

บทคัดย่อ

งานวิจัยนี้เป็นการศึกษาการลดน้ำหนักโมเลกุลของยางธรรมชาติ (Natural rubber, NR) ด้วยไโอลูโซนร่วมกับการใช้คาร์บอนไดออกไซด์เหลวอิวิกฤต (Supercritical carbon dioxide, sc-CO₂) โดยได้ศึกษาปัจจัยที่มีความสำคัญคือปริมาณออกซิเจน อุณหภูมิผลของการรับอน ไอดอกไซด์เหลวอิวิกฤตและเวลาสำหรับการทำปฏิกิริยาออกซิเดชัน ภายใต้ภาชนะที่ความดันสูง ซึ่งขึ้นแรกสังเกต การเปลี่ยนแปลงการบวมตัวของยางธรรมชาติที่อุณหภูมิ 40-70 °C เทียบกับเวลาจากภาพที่บันทึกได้จากกล้องวีดีโอด้วยกำหนดความดันคงที่ 11.0 MPa เป็นเวลา 120 นาที พบร่วมบวมตัวเพิ่มขึ้น 11 เปลอร์เซ็นต์ของยางเริ่มต้น และประมาณค่าสัมประสิทธิ์การแพร่ของคาร์บอนไอดอกไซด์จากการประยุกต์ใช้สมการของ M.Ohshima มีค่าเท่ากับ $1.37 \times 10^9 \text{ m}^2/\text{s}$ ซึ่งแสดงว่าคาร์บอนไอดอกไซด์เหลวอิวิกฤตสามารถถ่ายถ่ายในยางธรรมชาติได้ส่งผลให้ความหนืดลดลงและเพิ่มความสามารถในการแพร่ของไโอลูโซนเข้าไปในยางธรรมชาติทำให้เพิ่มอัตราการเกิดปฏิกิริยาออกซิเดชันได้มากกว่าการที่ใช้ไโอลูโซนเพียงอย่างเดียว

จากนั้นศึกษาการลดน้ำหนักโมเลกุลจากการตรวจสอบความสามารถในการลดน้ำหนักโมเลกุลของยางธรรมชาติด้วยการวัดความหนืดและเทคนิคเจลเพอร์เมชัน โกรมาโทกราฟี (Gel Permeation Chromatography, GPC) ตรวจวัดค่ามวลโมเลกุลเฉลี่ย ($\overline{M}_w, \overline{M}_n$) และตรวจสอบหมู่ฟังก์ชันภายในโครงสร้างด้วยเทคนิค Fourier Transform Infrared (FTIR) โดยทดลองปรับเปลี่ยนอัตราส่วนน้ำหนักแก๊สออกซิเจนต่อน้ำหนักยางธรรมชาติให้อยู่ในช่วง 0 - 12 (กรัม O₂/กรัม NR) ทำการกระตุนออกซิเจนด้วยรังสียูวีเป็นเวลา 5 นาที ที่อุณหภูมิ 40 และ 50 °C จากนั้นอัดแก๊สคาร์บอนไอดอกไซด์จนมีความดันเป็น 11.0 MPa พบร่วมสภาวะที่เหมือนในการลดน้ำหนักโมเลกุล คือ อัตราส่วนระหว่าง 5 - 10 (g-O₂/g-NR) และเวลาสำหรับการทำปฏิกิริยาออกซิเดชัน 6 ชั่วโมงที่อุณหภูมิ 40 °C ซึ่งทำให้น้ำหนักโมเลกุลของยางธรรมชาติติดลงคงที่เท่ากับ 2.05×10^5 กรัมต่อโมลจากยางธรรมชาติที่มีน้ำหนักโมเลกุลเริ่มต้นเท่ากับ $1.66 \times 10^6 \text{ g/mol}$ และยางธรรมชาติที่ผ่านการลดน้ำหนักโมเลกุลด้วยทำให้โครงสร้างของยางธรรมชาติเปลี่ยนแปลงเกิดเป็นหมู่ฟังก์ชันคาร์บอนิล (C=O) และไฮดรอกซิล (O-H) ขึ้น

นอกจากนี้เมื่อนำยางที่ผ่านการลดน้ำหนักโมเลกุลมาศึกษาความสามารถในการใช้เป็นสารช่วยในการผลิต (Processing aids) ในปริมาณ 10 phr เพื่อใช้ปรับปรุงสมบัติเชิงกลและลดปริมาณพลังงานที่ต้องใช้ในระหว่างกระบวนการผลิตผลิตภัณฑ์ยางผสมระหว่างยางเอธิลีน โพร์พลีน ไอดีน ไนโอนเมอร์ (Ethylene propylene diene monomer, EPDM) กับยาง NR โดยความสามารถในการผสมเข้ากันได้ของยางผสมวิเคราะห์จากโครงสร้างจุลภาคของยางผสมด้วย SEM จากผลการทดสอบพบว่าตัวอย่างยางผสมที่ผสมสารเติมยางที่ผ่านการลดน้ำหนักโมเลกุลช่วยทำให้ยางผสมสามารถผสมเข้ากันและเกิดการยึดเกาะระหว่างเพสยาง NR และยาง EPDM ได้เป็นอย่างดี

ABSTRACT

This research studied the molecular weight reduction of natural rubber (NR) by ozone (O_3) combining with supercritical carbon dioxide (Sc-CO₂) and evaluated the appropriate condition for the molecular weight reduction of NR process by considering amount of oxygen, processing temperature and oxidation reaction. The molecular weight of natural rubber was determined by using Gel Permeation Chromatography (GPC). Functional groups of natural rubber were analyzed by Fourier Transform Infrared (FT-IR) technique. Firstly, the observation of NR swelling behavior under pressurized sc-CO₂ in a high pressure vessel was conducted with varying the soaking time. From the obtained swelling behavior related to soaking time resulted that diffusion coefficient was $1.37 \times 10^{-9} \text{ m}^2/\text{s}$. After that, the molecular weight reduction of NR was performed. NR sample was placed into a high pressure vessel with various amount of oxygen ranging from 0 to 12 g-O₂/g-NR. After filling the oxygen, the ozonation was taken place by activating filled oxygen with UV ray for 5 minutes at 40 to 50 °C. Then, compressed CO₂ was fed into the vessel until the pressure reached 11.0 MPa.

As a result, it was founded that the NR swelling about 11% is observed. The swelling of NR showed that sc-CO₂ can be dissolved into NR and the increasing of amount of oxygen leads to the reduction of Mw-NR. By combining the sc-CO₂ with ozonation, it shown that the increasing ratio of oxygen to NR enhances the reduction of Mw-NR, the experimental obtained was about $2.05 \times 10^5 \text{ g/mol}$ from the virgin NR of $1.66 \times 10^6 \text{ g/mol}$. It illustrates that the appropriate condition for the reduction of molecular weight of natural rubber processing would be the ratio of oxygen to NR ranging between 5 to 10 and the processing temperature about 40°C. The chemical structure of the NR molecular weight reduction was also characterized by FTIR analysis which the significant signals of hydroxyl group and carbonyl group were founded

Moreover, the NR molecular reduction was used as a processing aid on the compatibility a NR/EPDM blend by Scanning electron microscope (SEM). As a result, it was founded that the NR molecular reduction could be promising processing aid as a compatibilizer in a blend improved the compatible and good interfacial adhesion between the two phases resulted.

เนื้อหา

1. ความเป็นมาและความสำคัญของปัจจุบัน

ประเทศไทยต่างๆ ทั่วโลกเริ่มประสบกับภาวะวิกฤตด้านพลังงานเนื่องจากแหล่งพลังงานสำรองนั้นเริ่มน้อยลงและซึ่งอาจส่งผลกระทบต่อปริมาณสารประกอบในอากาศอย่างรุนแรง ซึ่งมีผลกระทบทั้งด้านพลังงานที่น้ำและรวมไปถึงสารตั้งต้นสำหรับอุตสาหกรรมปิโตรเคมีอีกด้วย ด้วยเหตุนี้การพัฒนาและสร้างสรรค์นวัตกรรมเพื่อผลิตสารตั้งต้นที่ได้จากธรรมชาติที่มีอยู่ภายในประเทศไทย ซึ่งส่วนใหญ่ได้มาจากพืชผลทางการเกษตร เช่น น้ำมันปาล์ม น้ำมันเมล็ดสนุ่ว ฯลฯ และจากน้ำย่างธรรมชาติ เป็นต้น ซึ่งประเทศไทยเป็นประเทศผู้ผลิตย่างธรรมชาติรายสำคัญของโลกที่มีกำลังการผลิตมากกว่า 3 ล้านตันต่อปี ซึ่งเกือบทั้งหมดเป็นการส่งออกในรูปแบบคิบและมีราคาไม่สูงมากเมื่อเทียบกับย่างธรรมชาติที่ผ่านการแปรรูป

อย่างไรก็ตามการนำ>yangธรรมชาติมาใช้เป็นสารตั้งต้นของอุตสาหกรรมปิโตรเคมีนั้น จะต้องมีการเปลี่ยนแปลงสมบัติของย่างก่อน เนื่องจากโดยทั่วไปแล้วย่างธรรมชาติเป็นผลิตภัณฑ์มีสีขาวโพลุยและมีน้ำหนักไม่เท่ากัน ซึ่งไม่เหมาะสมแก่การนำมาใช้เป็นสารตั้งต้นสำหรับอุตสาหกรรมปิโตรเคมีได้โดยตรง ดังนั้นจึงต้องผ่านกระบวนการลดน้ำหนักไม่เท่ากันของย่างธรรมชาติก่อนเพื่อให้มีสมบัติที่เหมาะสมกับการนำไปใช้งาน

โดยทั่วไปกระบวนการลดน้ำหนักไม่เท่ากันของย่างธรรมชาติประกอบด้วยกระบวนการเชิงกล (Mechanical) ร่วมกับกระบวนการเชิงความร้อน (Thermal) การใช้สารเคมีย่อยย่าง (Chemical Peptizers) และกระบวนการทางไฟฟ้าเคมี (Photo-Chemical) เช่น UV-Ozonolysis เป็นต้น โดยการลดน้ำหนักด้วยกระบวนการเชิงกลและเชิงความร้อนเป็นกระบวนการลดน้ำหนักทางกายภาพด้วยการใช้เครื่องขัดกระดาษที่มีผิวเรียบ เช่น เครื่องบดและวนดยงชนิดสองลูกกลิ้ง และเครื่องผสมยางแบบบันบุรี (Banbury) เป็นต้น ซึ่งต้องใช้พลังงานจากภายนอกมาใช้ในการลดน้ำหนักไม่เท่ากันของย่าง ซึ่งขึ้นอยู่กับความสามารถในการลดน้ำหนักของไม่เท่ากัน ไม่สามารถลดน้ำหนักไม่เท่ากันได้ โดยการลดน้ำหนักไม่เท่ากันด้วยวิธีนี้จะใช้แรงเชิงกลจากการตัดหรือบดเพื่อให้พันธะของย่างขาดออกจากกันพร้อมกับกระบวนการทางความร้อน ส่วนการใช้สารเคมีย่อยย่างสามารถใช้ร่วมกับขั้นตอนในขั้นตอนโดยการเติมสารเคมีในเครื่องผสม ช่วยเร่งให้เกิดการสลายตัวของพันธะในโครงสร้างของย่างธรรมชาติและยังช่วยป้องกันไม่ให้ไม่เท่ากันที่ขึ้น ไม่เสียรากลับมาร่วมตัวกันอีกหลังจากผ่านขั้นตอนการสลายพันธะอีกด้วยซึ่งช่วยลดเวลาการบดยางและควบคุมการกระจายตัวของน้ำหนักไม่เท่ากันได้อย่างประสิทธิภาพ แต่อย่างไรก็ตามการใช้สารเคมีจะส่งผลกระทบทำให้มีปัจจัยจากสารเคมีตกค้างเนื่องจากทำปฏิกิริยากันไม่หมด ซึ่งส่งผลต่อการนำ>yangธรรมชาติไปใช้เป็นสารตั้งต้นในกระบวนการผลิตในขั้นตอนต่อไป

การลดน้ำหนักโมเลกุลของยางธรรมชาติโดยวิธีโฟโตเคมี (Photo-chemical) เป็นทางเลือกใหม่ที่น่าสนใจ โดยใช้รังสียูวีพลังงานสูงในการสลายพันธะของยาง เกิดอนุมูลอิสระที่ไม่เสถียร (Free radical) แล้วเกิดปฏิกิริยาออกซิเดชันด้วยโอโซนและเป็นปฏิกิริยาต่อเนื่องแบบดีโพลิเมอร์ไซซ์เชชัน (Depolymerization) ได้ดีที่อุณหภูมิไม่สูงนัก [1] แต่สามารถลดน้ำหนักโมเลกุลของยางได้มาก โดยสีของยางไม่เปลี่ยนแปลงไปมากนัก อีกทั้งยังไม่เกิดสารเคมีตกค้างในเนื้อยางอีกด้วย เนื่องจากโอโซนเป็นสารที่ไม่เสถียรในสภาวะปกติ จึงสลายตัวได้ง่าย อย่างไรก็ตามปกติโอโซนจะเข้าทำปฏิกิริยาเพียงบริเวณรอบนอกของยางเท่านั้นซึ่งไม่ทั่วถึง

จากปัญหาดังกล่าวได้มีการศึกษาการนำของไอลหนีอวิกฤต [2] ซึ่งมีสมบัติระหว่างของเหลวและแก๊สมماช่วยให้การเข้าทำปฏิกิริยาเกิดขึ้น ได้ดีขึ้น ซึ่งของไอลหนีอวิกฤตที่เลือกใช้คือสารบอนไดออกไซด์ เพราะมีจุดวิกฤตต่ำคือ ความดันวิกฤต 72.9 บรรยากาศ (7.4 เมกะบาร์) และอุณหภูมิวิกฤต 31.1 องศาเซลเซียส โดยสารบอนไดออกไซด์หนีอวิกฤตที่ช่วยเพิ่มอัตราการแพร่ของสาร ทำให้ยางเกิดการบวมตัว (Swelling) และทำให้ความหนืดของยางลดลง [3] จึงจำเป็นอย่างยิ่งต่อการนำไปพัฒนากระบวนการลดน้ำหนักโมเลกุลของยางธรรมชาติต่อไป

จากข้อเด่นของการลดน้ำหนักโมเลกุลยางธรรมชาติทั้งสามวิธีข้างต้น คือ วิธีโฟโตเคมีด้วยโอโซน การใช้สารบอนไดออกไซด์หนีอวิกฤตช่วยในการเข้าทำปฏิกิริยา งานวิจัยนี้จึงได้มุ่งเน้นการศึกษาปัจจัยที่มีผลต่อการลดน้ำหนักโมเลกุลยางธรรมชาติด้วยการเกิดปฏิกิริยาออกซิเดชันของยางธรรมชาติด้วยโอโซนร่วมกับสารบอนไดออกไซด์หนีอวิกฤต โดยยางที่ผ่านการลดน้ำหนักโมเลกุลนั้นสามารถนำไปเป็นสารช่วยในกระบวนการผลิต (Processing Aids) ที่เป็นทางเลือกใหม่มาใช้ทดแทนน้ำมันอะโรมาติกซึ่งส่วนใหญ่เป็นสารประกอบ Cyclooctene ทำให้ได้ผลิตภัณฑ์ที่เป็นพอลิเมอร์ในกลุ่มของ Polyoctenamer ที่ใช้ในเชิงพาณิชย์มีชื่อทางการค้า Vestenamer® [3] เป็นสารช่วยผสมที่มีความหนืดต่ำในลักษณะกึ่งของเหลวหนึดที่ยังคงมีน้ำหนักโมเลกุลสูงประมาณ $1.0 \times 10^5 \text{ g/mol}$ แต่อย่างไรก็ตามปัญหาที่พบในปัจจุบันโดยเฉพาะการใช้น้ำมันในกลุ่มของสารอะโรเมติกคือ การเกิด Migration ของน้ำมันอะโรเมติกในผลิตภัณฑ์ยาง โดยน้ำมันอะโรเมติกสามารถแพร่หรือเคลื่อนย้ายมาที่ผิวของผลิตภัณฑ์ยางได้ง่าย ล่งผลให้เกิดการปนเปื้อนของสารอะโรเมติกในระหว่างการนำผลิตภัณฑ์ยางไปใช้งานและยังอาจเกิดการปนเปื้อนในสิ่งแวดล้อมระหว่างที่มีการกำจัดจากผลิตภัณฑ์ยางเหล่านี้อีกด้วยทำให้การเลือกใช้ยางธรรมชาติที่ผ่านการลดน้ำหนักโมเลกุลเป็นสารช่วยผสมจึงเป็นทางเลือกหนึ่งที่น่าสนใจในอนาคต