

บทคัดย่อ

การเกิดรอยประสา那是ปัญหาที่สำคัญอย่างหนึ่งในกระบวนการผลิตผลิตภัณฑ์ยาง เนื่องจากส่างผลโดยตรงต่อความแข็งแรงและความสวยงามของผลิตภัณฑ์ที่ได้ โดยทั่วไปแล้วในกระบวนการการอัดขึ้นรูปผลิตภัณฑ์ยางที่มีขนาดใหญ่หรือมีความซับซ้อน จำเป็นอย่างยิ่งที่ต้องอาศัยการวางแผนยางคอมพาวน์ในหลายตำแหน่งภายในแม่พิมพ์อัด ซึ่งก่อให้เกิดรอยประสาบนผลิตภัณฑ์อย่างหลีกเลี่ยงไม่ได้ นอกจากนี้ในอุตสาหกรรมขนาดกลางและขนาดเล็กการออกแบบและจัดสร้างแม่พิมพ์ ยังคงอาศัยการลองผิดลองถูกเพื่อให้รอยประสาทเกิดขึ้นในตำแหน่งที่ไม่กระทบต่อความเสียหายที่อาจเกิดขึ้นหรือโดยการออกแบบให้ผลิตภัณฑ์มีความหนาเพิ่มมากขึ้นที่บริเวณรอยประสาท ส่งผลให้ใช้เวลาและค่าใช้จ่ายในการจัดสร้างแม่พิมพ์ที่เพิ่มมากขึ้น งานวิจัยนี้ได้ทำการประยุกต์ใช้แบบจำลองเครือข่ายประสาทเทียมในการทำนายตำแหน่งของรอยประสาทในระหว่างกระบวนการการอัดขึ้นรูปยาง โดยมีตัวแปรหลักได้แก่ ขอบเขตของแม่พิมพ์ และตำแหน่งการวางแผนยางคอมพาวน์เริ่มต้น จากผลการพัฒนาแบบจำลองเครือข่ายประสาทเทียม พบว่าแบบจำลองเครือข่ายประสาทเทียมที่มีโครงสร้างแบบ Generalize feed forward 1 ชั้นช่อง เมื่อจำนวนนิวรอนในชั้นช่องเท่ากับ 37 นิวรอน ให้ผลการทำนายที่แม่นยำที่สุด จากผลการวิเคราะห์ความแม่นยำในกรณีที่ชั้นงานมีความซับซ้อนมากขึ้นพบว่าแบบจำลองเครือข่ายประสาทเทียมที่ได้พัฒนาขึ้น สามารถทำนายตำแหน่งของรอยประสาทได้ใกล้เคียงกับโปรแกรมจำลองการไฟล์ที่ใช้ในเชิงพาณิชย์

คำสำคัญ : ตำแหน่งของรอยประสาท เครือข่ายประสาทเทียม กระบวนการการอัดขึ้นรูป

Abstract

The presence of weldlines in rubber products is regarded as a one of the most undesirable phenomena, since it results in poor mechanical properties as well as unsightly appearances. Compression molding of large and/or complicated products are usually prepared by multiple charges, which produces weldlines once the melt fronts are joined by the impingement flow. Mold designers typically minimize the influence of weldlines by their placement in non-critical areas and the application of a factor of safety based on design specifications. Such practice results in time consuming and over-design of parts, since the factor of safety is generally, independent of the material. Truly cost-effective part design requires a better understanding of the behavior of polymers under different loads and failure conditions. In this work, the Artificial Neural Network (ANN) is employed in order to predict the location of weldline, developed during the compression molding process. The input parameters used in this study are part contour and the position of charges. The analytical results obtained from ANN indicated that the generalize feed forward of 1 hidden layer with 37 neurons shows the best accuracy compared to the experimental results. The ANN developed in this work is then applied to the complicated part and also compared with the exiting commercial simulation program. The agreement is found to be satisfactory.

Key words : weldline location; artificial neural network; compression molding process