปทำการวิเคราะห์ความสามารถในการต้านทาน โอโซนตามมาตรฐาน ISO 1431/1 ส่วนที่สองนำไปทำการบ่มเร่งการเสื่อมสภาพด้วยความร้อนที่ 100 องศา เซลเซียส ภายใต้สภาวะบรรยากาศ เป็นระยะเวลาแตกต่างกัน โดยทำการประเมินและเปรียบเทียบความสามารถใน การต้านทานการเสื่อมสภาพของยางตัวอย่างผ่านสมบัติการต้านทานแรงดึงที่แตกต่างกันออกไป ซึ่งจากผลการ ทดลองพบว่า ยิ่งปริมาณการใช้สารต้านการเสื่อมสภาพทั้ง 6-PPD และอะลานีนเพิ่มขึ้น ก็จะส่งผลให้ค่า t₉₅ ลดลง ตามลำดับ และจากผลการบ่มเร่งการเสื่อมสภาพของยาง STR5L และ RSS3 ที่ผสมสารต้านการเสื่อมสภาพชนิด 6-PPD และอะลานีนที่ปริมาณ 0.5, 1.0 และ 2.0 phr เมื่อผ่านการบ่มเร่งเป็นเวลา 24, 48 และ 72 ชั่วโมง พบว่าค่า ความเค้น ณ ความเครียด 200% โดยรวมมีค่าเพิ่มขึ้น เมื่อเทียบกับยางตัวควบคุมที่ไม่ได้เติมสารต้านทานการ เสื่อมสภาพ และการใช้ 6-PPD ปริมาณ 2.0 phr สามารถต้านทานการเสื่อมสภาพของยางธรรมชาติได้ดีที่สด สำหรับผลการทดสอบการทนต่อโอโซน ที่ความเข้มข้น 50 pphm 40 องศาเซลเซียส ระยะยึด 20% เป็นเวลา 48 ชั่วโมง ทั้งยาง STR5L และ RSS3 ทั้งที่เติมและไม่เติมสารต้านทานการเสื่อมสภาพชนิด 6-PPD และอะลานีน พบว่าเกิดรอยแตกจำนวนนับไม่ถ้วน แต่ความยาวของรอยแตกในยางที่เติม 6-PPD จะมีความยาวรอยแตกมากกว่า 3 มิลลิเมตร ในขณะที่ยางที่เติมอะลานีนทั้งหมด พบว่ามีความยาวรอยแตกน้อยกว่า 3 มิลลิเมตร สิ่งนี้สามารถกล่าว ได้ว่า อะลานี้นสามารถช่วยให้ยางธรรมชาติทนต่อโอโซนได้ดีกว่า 6-PPD และจากผลการทดลองทั้งหมดสามารถ สรุปได้ว่า อะลานีนซึ่งเป็นกรดอะมิโนชนิดหนึ่ง สามารถใช้เป็นสารต้านการเสื่อมสภาพเนื่องจากความร้อนและ ออกซิเจนในยางธรรมชาติคอมปาวด์ได้แต่ไม่ดีเท่ากับการใช้ 6-PPD โดยเฉพาะที่สภาวะบ่มเร่งรุนแรง แต่สำหรับ การทนต่อโอโซนกลับพบว่าการใช้อะลานี้นมีประสิทธิภาพดีกว่าการใช้ 6-PPD

RDG5250030 หน้า 4

Abstract

The present research was an attempt to apply the natural antioxidant replacing the synthetic antioxidant, which is mostly come from derivatives of petroleum, for the commercial natural rubber. STR5L was employed as clean and light in color rubber sample, which was dried up under high-temperature. RSS3 was used as a representative of the natural rubber, which was dark, contaminated and smoked under low-temperature. The rubbers mixed with alanine, one type of amino acids, and N - (1, 3 dimethylbutyl) - N' - phenyl - p - phenylenediamine (6-PPD) were compounded by sulfur vulcanization with a conventional system. The compounded rubbers were vulcanized at 160 C with the cure time of t₉₅, tested by Moving Disc Rheometer (MDR). Thereafter, the vulcanized rubbers were divided into 2 parts. The former was then characterized the ozone resistance obtained by ISO 1431/1. The latter was done by heat-aging test at 100° C with various times in order to compare the efficiency of both antioxidants in the rubber samples detected by tensile properties. From the experiment, the results showed that all of the cure time (t₉₅) of the rubber samples decreased with increasing the quantity of 6-PPD and alanine. After heat-aging test for 24, 48 and 72 h, tensile stress at 200% strain of STR5L and RSS3 mixed with both antioxidants at 0.5, 1.0 and 2.0 phr was totally increased when comparing with the control rubber sample (no antioxidant added). It was found that the antioxidant's efficiency of 6-PPD would be the best condition at 2.0 phr. For the ozone resistance with the following conditions; 50 pphm O_3 , 40° C, 20% strain, 48 h, STR5L and RSS3 which never and composed of 6-PPD and alanine showed very many crack points. However, crack length of the rubber mixed with 6-PPD was higher than 3 mm, while that of the rubber added with alanine was found to be lower than 3 mm. This can be deduced that alanine can be used to improve the ozone resistance better than the use of 6-PPD. From the overall results, it might be concluded that alanine can be applied into the natural rubber as a natural antioxidant but its efficiency is lower than that of 6-PPD, especially heat-aging at severe condition. However, the antiozonant's efficiency of the alanine were clearly found to be better than that of 6-PPD.

RDG5250030 หน้า 5