

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัย

การสนับสนุนงานวิจัยระดับปริญญาโท-เอก ด้านระบบสนับสนุนการตัดสินใจเพื่อเสริมงานวิจัยในประเทศไทยเพื่อนบ้านของไทย: ระยะที่ 1
(CLMV-T DSS Graduate Degree Program Research Initiative: 1st Phase)

สัญญาเลขที่ RDG5200003

โดย

อรรถชัย จินตะเวช

พฤษจิกายน 2556

รายงานວิจัยฉบับสมบูรณ์

ໂຄງການວิจัย

การสนับสนุนงานวิจัยระดับปริญญาโท-เอก ด้านระบบสนับสนุนการตัดสินใจเพื่อเสริมงานวิจัยในประเทศไทยเพื่อนบ้านของไทย: ระยะที่ 1

CLMV-T DSS Graduate Degree Program Research Initiative: 1st

Phase

ສັນຖາເລີກໂທ RDG5200003

ໂດຍ

ອຮຮາດຫັ້ນ ຈິນຕະເວັບ

ພຸດສະພາ 2556

ສໍານັກປະສານງານ ເຄືອຂ່າຍວິຈີຍແລ້ວພິມນາຮະບບສັບສັນກາຣຕັດສິນໃຈ

ສັບສິນໂດຍສໍານັກງານກອງທຸນສັບສັນກາຣວິຈີຍ (ສກວ.)
(ຄວາມເຫັນໃນรายงานນີ້ເປັນຂອງຜູ້ວິຈີຍ ສກວ.ໄໝຈຳເປັນຕ້ອງເຫັນດ້ວຍເສມອໂປ)

ສາຮບັນ

ຄໍານິຍມ	ໜ
ບທສຽງປູ້ປວກທາວ	໬
ບທຄັດຍ່ອກາຍາໄທ	໤
ບທຄັດຍ່ອກາຍາອັກດຸກ	໧
ຮາຍລະເຂີຍດົກກາຣວິຈັຍແລະກາຣປະສານງານ	
ບທນໍາ	1
ວັດຖຸປະສົງ	2
ແນວທາງກາຣປະສານງານວິຈັຍຂອງໂຄຮົງກາຣ	2
ໜ້ອດັນພບຈາກການວິຈັຍພັດນາດ້ານ DSS	3
ກາຣສ້າງເຄື່ອງຂ່າຍວິຈັຍແລະພັດນາ TRF-DSS	6
ສ່ຽນພູມລະແທກສາຮບັນດົກກາຣວິຈັຍແລະພັດນາ DSS ໃນອາຄຸດ	8
ກາຄົນວກ	
ຮາຍຊື່ອນັກຕືກໍາແລະຄົນາຈາຍຍົງທີ່ປະກິດວິທະຍານີພນົງ	9
ບທຄັດຍ່ອແລະເອກສາຮວິຊາກາຣຂອງນັກຕືກໍາ	11

คำนิยม

ขอขอบพระคุณคณาจารย์ของหลักสูตรภาษาศาสตร์เชิงระบบของคณะภาษาศาสตร์ มหาวิทยาลัยขอนแก่นและมหาวิทยาลัยเชียงใหม่ ที่ให้ความเมตตาและการสนับสนุนและยินยอมเป็นที่ปรึกษาหลักและที่ปรึกษาร่วมในการเรียนรู้ของนักศึกษาทั้งหกท่าน ในแต่ละกระบวนการวิชา และในการดำเนินการวิทยานิพนธ์ระดับบัณฑิตศึกษาตลอดระยะเวลาการดำเนินงานของโครงการวิจัยกึ่งประสานงาน

ขอขอบพระคุณผู้บริหารของคณะกสิกรรมและป้าไม้ มหาวิทยาลัยแห่งชาติลาว นครหลวงเวียงจัน, คณะกสิกรรมและป้าไม้ มหาวิทยาลัยสุพานหุวงศ์ เมืองหลวงพระบาง แขวงหลวงพระบาง, ห้องการกสิกรรมและป้าไม้แขวงหลวงพระบาง, วิทยาลัยกสิกรรมและป้าไม้ภาคเหนือ แขวงหลวงพระบาง สาธารณรัฐประชาธิปไตยประชาชนลาว, และคณาจารย์พยากรณ์ธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยโทเกจียัน ประเทศไทย เวียดนาม ที่ให้การสนับสนุนการดำเนินการงานวิจัยและการเรียนรู้ของนักศึกษาทั้งหกท่านและคณาจารย์ฝ่ายไทย เป็นการวิจัยและพัฒนาที่บูรณาการความเข้าใจของระบบบิเวศน์และของระบบสนับสนุนการตัดสินใจ

ขอขอบพระคุณศาสตราจารย์ ดร. ปิยะวัติ บุญ-หลง อธิบดีผู้อำนวยการกองทุนสนับสนุนการวิจัย (สกอ.), รองผู้อำนวยการ สกอ. อาจารย์ ดร. สีลารณ์ บัวสาย, ผู้อำนวยการฝ่ายเกษตร รองศาสตราจารย์ ดร. จันทร์รัตน์ เรียมเดชะ ที่เล่งเห็นการนำใช้ประโยชน์จากการวิจัยและพัฒนา DSS โดยมีนิยามและให้ทุนสนับสนุนการวิจัยและพัฒนา DSS อย่างต่อเนื่อง ขอขอบคุณคุณเบญจมาศ ตีระมาศวณิช เจ้าหน้าที่อาชีวสุส ประจำงานวิจัยเพื่อการพัฒนาทั้งพื้นที่ สกอ. ซึ่งช่วยเหลือในการประสานงานระหว่างส่วนกลางและสำนักประสานงานฯ

ขอขอบพระคุณท่านอาจารย์อำนวย คุวานิช อธิบดีผู้จัดการท่านแรกของเครือข่ายวิจัยและพัฒนาระบบสนับสนุนการตัดสินใจเป็นผู้ก่อตั้งเครือข่ายฯ และริเริ่มแนวคิดการบริหารงานวิจัยและพัฒนาแบบเพื่อนสนับสนุนเพื่อน (peer-support) ในการสร้างผลงาน DSS ของประเทศไทย และขอขอบคุณคุณกานต์พิชชา บุญศิริและคุณนิตยา ไชยสิทธิ์ เจ้าหน้าที่ของสำนักประสานงานฯ ซึ่งให้การสนับสนุนภารกิจเพื่อนสนับสนุนเพื่อนด้วยดี

บรรณาธิการ จินตนาวา

บทสรุปสำหรับผู้บริหาร

(Executive Summary)

โครงการวิจัย การสนับสนุนงานวิจัยระดับปริญญาโท-เอก ด้านระบบสนับสนุนการตัดสินใจเพื่อเสริมงานวิจัยในประเทศเพื่อนบ้านของไทย: ระยะที่ 1 (CLMV-T DSS)

Graduate Degree Program Research Initiative: 1st Phase)

บทนำ

สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) เป็นหน่วยงานหนึ่งซึ่งให้การสนับสนุนงานวิจัยที่ใช้แนวคิดและวิธีการวิจัยเชิงระบบและระบบสนับสนุนการตัดสินใจ (รศ.) หรือ Decision Support System (DSS) โดยให้ทุนวิจัยผ่านเครือข่ายวิจัยฯ เพื่อพัฒนาทรัพยากริมฝายและวัฒนธรรมวิจัยที่สามารถสร้างผลงานวิจัยในลักษณะ รศ. ตั้งแต่ปี พ.ศ. 2546 เป็นต้นมา ปัจจุบันมีนักวิจัยในเครือข่ายจำนวนหนึ่งประจำตัวหน่วยวิจัยและคุณย์วิจัยของมหาวิทยาลัยในประเทศไทย ในช่วงกลางปี พ.ศ. 2552 ได้ริเริมให้ทุนสนับสนุนการวิจัยพัฒนาและนำไปใช้ระบบ DSS ในประเทศไทยเพื่อนบ้านผ่านกระบวนการเรียนการสอนในหลักสูตรระดับบัณฑิตศึกษาของมหาวิทยาลัยขอนแก่น มหาวิทยาลัยเชียงใหม่ โดยเน้นการพัฒนาทรัพยากรบุคคลที่มีความรู้และความสามารถในการพัฒนาและการนำไปใช้ระบบ DSS สามารถบูรณาการข้อมูลองค์ประกอบของระบบซึ่งผู้เกี่ยวข้องต้องการแก้ปัญหาเพื่อประกอบการตัดสินใจในกำหนดนโยบายและแผนงานโครงการบนพื้นฐานของข้อมูลด้านภาษาพื้นเมืองและสังคมเศรษฐกิจของพื้นที่เป้าหมาย

วัตถุประสงค์ของโครงการ

โครงการนี้มีวัตถุประสงค์ 3 ข้อ ได้แก่ 1) เพื่อผลิตผลงานวิจัยด้าน รศ. เพื่อระบบการผลิตและการบริการที่มีประสิทธิภาพเหมาะสมต่อสภาพทรัพยากรและสภาพแวดล้อมในประเทศไทยเพื่อนบ้านใกล้ชิดของไทย 2) เพื่อสร้างเครือข่ายของผู้ใช้งาน คณาจารย์ และบัณฑิต ด้าน รศ. ระหว่างไทยและประเทศไทยเพื่อนบ้านใกล้ชิดของไทย และ 3) เพื่อพัฒนากำลังคนระดับปริญญาโทและเอกที่มีความรู้ความสามารถในการพัฒนา และ/หรือ การนำไปใช้ รศ. สนับสนุนการร่วมตัดสินใจผลิต และ/หรือ บริการเพื่อการใช้ทรัพยากรอย่างยั่งยืนในพื้นที่ประเทศไทยเพื่อนบ้านใกล้ชิดของไทย

ข้อค้นพบจากการวิจัยพัฒนาด้าน DSS

การวิจัยพัฒนาและการใช้งาน DSS นักศึกษา

โครงการวิจัยนี้ใช้กระบวนการประสานงานวิจัยกับเครือข่ายคณาจารย์ในประเทศไทยและหน่วยงานวิจัยและสถาบันวิจัยของประเทศไทย Laos PDR และ Vietnam ในการตัดเลือกนักศึกษาและหัวข้อวิจัยระดับบัณฑิตศึกษาตามกรอบและแนวทางการวิจัย DSS การดำเนินงานระหว่างปี พ.ศ. 2552-2556 มีนักศึกษาได้รับการสนับสนุนจากโครงการฯ มีทั้งสิ้น 6 ท่าน ลงทะเบียนศึกษาในมหาวิทยาลัยขอนแก่น มหาวิทยาลัยเชียงใหม่ แห่งละ 3 ท่าน เป็นนักศึกษาจากสถาบันรัฐประชาริปไตยประชาชนลาว (สป. ลาว) และสถาบันรัฐสังคมนิยมเรียดนาม จำนวน 5 และ 1 ท่าน ตามลำดับ นักศึกษาจาก สป. ลาว เข้าศึกษาในระดับปริญญาโท 3 ท่าน เข้าศึกษาในระดับปริญญาเอก 2 ท่าน ส่วนนักศึกษาหนึ่งท่านจากสถาบันรัฐสังคมนิยมเรียดนามเข้าศึกษาในระดับปริญญาโท นักศึกษาทั้งหมดมีผลงานวิจัยเกี่ยวข้องกับองค์ประกอบของระบบ DSS นำเสนอในการประชุมระดับชาติจำนวน 3 เรื่อง โดย Mr. Khamko, Mr. Phouthasack, Mr. Anongsak มีผลงานวิชาการตีพิมพ์ในวารสารวิชาการนานาชาติ 4 เรื่อง โดย Mr. Hai, Mr. Bounthanh, Mr. Saythong และมีผลงานตีพิมพ์เป็นบทหนึ่งในหนังสือชื่อมี

M. Cairns เป็นบรรณาธิการจำนวน 1 บท โดย Mr. Bounthanh โดยสรุปสามารถสรุปผลลัพธ์การวิจัยตามกรอบ DSS ของนักศึกษาแต่ละท่าน ดังต่อไปนี้

Mr. Khamko Thammavong: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การใช้ที่ดินในกลุ่มบ้านสะนกงคุณ เมืองจอมเพชร เชียงหลวงพระบาง สปป. ลาว

Mr. Nguyen Ngoc Son Hai: ฐานข้อมูลครัวเรือนและการสะสม Cadmium & Lead ระบบผลิตผ้า ในท้องที่ตู้ก ดู-เยน เมืองໄທເໜິຍນ สาธารณรัฐสังคมนิยมเวียดนาม

Mr. Phouthasack Phoummasone: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การใช้ที่ดินในเขตพื้นที่เมืองปากอู แขวงหลวงพระบาง สปป. ลาว

Mr. Anongsak Phachomphonh: ฐานข้อมูลครัวเรือนและระบบการผลิตข้าวในพื้นที่ทุ่งรากເວິງຈັນ แขวงເວິງຈັນ สปป. ลาว

Dr. Bounthanh Keoboualapha: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การระบาดของ penyaca ในพื้นที่การเกษตรแบบดั้งเดิม ในพื้นที่สูงภาคเหนือ แขวงหลวงพระบาง สปป. ลาว

Dr. Saythong Vilayvong: ฐานข้อมูลครัวเรือนและการเปลี่ยนแปลงระบบการผลิตข้าวรวมทั้งการกำหนดทางเลือกเพื่อการจัดการผลิตข้าวนาปี ในพื้นที่ทุ่งรากເວິງຈັນ แขวงເວິງຈັນ สปป. ลาว

ชีดความสามารถของสถาบันอุดมศึกษาทางด้านเกษตรของไทย

คณาจารย์ร่วมโครงการ RDG52Q003 ทั้งมหาวิทยาลัยขอนแก่นและมหาวิทยาลัยเชียงใหม่ใช้กรอบงานวิจัยพัฒนา DSS และนักศึกษาสามารถออกแบบและพัฒนาฐานข้อมูลและสร้างแบบจำลองระบบเกษตรและแบบจำลองระบบนิเวศน์ในการสร้างและสมความเข้าใจความสัมพันธ์ขององค์ประกอบต่าง ๆ ของระบบฯ ทำให้นักศึกษาสร้างแบบจำลองระบบฯ และใช้ฐานข้อมูลร่วมกับแบบจำลองเพื่อคาดการณ์การเปลี่ยนแปลงของระบบนิเวศน์เมื่อสภาพแวดล้อม และสามารถเสนอแนะทางเลือกเพื่อจัดการทรัพยากรที่ยั่งยืนและเหมาะสมในระดับกลุ่มบ้าน แขวง เมือง เขตท้องที่ และประเทศของตน ซึ่งส่วนท่อนขีดความสามารถขั้นสูงและระดับสากลของคณาจารย์ หลักสูตร และระบบการศึกษาด้านเกษตรและทรัพยากรธรรมชาติของไทยในการสนับสนุนการพัฒนาทรัพยากรบุคคลด้าน DSS

การสร้างเครือข่ายวิจัยและพัฒนา TRF-DSS

เครือข่าย TRF-DSS เป็นกลไกหนึ่งของ สกว. เพื่อออกแบบและสร้างนวัตกรรมตามกระบวนการวิจัย DSS โดยเน้นการใช้ผลงานวิจัย DSS วิเคราะห์ทางเลือกเพื่อสนับสนุนการตัดสินใจจัดการทรัพยากรอย่างมีประสิทธิภาพ บัณฑิตทั้งหมดท่านเป็นส่วนหนึ่งของเครือข่ายวิจัยและพัฒนา TRF-DSS ของประเทศไทย และประเทศ สปป. ลาวและประเทศเวียดนาม มีศักยภาพสูงมากในการขับเคลื่อนความร่วมมือด้านวิจัยและพัฒนาเพื่อสร้างองค์ความรู้วิชาการใหม่ ๆ และเชื่อมโยงกับการใช้งานเพื่อแก้ปัญหาของครัวเรือน ชุมชน จังหวัด/แขวง และระดับนโยบาย บนหลักการและพื้นฐานของ DSS และระบบนิเวศน์ 3 หลักการ ได้แก่ 1) หลักของความสัมพันธ์กันและการพึ่งพา กันอย่างเป็นธรรมขององค์ประกอบในแต่ละลำดับชั้นของระบบ, 2) หลักของทำความเข้าใจความสัมพันธ์ขององค์ประกอบภายใต้บริบทของระบบใหญ่ และ 3) หลักของการนำใช้ระบบ DSS เพื่อตอบคำถาม “what-if...?” หรือ “อะไรจะเกิดหาก...?” ในการจัดการทรัพยากรเกษตรและทรัพยากรธรรมชาติ

สรุปข้อเสนอแนะทิศทางวิจัยและพัฒนา DSS ในอนาคต

1. สนับสนุนทุน สำนักประสานงานวิจัยและพัฒนา สกว.-ครล ครอบคลุมพื้นที่ประเทศไทยและกลุ่มประเทศในอนุภูมิภาคลุ่มน้ำโขง
2. สนับสนุนทุน วิจัยและพัฒนา ระบบ DSS สำหรับผู้ใช้งานใน 3 กลุ่ม สร้างผลงานวิจัยครอบคลุมพื้นที่ประเทศไทยและกลุ่มประเทศในอนุภูมิภาคลุ่มน้ำโขง โดยให้ทุนวิจัยเพื่อตอบโจทย์ตามพันธกิจ 5 ด้านของ สกว. ระหว่างปี พ.ศ. 2557-2560

รหัสโครงการ:

RDG52O0003

ชื่อโครงการ:

การสนับสนุนงานวิจัยระดับปริญญาโท-เอก ด้านระบบสนับสนุนการตัดสินใจเพื่อเสริมงานวิจัยในประเทศไทย ระยะที่ 1

ผู้วิจัย:

อรรถชัย จินตหะเวช

รองศาสตราจารย์ ภาควิชาพัชศาสตร์และทรัพยากรธรรมชาติ คณะเกษตรศาสตร์
มหาวิทยาลัยเชียงใหม่ อ.เมือง จ.เชียงใหม่

อีเมลล์:

attachai.j@cmu.ac.th

ระยะเวลาโครงการ:

1 มกราคม พ.ศ. 2552 – 30 พฤศจิกายน พ.ศ. 2556

โครงการวิจัยกึ่งประสานงาน (เครือข่ายวิจัยและพัฒนา สาว.-ครส) ดำเนินการระหว่างปี พ.ศ. 2552-2556 ในพื้นที่ประเทศไทย สปป. ลาว และเวียดนาม เพื่อผลิตผลงานวิจัย สร้างเครือข่าย และพัฒนาบุคลากรด้านระบบสนับสนุนการตัดสินใจและนิเวศน์วิทยาอิเล็กทรอนิกส์ ให้ระบบการผลิตและการบริการมีประสิทธิภาพเหมาะสมต่อสภาพทรัพยากรและสภาพแวดล้อมในประเทศไทยเพื่อนบ้านใกล้ชิดของไทย โครงการได้สนับสนุนนักศึกษาระดับบัณฑิตศึกษา 6 ท่าน ในมหาวิทยาลัยขอนแก่น มหาวิทยาลัยเชียงใหม่ แห่งละ 3 ท่าน เป็นนักศึกษาจากสาขาวิชารัฐประชานิยม ประจำปี พ.ศ. 2555 และ 2556 ท่าน ตามลำดับ

นักศึกษาทั้งหกท่านมีผลงานวิจัยเป็นฐานข้อมูลและแบบจำลองระบบเกษตรและทรัพยากรธรรมชาติ ดังนี้
ระดับสมาชิกครัวเรือน ครัวเรือน ไร่นา ตำบล อำเภอ จังหวัด และลุ่มน้ำ คณาจารย์ร่วมโครงการสามารถแนะนำให้นักศึกษาความเข้าใจความล้มเหลวขององค์ประกอบต่าง ๆ และสามารถคาดการณ์การเปลี่ยนแปลงของระบบฯ สามารถเสนอแนะทางเลือกเพื่อจัดการทรัพยากรที่ยั่งยืนและเหมาะสม เครือข่ายของนักศึกษาและคณาจารย์มีขีดความสามารถชั้นสูงและระดับสากล ซึ่งเป็นเครือข่ายวิจัยและพัฒนาบนหลักการสามารถทั่วไปของระบบสนับสนุนการตัดสินใจและระบบนิเวศน์

สาว. ควรจัดสรรฐุนเพื่อการดำเนินการอย่างต่อเนื่องสองกิจกรรม ได้แก่ ๑) ทุนจัดตั้งสำนักประสานวิจัยและพัฒนาระบบสนับสนุนการตัดสินใจ เพื่อเป็นกลไกผลิตงานวิจัยและเชื่อมผู้ใช้งานและนักวิจัย และ ๒) ทุนโครงการวิจัยและพัฒนา ระบบ DSS สำหรับผู้ใช้งานสามัญ

คำสำคัญ: สาว.-ครส, ระบบเกษตรและระบบนิเวศน์, ประเทศไทย, สาขาวิชารัฐประชานิยม ประจำปี พ.ศ. 2555 และ 2556

Project Code: RDG52Q0003

Project Title: CLMV-T DSS Graduate Degree Program Research Initiative: 1st Phase

Investigators: Jintrawet, A
Plant Sci. and Natural Resource Dept., and Center for Agricultural Resource System Research, Faculty of Agriculture, Chiang Mai University

E-mail Address: attachai.j@cmu.ac.th

Project Duration: January 1, 2009 – November 30, 2013.

This research and coordination project (TRF–DSS research and development network) was operated in Thailand, Laos PDR, and Vietnam during 2009–2013, to develop, create research and development network, and develop human resources at the graduate level related to Decision Support System (DSS) and ecological concepts and principles. DSS tools were designed to support collective decisions for efficient and effective production and service systems in Thailand, Lao PDR, and Vietnam. Khon Kaen University and Chiang Mai University each supported three graduate students, a total of six students under the Project. There were five and one graduate students from Laos PDR and Vietnam, respectively.

The students were able to design and develop databases and models of agricultural systems and natural resources at the individual, household, plot, sub-district, district, provinces and watershed levels. With the support of the academic staff in both Universities. Students were able to gain better understandings of the relationships of various system's components, predict the changes of the systems, and suggested the alternative practices for sustainable resource management. Research and development network of students and academic staff poses high integrative capacity in delivering DSS tools and meets the international standard, which was based on three concepts and principles of DSS and ecology.

The Thailand Research Fund should allocate two continuing funding schemes, i.e. 1) fund to recreate the TRF–DSS network office as a mechanism to coordinate and further the DSS tools development and applications, and 2) fund to support research and develop projects to meet the requirements of three DSS's user groups.

Keyword: TRF–DSS, Agricultural Systems and Ecological System, Thailand, Lao (PDR), Vietnam

รายงานฉบับสมบูรณ์

ผลการวิจัยและการประสานงาน

โครงการวิจัย การสนับสนุนงานวิจัยระดับปริญญาโท-เอก ด้านระบบสนับสนุนการตัดสินใจเพื่อเสริมงานวิจัยในประเทศเพื่อนบ้านของไทย: ระยะที่ 1 (CLMV-T DSS Graduate Degree)

Program Research Initiative: 1st Phase)

บทนำ

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) เป็นหน่วยงานหนึ่งซึ่งให้การสนับสนุนงานวิจัยที่ใช้แนวคิดและวิธีการวิจัยเชิงระบบและระบบสนับสนุนการตัดสินใจ (รสจ.) โดยให้ทุนวิจัยผ่านเครือข่ายวิจัยฯ เพื่อพัฒนารัฐพยากรวิจัยและวัฒนธรรมวิจัยที่สามารถสร้างผลงานวิจัยในลักษณะ รสจ. ตั้งแต่ปี พ.ศ. 2546 เป็นต้นมา ปัจจุบันมีนักวิจัยในเครือข่ายจำนวนหนึ่งประจำตัวในลักษณะ รสจ. ซึ่งเป็นกำลังสำคัญในการผลิตผลงานวิจัยในกลุ่ม รสจ. มีต้นแบบซึ่งสามารถใช้ประกอบการทำความเข้าใจและแก้ปัญหาเกี่ยวกับการผลิตและการบริการของระบบนิเวศน์ได้ในหลายระบบของประเทศไทย คณาจารย์มีศักยภาพสูงและสามารถร่วมผลิตปัณฑิตตามความต้องการของประเทศไทย

การวิจัยของ สกสว. ในพื้นที่ของประเทศไทยเพื่อนบ้านใกล้ชิดของไทยครอบคลุมระบบการผลิตและการบริการภายใต้ระบบนิเวศน์ที่หลากหลายโดยเฉพาะในพื้นที่ลุ่มน้ำโขงซึ่งครอบคลุมพื้นที่ประมาณ 800,000 ตารางกิโลเมตร มีกลุ่มน้ำพื้นมากกว่า 50 กลุ่มน้ำพื้น การวิจัยเพื่อสร้างองค์ความรู้และปัญญาเพื่อการแก้ปัญหาอย่างเป็นระบบมีจำเป็นต้องใช้บุคลากรและเครื่องมือในการประกอบการตัดสินใจ เครื่องมือเทคโนโลยีสารสนเทศเหล่านี้ต้องเอื้อต่อการบูรณาการข้อมูลและข้อเท็จจริงของปัจจัยต่าง ๆ อย่างเป็นระบบ ระบบนิเวศน์มีความเปลี่ยนแปลงในอัตราที่แตกต่างจากสภาพในอดีต เช่น ภาระโลกร้อน เป็นต้น ทำให้มีความต้องการและความจำเป็นในการร่วมตัดสินใจและการวิเคราะห์ทางเลือกอย่างเป็นธรรมกับผู้เกี่ยวข้องทุกฝ่าย ให้สามารถร่วมตัดสินใจอย่างเปิดเผยและสามารถนำทางเลือกที่ได้สู่การปฏิบัติอย่างเป็นที่ยอมรับของผู้เกี่ยวข้องในระบบนิเวศน์ต่าง ๆ อย่างยั่งยืน

มหาวิทยาลัยขอนแก่น มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยเรศวร และมหาวิทยาลัยอุบลราชธานีได้จัดหลักสูตร
วิทยาศาสตร์มหาบัณฑิต และดุษฎีบัณฑิต หลักหลาຍสาขานับสนุนการผลิตงานวิจัยเชิงบูรณาการองค์ความรู้ด้าน¹
การเกษตร ทรัพยากรธรรมชาติ และระบบสารสนเทศเทคโนโลยี มาตั้งแต่ปี พ.ศ. 2527 และสามารถผลิตบัณฑิตที่มี
ความรู้ความสามารถในการใช้แนวคิดเชิงระบบ จำนวนบัณฑิตเหล่านี้ได้กลับเข้าทำงานในด้านการวิจัยและพัฒนาการ
เกษตรในประเทศของตน และบางส่วนสามารถเข้าศึกษาต่อระดับในปริญญาเอกในมหาวิทยาลัยที่มีชื่อเสียง การจัด
หลักสูตรฯ ของคณะเกษตรศาสตร์จึงเป็นที่ยอมรับเป็นอย่างดีในบรรดาองค์กรวิจัยและพัฒนาทางการเกษตรในภูมิภาคลุ่ม
แม่น้ำโขง คณาจารย์ของหลักสูตรได้วิจัยและพัฒนาองค์ความรู้ใหม่ๆ ตามแนวทางและหลักการของเกษตรศาสตร์เชิงระบบที่
มีความเข้มแข็งและเป็นยอมรับในภูมิภาค และสามารถประยุกต์ใช้กับการแก้ปัญหาและการจัดการทรัพยากรธรรมชาติใน
ภูมิภาคได้อย่างเป็นระบบ องค์ความรู้เหล่านี้มีการสะสมตั้งแต่การเปิดการเรียนการสอนถึงปัจจุบัน เป็นองค์ความรู้ที่
พัฒนาขึ้นจากการพัฒนาทรัพยากรบคคลในระดับปริญญาโทสำหรับประเทศไทยและภูมิภาคเอเชียตะวันออกเฉียงใต้

ประเด็นที่โครงการเน้น งานวิจัยของ สกจ. ในประเทศไทยเพื่อนบ้านใกล้ชิดของไทย (Cambodia-Laos PDR-Myanmar-Vietnam-Thailand: CLMV-T) มีความต้องการทรัพยากรบุคคลที่มีความรู้และความสามารถในการพัฒนาและการนำใช้ระบบเทคโนโลยีสารสนเทศในกลุ่มระบบสนับสนุนการตัดสินใจ (รสจ.) ที่สามารถนำข้อมูลปัจจัยของระบบที่ต้องการแก้ปัญหามาบูรณาการเพื่อประกอบการตัดสินใจในกำหนดนโยบายและแผนงานโครงการบนพื้นฐานของข้อมูลด้านภาษา ชีวภาพและสังคมเศรษฐกิจของพื้นที่เป้าหมาย

วัตถุประสงค์ของโครงการ

- ผลิตผลงานวิจัยด้าน รสจ. เพื่อระบบการผลิตและการบริการที่มีประสิทธิภาพเหมาะสมต่อสภาพทรัพยากรและสภาพแวดล้อมในประเทศไทยเพื่อนบ้านใกล้ชิดของไทย
- สร้างเครือข่ายของผู้เชี่ยวชาญ คณาจารย์ และบัณฑิต ด้าน รสจ. ระหว่างไทยและประเทศไทยเพื่อนบ้านใกล้ชิดของไทย
- พัฒนาがらงคนระดับปริญญาโทและเอกที่มีความรู้ความสามารถในการพัฒนา และ/หรือ การนำใช้ รสจ. สนับสนุนการร่วมตัดสินใจผลิต และ/หรือ บริการเพื่อการใช้ทรัพยากรอย่างยั่งยืนในพื้นที่ประเทศไทยเพื่อนบ้านใกล้ชิดของไทย

แนวทางการประสานงานวิจัยของโครงการ

- ประสานงานกับเครือข่ายของคณาจารย์ไทยในการศึกษาวิจัยเพื่อพัฒนาและนำใช้ระบบสนับสนุนการตัดสินใจ (DSS) ในการแก้ปัญหาของสภาพการผลิตและการบริการจริง ผ่านกระบวนการทำวิทยานิพนธ์ระดับปริญญาโทและเอก
- ประสานงานกับหน่วยงานวิจัยและสถาบันการศึกษาของประเทศไทย Laos PDR และ Vietnam ในการคัดเลือกนักศึกษา และหัวข้อวิจัยระดับปริญญาโทและ เพื่อวิจัยค้นคว้าเกี่ยวกับการพัฒนาและการนำใช้ระบบสนับสนุนการตัดสินใจ
- ประสานงานเพื่อใช้กรอบและแนวทางการวิจัย DSS (รูปที่ 1) ซึ่งมีองค์ประกอบสำคัญของ รสจ. 4 องค์ประกอบ ได้แก่ 1) ฐานข้อมูล 2) การทดสอบแบบจำลองของระบบนิเวศน์ที่สนใจศึกษา 3) โปรแกรม รสจ. และ 4) ผู้เชี่ยวชาญ ผลงานวิจัย โดยนักศึกษาแต่ละหัวเรียนเลือกวิจัยองค์ประกอบบางส่วนของ รสจ.

รูปที่ 1: กรอบงานวิจัยในวิทยานิพนธ์ของบัณฑิตไทย-เอก ด้านระบบสนับสนุนการตัดสินใจในพื้นที่ CLMV-T

ข้อค้นพบจากการวิจัยพัฒนาด้าน DSS

3 นักศึกษาที่ได้รับการสนับสนุนจากโครงการฯ มีทั้งสิ้น 6 ท่าน (ตารางที่ 1) นักศึกษาทั้งหมดท่านลงทะเบียนศึกษาในมหาวิทยาลัยขอนแก่น มหาวิทยาลัยเชียงใหม่ แห่งละ 3 ท่าน เป็นนักศึกษาจากสถาบันรัฐประชาธิปไตยประชาชนลาว (สปป. ลาว) และสาธารณะรัฐสังคมนิยมเวียดนาม จำนวน 5 และ 1 ท่าน ตามลำดับ นักศึกษาจาก สปป. ลาว เข้าศึกษาในระดับปริญญาโท 3 ท่าน เข้าศึกษาในระดับปริญญาเอก 2 ท่าน ส่วนนักศึกษาหนึ่งท่านจากสาธารณะรัฐสังคมนิยมเวียดนาม เข้าศึกษาในระดับปริญญาโท นักศึกษาทั้งหมดมีผลงานวิจัยเกี่ยวกับองค์ประกอบของระบบ DSS นำเสนอในการประชุมระดับชาติจำนวน 3 เรื่อง โดย Mr. Khamko, Mr. Phouthasack, Mr. Anongsak มีผลงานวิชาการตีพิมพ์ในวารสารวิชาการนานาชาติ 4 เรื่อง โดย Mr. Hai, Mr. Bounthanh, Mr. Saythong และมีผลงานตีพิมพ์เป็นบทหนึ่งในหนังสือชื่อ M. Cairns เป็นบรรณาธิการจำนวน 1 บท โดย Mr. Bounthanh.

การวิจัยพัฒนาและการใช้งาน DSS นักศึกษา

ระบบและกระบวนการการศึกษาวิจัยตามกรอบงาน DSS โดยคำแนะนำของคณะกรรมการฯ ในหลักสูตรของมหาวิทยาลัยขอนแก่นและมหาวิทยาลัยเชียงใหม่ทำให้นักศึกษาทั้งหมดท่านมีขีดความสามารถในการวางแผนพัฒนาอุปกรณ์ เก็บข้อมูล และใช้งานฐานข้อมูลเกี่ยวกับทรัพยากรครัวเรือน ประชาชน ทรัพยากรทางเกษตร และทรัพยากรธรรมชาติแบบติดต่อสัมภพ ตั้งแต่ระดับครัวเรือน ไร่นา-ตำบล-สุ่มน้ำดังปรากฏในเอกสารทางวิชาการซึ่งได้นำเสนอในรูปแบบของการประชุมวิชาการและการตีพิมพ์ในวารสารวิชาการ

นักศึกษาทั้งหมดท่านมีความเข้าใจระบบโครงสร้างฐานข้อมูลเกี่ยวกับประชากรครัวเรือนและทรัพยากรการผลิตทางเกษตรและธรรมชาติ สามารถประยุกต์ใช้มาตรฐานข้อมูลซึ่งปรากฏในตัวอย่างของการพัฒนาระบบ DSS และเป็นผลงานวิจัยของโครงการวิจัยภายใต้เครือข่ายวิจัยพัฒนา สวว-ครส (TRF-DSS: Thailand Research Fund-Decision Support System Research and Development Network) ซึ่งครอบคลุมการพัฒนาฐานข้อมูลตั้งแต่ระดับมาชิกครัวเรือน ครัวเรือน ไร่นา ตำบล อำเภอ จังหวัด และสุ่มน้ำ สามารถสรุปผลงานโดยย่อของนักศึกษาแต่ละท่าน ดังต่อไปนี้

Mr. Khamko Thammavong: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การใช้ที่ดินในกลุ่มบ้านสะนกมงคุณ เมืองจอมเพชร แขวงหลวงพระบาง สปป. ลาว

Mr. Nguyen Ngoc Son Hai: ฐานข้อมูลครัวเรือนและการละสม Cadmium & Lead ระบบผลิตผัก ในท้องที่ตีก ดู-เยน เมืองไห่หนาน สาธารณรัฐสังคมนิยมเวียดนาม

Mr. Phouthasack Phoummasone: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การใช้ที่ดินในเขตพื้นที่เมืองปากคู แขวงหลวงพระบาง สปป. ลาว

Mr. Anongsak Phachomphonh: ฐานข้อมูลครัวเรือนและระบบการผลิตข้าวในพื้นที่ทุ่งร้าบเวียงจัน แขวงเวียงจัน สปป. ลาว

Dr. Bounthanh Keoboualapha: ฐานข้อมูลครัวเรือนและฐานข้อมูลเชิงพื้นที่การระบาดของหมาดใหญ่ในพื้นที่การเกษตรแบบดั้งเดิม แขวงทุ่งกวาง เผ่า ใจพื้นที่สูงภาคเหนือ แขวงหลวงพระบาง สปป. ลาว

Dr. Saythong Vilayvong: ฐานข้อมูลครัวเรือนและการเปลี่ยนแปลงระบบการผลิตข้าวรวมทั้งการกำหนดทางเลือกเพื่อการจัดการผลิตข้าวนาปี ในพื้นที่ทุ่งร้าบเวียงจัน แขวงเวียงจัน สปป. ลาว

เมื่อสำเร็จการศึกษาบัณฑิตทั้งหมดท่านเดินทางกลับสู่ภูมิลำเนาเดิมและนำความรู้ความสามารถและความเข้าใจเกี่ยวกับ DSS ในเครือข่าย สกอ-ครส (TRF-DSS) สู่การใช้งานในหน่วยงานของตนอย่างต่อเนื่อง จากการประชุมนานาชาติ 1st TRF-DSS ระหว่างวันที่ 10-11 กันยายน พ.ศ. 2556 ณ มหาวิทยาลัยนครพนม หารายละเอียดของการประชุมได้ที่ <http://web.agri.cmu.ac.th/trf-dss2013/index.php/schedule1> พบว่าบันทึกประดับปริญญาเอกสารหาน ได้แก่ Dr. Bounthanh และ Dr. Saythong ได้นำเสนอแนวทางการนำใช้ระบบ DSS ของเครือข่าย TRF-DSS สู่การใช้งานอย่างเป็นรูปธรรมในหน่วยงานของตน และล่าสุด Dr. Saythong¹ ได้สื่อสารทางอีเมลเพื่อขอใช้โปรแกรมท้องถิ่นไทย (ระบบสนับสนุนการตัดสินใจผลิตพีชระดับท้องถิ่น) ในหน่วยงาน ARMI (สมาคมเพื่อการสนับสนุนและปรับปรุงชนบท) ซึ่งเป็นหน่วยงานภาคเอกชน ในแขวงสวัมเซต สปป. ลาว มีพื้นที่ทำการในแขวงเวียงจัน แขวงคำเมือง แขวงสวัมเซต และแขวงจำปาศักดิ์

ขีดความสามารถของสถาบันอุดมศึกษาทางด้านเกษตรของไทย

คณาจารย์ร่วมโครงการ RDG520003 ทั้งมหาวิทยาลัยขอนแก่นและมหาวิทยาลัยเชียงใหม่ใช้กรอบงานวิจัยพัฒนา DSS (รูปที่ 1) คณาจารย์สามารถแนะนำให้นักศึกษาออกแบบและพัฒนาฐานข้อมูลและสร้างแบบจำลองระบบเกษตรและแบบจำลองระบบนิเวศน์ในการสร้างและสะสมความเข้าใจความล้มเหลวขององค์ประกอบต่าง ๆ ของระบบฯ อาทิ องค์ประกอบด้านกายภาพ ด้านชีวภาพ และด้านสังคมเศรษฐกิจ นักศึกษาสามารถมีความเข้าใจเกี่ยวกับความล้มเหลวที่ดังกล่าวซึ่งเป็นองค์ความรู้ระดับสากล นักศึกษามีความเชื่อมั่นของกระบวนการวิจัยและพัฒนาตามกรอบงานวิจัยพัฒนา DSS การสะสมความเข้าใจที่ได้จากการดังกล่าว ทำให้นักศึกษาสร้างแบบจำลองระบบฯ และใช้ฐานข้อมูลร่วมกับแบบจำลองเพื่อคาดการณ์การเปลี่ยนแปลงของระบบนิเวศน์เมื่อสภาพแวดล้อม และ/หรือ เมื่อมีการตัดสินใจเพื่อเปลี่ยนแปลงการจัดการทรัพยากรดตามจุดประสงค์ของผู้เกี่ยวข้อง แบบจำลองระบบสามารถคาดการณ์ผลลัพธ์ที่จะเกิดขึ้นของแต่ละทางเลือกหรือแต่ละสถานการณ์ ผลงานวิจัยตามกรอบวิจัยพัฒนา DSS ทำให้นักศึกษาสามารถเสนอแนะทางเลือกเพื่อจัดการทรัพยากรดที่ยั่งยืนและเหมาะสมในระดับกลุ่มบ้าน แขวง เมือง เขตท้องที่ และประเทศของตน ซึ่งสหทัณฑ์ความสามารถขั้นสูงและระดับสากลของคณาจารย์ หลักสูตร และระบบการศึกษาด้านเกษตรและทรัพยากรธรรมชาติของไทยในการสนับสนุนการพัฒนาทรัพยากรบุคคลด้าน DSS

¹ from: STV <vilayvong2003@gmail.com>

to: attachaij@gmail.com
date: Sat, Nov 16, 2013 at 2:45 PM
subject: Thong Thoung Thai Program

Subject: Thong Thoung Thai Program

Dear Prof. Attachai,

I am now working with the Association for Rural Mobilization and Improvement. We are now facing a problem about database management system. I remembered that I used to practice using the *Thong Thoung Thai* Program with you and Aj. Jazz at Kalasin province one time. The program is advanced for database managing system. We are very appreciated you If you can share us on using this program.

Best regards,

Saythong VILAYVONG

Monitoring, Evaluation and Project Support Officer (MESO)

ASSOCIATION FOR RURAL MOBILISATION AND IMPROVEMENT (ARMI)

House No.310/21 Nalao village, Kaysone Phomvihan district, Savannakhet province, P.O.Box:1133

Tel/Fax: (856-41) 215017/260191 Mobile: (856-20) 22495119 Skype ID: kob.vilayvong

Email: Vilayvong2003@gmail.com; Office: normai@laotel.com; website <http://normai-site.org/en/>

ตารางที่ 1:

ชื่อ-สกุล นักศึกษา	ประเทศ ภูมิลำเนา	ระดับการศึกษา	ปีการศึกษา	ผลงานวิจัยด้าน DSS	อาจารย์ที่ปรึกษา/ หลักสูตร/ มหาวิทยาลัย	การนำใช้ผลงานวิจัย
1. Mr. Khomko THAMMAVONG	สปป. ลาว	ปริญญาโท	ม.ย. 52 – เม.ย. 54	<ul style="list-style-type: none"> ● Spatial/Household data of land use in Sanok Mungkong, Luang Prabang ● ปัจจัยที่มีผลต่อการเปลี่ยนแปลง ใช้เลื่อนлокย 	พศ.ดร. ดาวรุ อ่อง ประพ เกษตรศาสตร์เชิงระบบ (Agricultural Systems) เชียงใหม่	<ul style="list-style-type: none"> ● นำเสนอในการประชุมวิชาการดินและปุ๋ยแห่งชาติครั้งที่ 2 วันที่ 11-13 พฤษภาคม 2554 ณ ศูนย์การศึกษาและฝึกอบรม นาชาติ มหาวิทยาลัยแม่โจ้ ● กำลังพัฒนาอยู่ใน spatial database for landuse planning ใน ม.สุพานหุวงศ์
2. Mr. Nguyen Ngoc Son Hai	เวียดนาม	ปริญญาโท	ม.ย. 52 – ก.ค. 54	<ul style="list-style-type: none"> ● Household data on cadmium and lead in vegetable ● Factors affecting Cd & Pd accumulation 	พศ.ดร. ชาญชัย แสงชัย ลักษ์ เกษตรศาสตร์เชิงระบบ (Agricultural Systems) เชียงใหม่	<ul style="list-style-type: none"> ● Nguyen Ngoc Son Hai, Chanchai Sangchayoswat, Attachai Jintrawet, and Nguyen Ngoc Nong. 2011. Factors affecting lead accumulation in cultivated soil and vegetables in Tuc Duyen ward, Thai Nguyen city, Vietnam. <i>Vietnam Soil Science Journal</i>, 37: 43-48.
3. Mr. Phouhasack PHOUMMASONE	สปป. ลาว	ปริญญาโท	พ.ค. 53 – พ.ค. 55	<ul style="list-style-type: none"> ● Spatial/Household data of land use in Pak Ou, Luang Prabang ● ปัจจัยเชิงพื้นที่และสังคมที่มีผลต่อการเปลี่ยนแปลงการใช้ที่ดิน ● กลุ่มผู้ใช้งาน for landuse planning ใน Pak Ou 	รศ. ดร. เบญจพรรณ เอ กะลึงที่ เกษตรศาสตร์เชิงระบบ (Agricultural Systems) เชียงใหม่	<ul style="list-style-type: none"> ● นำเสนอในการประชุมวิชาการ The 1st ASEAN Plus Three Graduate Research Congress (AGRC 2012), 1-2 March 2012
4. Mr Anongsak PHACHOMPHONH	สปป. ลาว	ปริญญาโท	ต.ค. 52 – ก.ย. 55	<ul style="list-style-type: none"> ● Crop/household data on rainfed rice in Vientiane plain ● Factors affecting rice yield 	อ. ดร. นิลิต คำหล้า เกษตรศาสตร์เชิงระบบ (Systems Agriculture) ม.ขอนแก่น	<ul style="list-style-type: none"> ● นำเสนอในการประชุมระบบเกษตรแห่งชาติครั้งที่ 8 ระหว่างวันที่ 5-7 กันยายน พ.ศ. 2555 ณ มหาวิทยาลัยนครพนม และ ● ตีพิมพ์ในวารสารมหาวิทยาลัยนครพนม ปีที่ 2 (2555) ฉบับที่ ๒๔

ตารางที่ 1: (ต่อ)

ชื่อ-สกุล นักศึกษา	ประทศ ภูมิล้ำนา	ระดับการศึกษา	ปีการศึกษา	ผลงานวิจัยด้าน DSS	อาจารย์ที่ปรึกษา/ หลักสูตร/ มหาวิทยาลัย	การนำใช้ผลงานวิจัย
5. Dr. Bounthanh KEOBOUALPHA	สบป. ลาว	ปริญญาเอก	ม.ย. 52 – ธ.ค. 55 (สำเร็จการศึกษาก่อน กำหนด พ.ศ. 2556)	<ul style="list-style-type: none"> ● Spatial household data on Imperata grassland (IGL) in Nambak, Luang Prabang ● Factors influencing IGL infestation. ● Farmer's perception of IGL 	รศ. ดร. สุจินต์ สิมารักษ์ เกษตรศาสตร์เชิงระบบ (Systems Agricultural) ม. ขอนแก่น	<ul style="list-style-type: none"> ● Keoboualapha, Bounthanh, Thaworn Onpraphai, Attachai Jintrawet, Suchint Simaraks, and Anan Polthanee. 2013. Imperata Grassland Mapping in Northern Uplands of Lao PDR: Area, Distribution, Characteristics, and Implications for Slash-and-Burn Cultivation. <i>Southeast Asian Studies</i>, Vol. 2, No. 2, August 2013, pp. 383–399 ● <u>Forthcoming journal article</u>: Keoboualapha, Bounthanh et al. Farmer's Perceptions of <i>Imperata cylindrica</i> Infestation in a Slash and Burn Cultivation Area of Northern Lao PDR. <i>Southeast Asian Studies Journal</i>, in the December issue, Vol.2, No.3. ● <u>Forthcoming Chapter in Book by M. Cairns</u>: Keoboualapha, Bounthanh, Suchint Simaraks, and Attachai Jintrawet, <i>Imperata cylindrica</i> Infestation in northern Lao P.D.R: Spatial Distribution and Farmers' Management Strategies. ● กำลังพัฒนาอยู่ผู้ใช้งาน Spatial data & models in PAFO, Northern Laos.
6. Dr. Saythong VILAVONG	สบป. ลาว	ปริญญาเอก	พ.ย. 52 – ก.ย. 56	<ul style="list-style-type: none"> ● Experimental data on Lao's rice variety and Household data set on transforming rice production ● Evaluated CSM–CERES–Rice model for Laos' condition. ● Factors promoting commercialization of rice production 	ผศ. ดร. ปรเมศ บันเติง เกษตรศาสตร์เชิงระบบ (Systems Agricultural) ม. ขอนแก่น	<ul style="list-style-type: none"> ● Vilayvong, Saythong, Poramate Banterng, Aran Patanothai, and Kirk Pannangpetch. 2012. Evaluation of CSM–CERES–Rice in simulating the response of lowland rice cultivars to nitrogen application. <i>Australian Journal of Crop Science</i>, 6(11) 1534–1541. ● กำลังพัฒนาอยู่ผู้ใช้งาน CSM–CERES–Rice model ม. NUoL กรุงเวียงจัน และกสวผู้ใช้งาน 'ห้องทุ่งไถ夷' ในสภาคบ馔เพื่อ สนับสนุนและปรับปรุงชนบท แขวงวัฒนเขต สบป.ลาว

การสร้างเครื่องข่ายวิจัยและพัฒนา TRF-DSS

เนื่องจากความซับซ้อนของระบบเกณฑ์และระบบทรัพยากรธรรมชาติ เครื่องข่าย TRF-DSS เป็นกลไกหนึ่งของสก. เพื่อออกแบบและสร้างนวัตกรรมตามกระบวนการวิจัย DSS พร้อมกับการสร้างมูลค่าเพิ่มของผลงานวิจัยอย่างต่อเนื่อง โดยเน้นการใช้ผลงานวิจัย DSS วิเคราะห์ทางเลือกเพื่อสนับสนุนการตัดสินใจด้านทรัพยากรอย่างมีประสิทธิภาพ การวิจัยและพัฒนานวัตกรรม DSS ต้องมีองค์ความรู้และความเข้าใจตามพื้นฐานของแต่ละสาขาวิชา และประยุกต์ใช้ความเข้าใจดังกล่าวแบบบูรณาการเพื่อคาดการณ์การเปลี่ยนแปลงของระบบการเกณฑ์และระบบบินิเวศน์ บัณฑิตทั้งหมดท่านภายใต้การวิจัยและพัฒนาของโครงการ RDG52Q003 เป็นส่วนหนึ่งของเครื่องข่ายวิจัยและพัฒนา TRF-DSS ในประเทศไทย สปป. ลาวและประเทศเวียดนาม มีศักยภาพสูงมากในการขับเคลื่อนความร่วมมือด้านวิจัยและพัฒนาเพื่อสร้างองค์ความรู้วิชาการใหม่ ๆ และเชื่อมโยงกับการใช้งานเพื่อแก้ปัญหาของครัวเรือน ชุมชน จังหวัด/แขวง และระดับนโยบาย การสร้างเครื่องข่าย TRF-DSS ต้องอยู่บนหลักการและพื้นฐานของ DSS และระบบบินิเวศน์ ให้มีความยั่งยืนของระบบชุมชนมนุษย์และระบบบินิเวศน์

หลักการแรกของ DSS และระบบบินิเวศน์ ได้แก่องค์ประกอบในแต่ละลำดับชั้นของระบบมีความสัมพันธ์กันและต้องพึ่งพา กันอย่างเป็นธรรม พฤติกรรมและการเปลี่ยนแปลงขององค์ประกอบในระบบมีความเชื่อมโยงและมีความต่อเนื่องกัน ความยั่งยืนของระบบใหญ่ขึ้นกับความยั่งยืนขององค์ประกอบอยู่อย่าง ของระบบ กรณีของงานวิจัยและพัฒนา DSS นั้น ความยั่งยืนของระบบ DSS ซึ่งเป็นระบบใหญ่ขึ้นกับความสำเร็จในการออกแบบ การพัฒนาขององค์ประกอบอยู่อย่าง ได้แก่ ฐานข้อมูล แบบจำลองระบบหรือสมการแสดงความเชื่อมโยงกัน และการสร้างโปรแกรมเชื่อมโยงเพื่อสื่อสารกับผู้ใช้งาน เสริมให้เกิดความสำเร็จในการนำใช้ระบบ DSS เพื่อการแก้ปัญหาและส่งผลให้ระบบชุมชนมนุษย์และระบบบินิเวศน์ มีความยั่งยืนภายใต้สถานการณ์การลดลงของทรัพยากรธรรมชาติในมิติของขนาด มิติของปริมาณและมิติของคุณภาพ ประกอบกับมีต้นทุนสูงขึ้นในการนำทรัพยากรธรรมชาติมาใช้งานในการผลิตของระบบเกณฑ์และระบบสังคม การสร้างเครื่องข่าย TRF-DSS เป็นกลไกเสริมพัฒนาการของสังคมตามหลักการข้อแรก การที่นักศึกษาทั้งหมดท่านมีพัฒนาการด้าน DSS ให้แน่นหนึ่งจากเกิดความเข้าใจในหลักการแรกนี้ และมีความสามารถในการปรับกระบวนการรับรู้และกระบวนการคิด (shifts of perception and thinking) จากการรับรู้และการติดแบบแยกส่วนเป็นการติดแบบองค์รวม จากการพิจารณาเฉพาะองค์ประกอบแต่ละองค์ประกอบไปเป็นการพิจารณาและสร้างความเข้าใจเกี่ยวกับความล้มเหลวขององค์ประกอบของระบบ และนักศึกษาได้ฝึกทักษะและประสบการณ์ทำให้สามารถเปลี่ยนแนวคิดที่พิจารณาเฉพาะเนื้อหาของระบบฯ เป็นการพิจารณาฐานรูปแบบการเปลี่ยนแปลงของระบบ

หลักการที่สองของ DSS และระบบบินิเวศน์ ได้แก่การนำองค์ประกอบของระบบเกณฑ์และทรัพยากรธรรมชาติ และระบบบินิเวศน์มาประกอบเป็นระบบใหญ่ และทำความเข้าใจความสัมพันธ์ขององค์ประกอบภายใต้บริบทของระบบใหญ่ และให้ความสนใจกับสมบัติของระบบใหญ่มากกว่าสนใจองค์ประกอบแต่ละองค์ประกอบ กรณีวิทยานิพนธ์ของนักศึกษาทั้งหมดท่านได้แสดงให้เห็นความสามารถในการนำฐานข้อมูลครัวเรือนและฐานข้อมูลทรัพยากรบูรณาการเป็นระบบใหญ่ทำให้เกิดความสามารถสร้างความเข้าใจการเปลี่ยนแปลงของระบบใหญ่ได้

หลักการที่สามของ DSS และระบบบินิเวศน์ ได้แก่การนำใช้ฐานข้อมูลทรัพยากรเกณฑ์และธรรมชาติร่วมกับระบบ DSS ที่พัฒนาเพื่อการตอบคำถาม “what-if...?” หรือ “จะอะไรเกิดหาก...?” และผู้ใช้งานสามารถเห็นผลลัพธ์

ของกิจกรรมตัดสินใจใช้ทรัพยากรในการผลิตของระบบเกษตร กรณีวิทยานิพนธ์ของนักศึกษาทั้งหมดได้แสดงให้เห็นความสามารถดับเบิลเบื้องต้นในการนำใช้ฐานข้อมูลและระบบ DSS ในการตอบคำถามดังกล่าวในแต่ละบริบท อย่างไรก็ตาม หลักการที่สามนี้ส่วนใหญ่เป็นการกิจที่นักศึกษาของประเทศไทยนิพนธ์ของนักศึกษาเนื่องจากข้อจำกัดด้านเวลาที่ได้รับอนุมัติให้ ลาดีกิจฯต่อ

สรุปข้อเสนอแนะทิศทางวิจัยและพัฒนา DSS ในอนาคต

เพื่อให้ สกสว. และประเทศไทยมีเครือข่ายวิจัยและพัฒนา TRF-DSS เป็นกลไกในการผลิตงานวิจัยและเชื่อมโยงผู้ใช้งาน และนักวิจัย มีการนำใช้ระบบ DSS เพื่อการร่วมแก้ปัญหาการจัดการทรัพยากรเกษตรและธรรมชาติอย่างต่อเนื่อง ควร ดำเนินการดังต่อไปนี้

1. สนับสนุนทุนดัง สำนักประสานงานวิจัยพัฒนา TRF-DSS ครอบคลุมพื้นที่ประเทศไทยและกลุ่ม ประเทศในอนุภูมิภาคลุ่มน้ำโขง โดยเฉพาะใน สปป. ลาว และเวียดนามเนื่องจากมีเครือข่ายผู้เกี่ยวข้อง และทรัพยากรบุคคลด้าน DSS เป็นทุนเดิม
2. สนับสนุนทุนโครงการ วิจัยและพัฒนา ระบบ DSS สำหรับผู้ใช้งานใน 3 กลุ่ม ได้แก่ ผู้ใช้งานตาม ขอบเขตการปักธงของ ผู้ใช้งานตามขอบเขตระบบธรรมชาติ และผู้ใช้งานเพื่อแก้ปัญหาเฉพาะด้าน มี ผลงานวิจัยครอบคลุมพื้นที่ประเทศไทยและกลุ่มประเทศในอนุภูมิภาคลุ่มน้ำโขง โดยให้ทุนวิจัยเพื่อตอบ โจทย์ตามพันธกิจ 5 ด้านของ สกสว. ระหว่างปี พ.ศ. 2557-2560 โดยการเชื่อมโยงงานวิจัยและพัฒนาของ ฝ่ายต่าง ๆ ภายใต้โครงสร้างของ สกสว.

รายชื่อนักศึกษาและคณาจารย์ที่ปรึกษาวิทยานิพนธ์

1. ชื่อเรื่องวิทยานิพนธ์

การวิเคราะห์ข้อมูลเชิงพื้นที่เพื่อการวางแผนการใช้ประโยชน์ที่ดิน กลุ่มหมู่บ้านสะนกง
คุณ เมืองจอมเพชร แขวงหลวงพระบาง สาธารณรัฐประชาธิปไตยประชาชนลาว

ผู้เขียน

นาย คำโก้ ธรรมวงศ์

ปริญญา

วิทยาศาสตร์มหบัณฑิต (เกษตรศาสตร์) เกษตรศาสตร์เชิงระบบ

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ ดร. ถาวร อ่อนประไฟ

อาจารย์ที่ปรึกษาหลัก

ผู้ช่วยศาสตราจารย์ ดร. เยาวราช เชาวนพูนผล

อาจารย์ที่ปรึกษาร่วม

รองศาสตราจารย์ ดร. อรรถาชัย จินตะเวช

อาจารย์ที่ปรึกษาร่วม

2. ชื่อเรื่องวิทยานิพนธ์

ปัจจัยที่มีผลต่อการสะสมของแอดเมียร์และตะกั่วในระบบการผลิตผักในท้องที่ตุ๊ก ดูเยน
เมืองໄທเหจីយោ สาธารณรัฐสังคมนิยมเวียดนาม

ผู้เขียน

นาย เหវីយោ ហងขอบ ម៉ៅន ហាយ

ปริญญา

วิทยาศาสตร์มหบัณฑิต (เกษตรศาสตร์) เกษตรศาสตร์เชิงระบบ

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ ดร. ชาญชัย แสงชัยสวัสดิ์

อาจารย์ที่ปรึกษาหลัก

รองศาสตราจารย์ ดร. อรรถาชัย จินตะเวช

อาจารย์ที่ปรึกษาร่วม

ผู้ช่วยศาสตราจารย์ ดร. เยาวราช เชาวนพูนผล

อาจารย์ที่ปรึกษาร่วม

3. ชื่อเรื่องวิทยานิพนธ์

การประเมินการเปลี่ยนแปลงเชิงพื้นที่การใช้ประโยชน์ที่ดินในเขตพื้นที่ เมืองปากชู แขวง
หลวงพระบาง สาธารณรัฐประชาธิปไตยประชาชนลาว

ผู้เขียน

นาย พุทธศักดิ์ ภูมิมล松 2555.

ปริญญา

วิทยาศาสตร์มหบัณฑิต สาขาวิชาเกษตรเชิงระบบ บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รองศาสตราจารย์ ดร. เปญจพรณ เอกะสิงห์

อาจารย์ที่ปรึกษาหลัก

ผู้ช่วยศาสตราจารย์ ดร. ชาญชัย แสงชัยสวัสดิ์

อาจารย์ที่ปรึกษาร่วม

4. ชื่อเรื่องวิทยานิพนธ์ การเก็บเกี่ยวและปัจจัยที่มีอิทธิพลต่อผลผลิตข้าวในเขตพื้นที่ลุ่มภาคยั่งยืนของที่ราบ
เวียงจันทน์.

ผู้เขียน นาย อนงศ์กิตติ พะจอมพล.2555.

ปริญญา วิทยาศาสตร์มหาบัณฑิต สาขาวิชาเกษตรเชิงระบบ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น.

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

อาจารย์ ดร.นิสิต คำหล้า,

อาจารย์ที่ปรึกษาหลัก

รองศาสตราจารย์ ดร. สุจินต์ ลิมารักษ์

อาจารย์ที่ปรึกษาร่วม

5. ชื่อเรื่องวิทยานิพนธ์ การระบาดของหญ้าค้านพื้นที่การเกษตรแบบงานและเพา ในภาคเหนือ ของ สปป ลาว:
การกระจายเชิงพื้นที่ และความรับรู้ของเกษตรกร

ผู้เขียน นาย บุญทัน แก้วบัวลະພາ. 2555.

ปริญญาดุษฎีบัณฑิต สาขาวิชาเกษตรเชิงระบบ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รองศาสตราจารย์ ดร. สุจินต์ ลิมารักษ์,

อาจารย์ที่ปรึกษาหลัก

ศาสตราจารย์ ดร. อนันต์ พลชนะ,

อาจารย์ที่ปรึกษาร่วม

รองศาสตราจารย์ ดร. อรรถชัย จินตะเวช,

อาจารย์ที่ปรึกษาร่วม

ผู้ช่วยศาสตราจารย์ ดร. ถาวร อ่อนประไฟ

อาจารย์ที่ปรึกษาร่วม

6. ชื่อเรื่องวิทยานิพนธ์ การเปลี่ยนแปลงของการผลิตข้าวและการกำหนดทางเลือกในการจัดการผลิตข้าวนาปีใน
ทุ่งราบเวียงจันทร์ สปป.ลาวโดยใช้แบบจำลอง CSM-CERES-Rice

ผู้เขียน นาย สายทอง วิໄລวงศ์.2556.

ปริญญาดุษฎีบัณฑิต สาขาวิชาเกษตรเชิงระบบ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ ดร. ประเมศ บรรเทิง,

อาจารย์ที่ปรึกษาหลัก

ศาสตราจารย์ ดร.อารันต์ พัฒโนทัย,

อาจารย์ที่ปรึกษาร่วม

ผู้ช่วยศาสตราจารย์ ดร. เกริก บันเน่งเพ็ชร

อาจารย์ที่ปรึกษาหลัก

บทคัดย่อวิทยานิพนธ์และเอกสารวิชาการของนักศึกษา

1. บทคัดย่อ วิทยานิพนธ์เรื่อง การวิเคราะห์ข้อมูลเชิงพื้นที่เพื่อการวางแผนการใช้ประโยชน์ที่ดินกลุ่มหมู่บ้านลงนามงบดุล เมืองจอมเพชร แขวงหลวงพระบาง สาธารณรัฐประชาชนลาว ของ นายคำโก้ ธรรมวงศ์
2. เอกสารวิชาการนำเสนอที่ The 2nd National Soil and Fertilizer Conference ของ นายคำโก้ ธรรมวงศ์
3. บทคัดย่อ วิทยานิพนธ์เรื่อง ปัจจัยที่มีผลต่อการสะสมของแคลเซียมและตะกั่วในระบบการผลิตผักในท้องที่ตุ๊ก ดูเยน เมืองไก่เหงียง สาธารณรัฐสังคมนิยมเวียดนาม ของ Mr.Nguyen Ngoc Son Hai
4. เอกสารวิชาการ ของ Mr.Nguyen Ngoc Son Hai
5. บทคัดย่อ วิทยานิพนธ์เรื่อง การประเมินการเปลี่ยนแปลงเชิงพื้นที่การใช้ประโยชน์ที่ดินในเขตพื้นที่เมืองปากชู แขวงหลวงพระบาง สาธารณรัฐประชาชนลาว ของ นายพุทธศักดิ์ ภูมมະสอน
6. เอกสารวิชาการ ของ นายพุทธศักดิ์ ภูมมະสอน
7. บทคัดย่อ วิทยานิพนธ์เรื่อง การเก็บเกี่ยวและปัจจัยที่มีอิทธิพลต่อผลผลิตข้าวในเขตพื้นที่ลุ่มแม่น้ำคียนก้าฟนของที่ราบเวียงจันทน์ ของ นายอนงค์กิต พะยอมพล
8. เอกสารวิชาการ นำเสนอในการประชุมวิชาการระบบเกษตรแห่งชาติ ครั้งที่ 8 ของนายอนงค์กิต พะยอม พล
9. บทคัดย่อ วิทยานิพนธ์เรื่องการระบาดของหญ้าคาในพื้นที่การเกษตรแบบถาวรและเพา ในภาคเหนือ ของ สปป. ลาว: การกระจายเชิงพื้นที่ และความรับรู้ของเกษตรกร. วิทยานิพนธ์ปริญญาปรัชญาดุษฎีบัณฑิต ของ นายบุนทัน แก้วบัวลະພາ
10. เอกสารวิชาการ ของ นายบุนทัน แก้วบัวลະພາ
11. จดหมายตอบรับการตีพิมพ์งานวิจัยจาก Southeast Asian Studies ของ นายบุนทัน แก้วบัวลະພາ
12. บทคัดย่อ วิทยานิพนธ์เรื่อง การเปลี่ยนแปลงของการผลิตข้าวและการกำหนดทางเลือกในการจัดการผลิตข้าวนาเป็นพื้นที่ทั่วไปในสปป. ลาว โดยใช้แบบจำลอง CSM-CERES-Rise ของ นายสายทอง วิໄລวงศ์
13. เอกสารวิชาการ ของ นายสายทอง วิໄລวงศ์

ชื่อเรื่องวิทยานิพนธ์ การวิเคราะห์ข้อมูลเชิงพื้นที่เพื่อการวางแผนการใช้ประโยชน์ที่ดิน
กลุ่มหมู่บ้านสะนกมงคุณ เมืองจอมเพชร แขวงหลวงพระบาง
สาธารณรัฐประชาชนลาว

ผู้เขียน นายคำโก้ ธรรมวงศ์

ปริญญา วิทยาศาสตรมหาบัณฑิต (เกษตรศาสตร์) เกษตรศาสตร์เชิงระบบ

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ ดร.ถาวร อ่อนประไพ อาจารย์ที่ปรึกษาหลัก
ผู้ช่วยศาสตราจารย์ ดร.เยาวเรศ เชาวนพูนผล อาจารย์ที่ปรึกษาร่วม
รองศาสตราจารย์ ดร.อรรถชัย จินตะเวช อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

ในพื้นที่สูงของ สปป.ลาว การใช้ประโยชน์ที่ดินส่วนใหญ่เป็นการเกษตรกรรมแบบดั้งเดิม ที่รู้จักกันว่าเป็นการทำไร่เดือนลาย ซึ่งทำให้มีการเกิดขึ้นมาใหม่ของป่าไม้ที่เป็นกลุ่มใหญ่ในการรักษา ความยั่งยืนของผลผลิต การเกษตรกรรมแบบดั้งเดิมนี้ยังคงเป็นประเดิมที่เป็นผลกระทบในเชิงลบ ของหน่วยงานรัฐบาล ตามแผนแม่บททางการเกษตร (ปี ค.ศ. 2011 – 2015) ของ สปป.ลาว ได้กำหนดยุทธศาสตร์ด้านการป่าไม้ให้ลดพื้นที่การทำไร่เดือนลายภายในประเทศให้ได้ถึงร้อยละ 50 ในปี ค.ศ. 2009 และให้หมดไปภายในปี ค.ศ. 2010

การศึกษารังนี้ได้ประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศเพื่อวิเคราะห์ข้อมูลจากระยะไกลที่ครอบคลุมช่วงเวลาปี ค.ศ. 2008-2010 เพื่อจำแนกพื้นที่ไร่เดือนลายและการใช้ประโยชน์ที่ดิน ประเภทอื่น ๆ ในพื้นที่ศึกษา พื้นที่ศึกษาตั้งอยู่ในกลุ่มหมู่บ้านสะนกมงคุณ เมืองจอมเพชร แขวงหลวงพระบาง ครัวเรือนจำนวนทั้งหมด 66 ครัวเรือนในกลุ่มหมู่บ้าน ได้ถูกสัมภาษณ์ข้อมูลปัจจัยเศรษฐกิจ-สังคมซึ่งเป็นแรงขับเคลื่อนสาเหตุในการเปลี่ยนแปลงพื้นที่ไร่เดือนลาย

กลุ่มหมู่บ้านสะนกมงคุณมีพื้นที่รวมทั้งหมด 12,211.06 ไร่ (1,953.77 เฮกเตอร์) ตั้งอยู่ในเขตบ้านสะนกมงคุณ แขวงหลวงพระบาง จังหวัดหลวงพระบาง ประเทศลาว ห่างจากกรุงเทพมหานคร 280-660 เมตร ข้อมูลจากระยะไกลสามารถแสดงประเทศที่อยู่อาศัย Graduate School ตรวจสอบความถูกต้องแล้ว
๒๗ พ.ค. 2554
กัทรารินทร์ มหายศ

ประโยชน์ที่ดิน 7 ชนิด คือ พื้นที่ป่าถูกข้าวไร่และพืชไร่ ป่าผสมผลัดใบ ไร่เหล่า ที่นารัง สวนป่าไม้ สัก ป่าผลัดใบ และหมู่บ้าน การใช้ประโยชน์ที่ดิน 3 ประเภทแรกมีการเปลี่ยนแปลงมากสุด โดยในปี ค.ศ. 2008 มีการเปลี่ยนแปลงเป็นเนื้อที่ 556.6; 4716; และ 2,427 ไร่ ตามลำดับ ในปี ค.ศ. 2009 พื้นที่ป่าถูกข้าวไร่และพืชไร่เพิ่มขึ้น 30% คิดเป็นเนื้อที่ 1,164 ไร่ ป่าผสมผลัดใบลดลง 34.6% คิดเป็นเนื้อที่ 4,014.6 ไร่ และพื้นที่ไร่เหล่าเพิ่มขึ้น 5.7% คิดเป็นเนื้อที่ 2,539.2 ไร่ ในปี ค.ศ. 2010 เมื่อเทียบกับปี ค.ศ. 2009 พื้นที่ป่าถูกข้าวไร่และพืชไร่ และป่าผสมผลัดใบได้ลดลง 3.0% และ 7.8% ตามลำดับ ในขณะที่พื้นที่ไร่เหล่าเพิ่มขึ้น 11.8%

ปัจจัยที่มีผลต่อการเปลี่ยนแปลงพื้นที่ป่าถูกข้าวไร่และพืชไร่ คือจำนวนสามารถในครัวเรือน แรงงานในภาคการเกษตร ในปี ค.ศ. 2008 และจำนวนแปลงป่าถูกข้าวไร่และพืชไร่ ด้วยค่าสหสัมพันธ์ 0.518, 0.813, และ 0.770 ตามลำดับ ปัจจัยที่มีความสัมพันธ์อย่างมากกับพื้นที่ป่าถูกข้าวไร่และพืชไร่ ได้แก่ การเพิ่มขึ้นของจำนวนสามารถในครัวเรือนซึ่งได้เพิ่มพื้นที่ป่าถูกข้าวไร่และพืชไร่มากขึ้นภายใต้การทำไร่เดือนถอย

ข้อมูลทั้งหมดนี้สามารถสนับสนุนการวางแผนการใช้ประโยชน์ที่ดินของพื้นที่ศึกษาในกลุ่มหมู่บ้านชนกลุ่มคุณ เมืองจอมเพชร แขวงหลวงพระบาง และ สามารถใช้เป็นกรณีศึกษาของ สปป.ลาว ได้ต่อไป

ตรวจสอบความถูกต้องแล้ว

๒๗ พ.ค. ๒๕๕๔

มก.๗ ๑๘๗๙๙ ๘๘๘๘

Thesis Title Spatial Data Analysis for Land Use Planning at Sanokmongkhoun Village Group, Chomphet District, Luang Prabang Province, Lao PDR

Author Mr. Khamko Thammavong

Degree Master of Science (Agriculture) Agricultural Systems

Thesis Advisory Committee

Asst. Prof. Dr. Thaworn Onraphai	Advisor
Asst. Prof. Dr. Yaovarate Chaovanapoonphol	Co-advisor
Assoc. Prof. Dr. Attachai Jintrawet	Co-advisor

ABSTRACT

In uplands of Lao PDR, major land uses are traditional agriculture known as shifting cultivation, where forest regeneration is a mechanism to sustain its productivity. Concern about negative impacts of such cultural practices has been a consistent theme of government agencies. The agricultural master plan (C.E. 2011 – 2015) of Lao PDR determined a forest strategy to reduce the shifting cultivation areas by 50% in 2009 and to completely eliminate by 2010.

This study applies the Geo-Informatics technology to analyze remote sensed data, covering the period C.E.2008-2010, to identify shifting cultivation and other land use types in the study area. The study area is located in Sanok Mungkon village group, Chomphet district, Luang Prabang province. All 66 households in the village group were interviewed for socio-economic factors, the driving forces caused the changes of shifting cultivation areas.

The total area of Sanok Mungkon village group is 12,211.06 rai (1,953.77 ha) elevations from the mean sea level range between 280-660 meters. Remote sensing data reveals seven land use types, namely; upland rice and field crops, mixed deciduous forest, fallow

ตรวจสอบความถูกต้องแล้ว
๒๗ พ.ค. ๒๕๕๔
กัทรชาธินทร์ มหายศ

abandoned paddy field, teak plantations, dipterocarp forest, and village settlement. The first three landuse types are the most dynamic land use types, in 2008, the total areas were 556.6; 4,716; and 2,427 rai, respectively. In 2009, upland rice and field crops increased by 30% to a total of 1,164 rai, mixed deciduous forest decreased by 34.6% to a total of 4,014.6 rai, and fallow fields increased by 5.7% to a total of 2,539.2 rai. As compared to 2009, in 2010 upland rice and field crops and mixed deciduous forest decreased by 3.0% and 7.8%, respectively, whereas fallow fields increased by 11.8%.

Factors influencing the changes in upland rice and field crops are number of household members, farming labor forces in 2008, and parcels of upland rice and field crops with r-values of 0.518, 0.813, and 0.770, respectively. The factor is highly correlated with areas under upland rice and field crops, i.e., increased in number of household members increased upland rice and field crops areas under shifting cultivation.

These information can support in the land use planning of the study area in Sanok Mungkon village group, Chomphet district, Luang Prabang province, and can be a case study of Lao PDR afterward.

การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน และปัจจัยแรงขับเคลื่อนบางประการ
กรณีศึกษา: กลุ่มหมู่บ้านสะนกมุ่งคุณ เมืองจอมเพชร แขวงหลวงพระบาง
สาธารณรัฐประชาธิปไตยประชาชนลาว

Land Use Change and Some Driving Force Factors

**A Case Study: Sanokmongkhoun Village Group,
Comphet District, Luang Prabang Province, Lao PDR**

คำโก้ ธรรมวงศ์^{1*} ถาวร อ่อนประไฟ² และ เยาวเรศ เชawanพูนผล³

Khamko Thammavong¹ Thaworn Onraphai² Yaowarate Chawanapunphon³

¹ นักศึกษาปริญญาโทหลักสูตรเกษตรศาสตร์เชิงระบบ ศูนย์วิจัยเพื่อเพิ่มผลผลิตทางเกษตร คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่

¹ A master student of Agricultural System Program, Multiple Cropping Center, Fac. of Agriculture, Chiang Mai Univ.

² ภาควิชาพืชศาสตร์และทรัพยากรธรรมชาติ และศูนย์วิจัยเพื่อเพิ่มผลผลิตทางเกษตร คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่

² Dept. of Plant Science and Natural Resources, and Multiple Cropping Center, Fac. of Agriculture, Chiang Mai Univ.

³ ภาควิชาเศรษฐศาสตร์การเกษตรและส่งเสริมการเกษตร ศูนย์วิจัยเพื่อเพิ่มผลผลิตทางเกษตร คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่

³ Dept. of Agricultural Economic and Agricultural Extension, and Multiple Cropping Center, Fac. of Agriculture, Chiang Mai Univ.

*Corresponding author E-mail: thaworn.o@cmu.ac.th

บทคัดย่อ

การใช้ประโยชน์ที่ดินบนพื้นที่สูงใน สปป.ลาว ส่วนใหญ่เป็นการเกษตรกรรมแบบดั้งเดิมโดยการทำไร่เลื่อนลอย (shifting cultivation) ซึ่งเป็นปัญหาหลักต่อพื้นที่ทรัพยากรป่าไม้ของประเทศไทย ในปี 2005 รัฐบาล สปป.ลาว ได้กำหนดแผนยุทธศาสตร์ด้านการป่าไม้ให้ลดพื้นที่การทำไร่เลื่อนลอยภายในประเทศไทยให้ได้ถึงร้อยละ 50 ในปี 2009 และให้หมดไป (100 %) ภายในปี 2010 การศึกษาครั้งนี้ได้ประยุกต์ใช้เทคโนโลยีภูมิสารтех (Geo-Informatics technology) เพื่อวิเคราะห์เชิงพื้นที่ในด้านการใช้ประโยชน์ที่ดิน โดยเฉพาะทรัพยากรป่าไม้ และการเกษตรกรรมบนพื้นที่สูง และศึกษาสภาพการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินที่เกิดขึ้นภายในช่วงครึ่งหลังของแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว (ระหว่างปี 2008-2010) นอกจากนี้ ได้ศึกษา ความสัมพันธ์ระหว่างการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินโดยเฉพาะพื้นที่ไร่เลื่อนลอยที่เกิดขึ้นในช่วงครึ่งหลังของแผนฯ (ปี 2008-2010) กับปัจจัยบางประการทางด้านเศรษฐกิจ-สังคมของชุมชนและครัวเรือนที่เป็นแรงขับเคลื่อน (driving force) ทำให้เกิดการเปลี่ยนแปลงของพื้นที่ไร่เลื่อนลอย

ผลการศึกษา แสดงถึงแผนยุทธศาสตร์ด้านการป่าไม้ สปป.ลาว (ปี 2005-2010) ยังไม่ประสบผลสำเร็จ โดยเมื่อเวลาสิ้นสุดของแผนฯ (ปี 2010) ในพื้นที่ศึกษา พบว่า พื้นที่ป่าลูกข้าวไร่และพืชไร่ (Upr/Fc) และพื้นที่ไร่เหล่า (Fa) กลับเพิ่มขึ้นเป็นจำนวน 78 เฮกตาร์ (9.5%) และ 59.7 เฮกตาร์ (7.3%) ตามลำดับ นอกจากนี้ ยังพบด้วยว่าปัจจัยแรงขับเคลื่อนที่สำคัญที่ทำให้เกิดการเพิ่มขึ้นของพื้นที่ป่าลูกข้าวไร่และพืชไร่ในพื้นที่ศึกษาคือ ความพอเพียงของข้าวสำหรับการบริโภคในครัวเรือน ทั้งหมดนี้ เพื่อใช้สนับสนุนในการวางแผนการใช้ประโยชน์ที่ดินของพื้นที่ศึกษาอย่างหมุนเวียนและนําสู่การอนุรักษ์ป่า สามารถใช้เป็นกรณีศึกษาของ สปป.ลาว ได้ต่อไป

คำสำคัญ: การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน การทำไร่เลื่อนลอย แรงขับเคลื่อนทางเศรษฐกิจ-สังคม

ABSTRACT

Land uses on upland in Lao PDR are mostly traditional agriculture by conducting shifting cultivation which is the major problem to forest resource areas of the country. In 2005, the government of Lao PDR determined the forest strategy to reduce the shifting cultivation areas within the country to 50 % in 2009 and to completely terminate (100%) within 2010. This study applies the Geo-Informatics technology to analyze spatially in land use, particularly agricultural and forest resources on upland, and study the conditions of land use changes occurred within the second half of the Lao PDR's forest strategic plan (during 2008 – 2010). In addition, to study the relationship between land use change particularly the shifting cultivation areas happened in the second half of the plan (in 2008 – 2010) and some socio-economic factors of communities and households as the driving forces caused the changes of shifting cultivation areas.

As a result, the study shows that the Lao PDR's forest strategic plan (during 2005 – 2010) is still not successful. At the end of the plan (in 2010), in the study area, found that, upland rice and field crop (Upr/Fc) and fallow (Fa) areas where are the areas in the process of shifting cultivation are still remain, and conversely, increased from 2008 to 2010, of 78 ha (9.5%) and 59.7 ha (7.3%), respectively. In addition, also found that, the major driving force factors caused increasing of upland rice and field crop areas in the study area is the rice sufficiency for consumption in households. These are to support in the land use planning of the study area in Sanok Mungkon village group, Chomphet district, Luang Prabang province, and can be a case study of Lao PDR afterward.

Keywords: Land use change, Shifting cultivation, Socio-economic driving forces

บทนำ

ใน สปป.ลาว การใช้ประโยชน์ที่ดินบนพื้นที่สูงส่วนใหญ่เป็นการเกษตรกรรมแบบดั้งเดิม โดยวิธีการทำไร่เลื่อนลอย (shifting cultivation) Thomas (2003) กล่าวว่า ในเขตนิเวศพื้นที่สูงของภูมิภาคเอเชียตะวันออกเฉียงใต้ (Montane Mainland Southeast Asia: MMSEA) ระบบนิเวศการเกษตรบนที่สูงของ สปป.ลาว เป็นลักษณะของการทำไร่เลื่อนลอยมาช้านานโดยใช้ช่วงเวลาการฟื้นกลับคืนของพื้นที่ป่าไม้ในการดำเนินอยู่ของผลผลิตทางเกษตรอย่างยั่งยืน มีชนเผ่าที่ทำการเกษตรแบบไร่เลื่อนลอยนี้หลักหลายชาติพันธุ์ในพื้นที่ต่าง ๆ ของ สปป.ลาว ประมาณการณ์ว่าประชากรร้อยละ 39 ของ สปป.ลาว มีวิถีชีวิตที่ต้องพึ่งพิงอาศัยการเกษตรแบบการทำไร่เลื่อนลอย

ตามแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว (Laos Ministry of Agriculture and Forestry, 2010) ได้อ้างถึงการเกษตรกรรมแบบการทำไร่เลื่อนลอยที่ยังคงเป็นปัญหาหลักต่อการสูญเสียพื้นที่ทรัพยากรป่าไม้ของประเทศ สปป.ลาว มีนโยบายที่จะหยุดการทำเกษตรกรรมแบบไร่เลื่อนลอยและพัฒนารูปแบบการเกษตรแบบยั่งยืนโดยผ่านแผนการพัฒนาชนบทและการจัดสรรที่ดินทำกินให้กับเกษตรกรจากบนที่สูงลงมาสู่พื้นที่ราบ โดยรัฐบาล สปป.ลาว ได้กำหนดให้ลดพื้นที่การทำไร่เลื่อนลอยภายในประเทศให้เหลือร้อยละ 50 ในปี 2009 และให้หมดไป (100 %) ภายในปี 2010 อย่างไรก็ตาม การปฏิบัติให้บรรลุได้ตามแผนยุทธศาสตร์ดังกล่าวยังไม่สามารถประสบผลสำเร็จอย่างสมบูรณ์ จากการศึกษาที่ผ่านมา (Messerli, 1997) พบว่าเกษตรกรส่วนใหญ่ที่เคยทำการเกษตรแบบไร่เลื่อนลอยได้หันมาทำการเกษตรในระบบไร่หมุนเวียนแบบยั่งยืน (sustainable rotational system) เพิ่มมากขึ้น แต่ยังคงมีเกษตรกรที่กระจายอยู่ทั่วประเทศประมาณร้อยละ 17 ของประชากรทั้งหมดที่ยังคงทำการเกษตรแบบไร่เลื่อนลอยและใช้พื้นที่ทำกินอยู่บนพื้นที่สูงในเขตต่าง ๆ อยู่ไม่น้อยกว่าร้อยละ 29 ของพื้นที่ประเทศ

แขวงหลวงพระบาง เป็นจังหวัดหนึ่งของ สปป.ลาว มีเนื้อที่ทั้งหมด 16,875 ตร.กม. มีพลาเมืองประมาณ 350,000 คน ตั้งอยู่บริเวณตอนกลางของภาคเหนือของประเทศไทย ห่างจากเวียงจันทน์ไปทางเหนือประมาณ 425 กม. ตัวเมืองหลวงพระบางตั้งอยู่ริมแม่น้ำโขง เป็นเมืองเก่าแก่มีอายุหลายพันปีและเคยเจริญรุ่งเรืองในช่วงศตวรรษที่ 16-19 ปัจจุบันเมืองหลวงพระบางเป็นที่รู้จักไปทั่วโลกในฐานะเป็นหนึ่งในเมืองมรดกโลกทางวัฒนธรรมเมื่อปี 1995 (UNESCO, 2004) ทำให้หลวงพระบางโดยเฉพาะตัวเมืองและบริเวณโดยรอบเปลี่ยนแปลงไป ซึ่งเป็นผลดีต่อเศรษฐกิจของตัวเมืองหลวงพระบางและพื้นที่ใกล้เคียง Thomas, et. al (2008) กล่าวว่า แขวงหลวงพระบางได้ถูกเปิดโอกาสไปเป็นตลาดผลผลิตการเกษตรตลอดจนธุรกิจที่เกี่ยวข้องในขณะเดียวกันรัฐบาล สปป.ลาว กำลังดำเนินนโยบายและโครงการต่าง ๆ โดยมุ่งหวังที่จะหยุดวิธีการเพาะปลูกแบบการทำไร่เลื่อนลอย ซึ่งเป็นองค์ประกอบหนึ่งที่สำคัญของวิถีชีวิตแบบดั้งเดิมของประชาชนชาวลาว และต้องการที่จะย้ายหมู่บ้านของชนกลุ่มน้อยในพื้นที่ป่าไม้และพื้นที่สูงที่อยู่ห่างไกลไปรวมเข้าไว้ด้วยกันในพื้นที่ราบแห่งใหม่โดยมุ่งหวังที่จะให้เกษตรกรเหล่านั้นปรับเปลี่ยนวิธีการปลูกพืชไปเป็นการเกษตรกรรมแบบเข้มข้นในเชิงการค้า

การศึกษานี้ประยุกต์ใช้เทคโนโลยีภูมิสารтех (Geo-Informatics technology) ทำการวิเคราะห์ข้อมูลเชิงพื้นที่เพื่อศึกษาสภาพพื้นที่การใช้ประโยชน์ที่ดินและสิ่งปลูกคุณที่ดิน โดยเฉพาะทรัพยากรป่าไม้และการเกษตรกรรมบนพื้นที่สูง ที่เกิดขึ้นในแต่ละปีในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว จนถึงเมื่อสิ้นสุดเวลาของแผน ๆ (ปี 2008 - 2010) และศึกษาลักษณะการเปลี่ยนแปลงการใช้

ประโยชน์ที่ดินและสิ่งปักคลุมที่ดินที่เกิดขึ้นในระหว่างปีและภาพรวมในช่วงครึ่งหลังของการดำเนินแผนฯ (ปี 2008-2010) ตลอดจนศึกษาความสัมพันธ์ระหว่างการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของพื้นที่ไร่เลื่อนลอยที่เกิดขึ้นในช่วงครึ่งหลังของการดำเนินแผนฯ (ปี 2008-2010) กับปัจจัยทางด้านเศรษฐกิจ-สังคมของชุมชนและครัวเรือนบางประการ ที่เป็นแรงขับเคลื่อน (driving force) ทำให้เกิดการเปลี่ยนแปลงพื้นที่ไร่เลื่อนลอย นอกจากนี้ ยังได้ทำการวิเคราะห์สถานภาพของพื้นที่เกษตรกรรมบนที่สูงในปัจจุบัน (ปี 2010) ตามข้อกำหนดการใช้พื้นที่ตามลักษณะภูมิประเทศ (Laos Ministry of Agriculture and Forestry, 2010) ทั้งนี้ เพื่อช่วยในการวางแผนการใช้ประโยชน์ที่ดินของพื้นที่ศึกษาอย่างลุ่มหมู่บ้านสะนกมุกคุณ เมืองจอมเพชร แขวงหลวงพระบาง และใช้เป็นกรณีศึกษาของ สปป.ลาว ได้ต่อไปโดยมี วัตถุประสงค์

1. ศึกษาและอธิบายสภาพพื้นที่การใช้ประโยชน์ที่ดิน ทรัพยากรป่าไม้ และการเกษตรกรรมบนพื้นที่สูง ที่เกิดขึ้นในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว จนถึงเมื่อสิ้นสุดเวลาของแผนฯ (ปี 2008-2010)

2 ศึกษาลักษณะการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินที่เกิดขึ้น ในช่วงครึ่งหลังของการดำเนินแผนฯ (ปี ภาพรวมปี 2008-2010) ตลอดจนศึกษาความสัมพันธ์ระหว่างการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของพื้นที่ไร่เลื่อนลอย กับปัจจัยทางด้านเศรษฐกิจ-สังคมของชุมชนและครัวเรือนบางประการ ที่อาจเป็นแรงขับเคลื่อน (driving force) ทำให้เกิดการเปลี่ยนแปลงพื้นที่ไร่เลื่อนลอย

วิธีการศึกษา

1 พื้นที่ศึกษา

พื้นที่ศึกษาอยู่ที่บริเวณกลุ่มหมู่บ้านสะนกมุกคุณ เมืองจอมเพชร แขวงหลวงพระบาง สปป.ลาว ตั้งอยู่บริเวณละติจูดที่ $19^{\circ} 56' 58''$ ถึง $19^{\circ} 60' 46''$ เหนือ และลองจิจูดที่ $102^{\circ} 12' 42''$ ถึง $102^{\circ} 14' 20''$ ตะวันออก อยู่สูงจากระดับน้ำทะเลปานกลาง (Mean Sea Level: MSL) ระหว่าง 320 – 718 เมตร ซึ่งประกอบด้วย 3 หมู่บ้าน คือ บ้านสีมุกคุณ บ้านสะนก และบ้านด่าน มีประชากร 353 คน และจำนวนครัวเรือน 66 ครัวเรือน พื้นที่ศึกษามีเนื้อที่ประมาณ 1,953.77 เสกตรัตร์ หรือประมาณ 12211.06 ไร่

2 ขั้นตอนการศึกษา

(1) การพัฒนาฐานข้อมูลเชิงพื้นที่: ฐานข้อมูลการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดิน

ใช้เทคนิคการสำรวจข้อมูลจากระยะไกล (Remote Sensing) ทำการจำแนกข้อมูลการใช้ประโยชน์ที่ดิน ทรัพยากรป่าไม้ และพื้นที่เกษตรกรรม ด้วยข้อมูลภาพดาวเทียมรายละเอียดสูง (SPOT-4, และ ALOS) ที่บันทึกข้อมูลของพื้นที่ศึกษาในช่วงเวลาการเตรียมแปลงเกษตรกรรมของปี 2008 และ 2010 ตามลำดับ โดยข้อมูลปี 2008 ใช้วิธีการจำแนกแบบไม่ควบคุม (unsupervised classification) และข้อมูลปี 2010 ใช้วิธีการจำแนกแบบควบคุม (supervised classification) ผลการจำแนกถูกตรวจสอบค่าความถูกต้อง (accuracy assessment) ด้วยข้อมูลภาคสนามโดยใช้วิธีการคำนวณ Confusion Matrix และ Kappa Statistics (KHAT) (Congalton, 1991; Chust, et al., 2004) ข้อมูลการใช้ประโยชน์ที่ดินของทั้ง 3 ช่วงเวลาถูกนำมาใช้แสดงและอธิบายลักษณะการใช้ประโยชน์ที่ดินและชนิดพืชพรรณที่ปักคลุมพื้นที่ โดยเฉพาะทรัพยากรป่าไม้และการเกษตรกรรมบนพื้นที่สูง และนำมาวิเคราะห์เพื่ออธิบายการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินและสิ่งปักคลุม

(LULC) ในช่วงระหว่างการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว (ปี 2008 และเมื่อสิ้นสุดเวลาของแผน ปี 2010)

(2) การสำรวจและเก็บรวบรวมข้อมูลภาคสนาม

การสำรวจและเก็บรวบรวมข้อมูลภาคสนาม ดำเนินการในช่วงเดือน เม.ย.-พ.ค. 2010 โดยแบ่งข้อมูลที่ทำการสำรวจเก็บข้อมูลออกเป็น 2 ประเภท คือ

(2.1) ข้อมูลการใช้ประโยชน์ที่ดิน

สำรวจและเก็บรวบรวมข้อมูลการใช้ประโยชน์ที่ดินและสิ่งปลูกสร้างในพื้นที่ศึกษา โดยใช้แบบบันทึกข้อมูลและเครื่องมือกำหนดตำแหน่งด้วยดาวเทียม (GPS) ทั้งนี้ เพื่อนำมาใช้เป็นข้อมูลสนับสนุนการจำแนกการใช้ประโยชน์ที่ดินรวมถึงการตรวจสอบค่าความถูกต้อง

(2.2) ข้อมูลเศรษฐกิจ-สังคมของชุมชนและครัวเรือน

สำรวจและเก็บรวบรวมข้อมูลสภาพเศรษฐกิจ-สังคมและครัวเรือนของประชากรและเกษตรกรในพื้นที่ศึกษา โดยใช้แบบสัมภาษณ์จำนวนทั้งหมด 66 ครัวเรือน ข้อมูลที่สัมภาษณ์ได้แก่ เพศ อายุ ระดับการศึกษา จำนวนสมาชิกครัวเรือน ลักษณะบ้านเรือนที่อยู่อาศัย ทรัพย์สินในครัวเรือน พื้นที่ทำการเกษตร วิธีการทำเกษตรกรรม รายได้และรายจ่ายของการประกอบอาชีพปัจจุหาและอุปสรรคในการประกอบอาชีพการเกษตร จำนวนและขนาดพื้นที่ทำการเกษตร ที่นา ที่สวน จำนวนแรงงาน ระยะทางจากหมู่บ้าน ระยะทางจากเส้นทางหลัก ประเพณีและความเชื่อ เป็นต้น

(3) การวิเคราะห์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินและสิ่งปลูกสร้างที่ดิน (LULC)

ทำการวิเคราะห์ข้อมูลการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินด้วยพังชันก์ Change Detection ของโปรแกรมจัดการข้อมูลภาพดาวเทียม ERDAS Imagine 9.2 (Leica, 2006) เป็นข้อมูลบันทึกช่วงระหว่างการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว (ปี 2008 และ จนถึงเมื่อสิ้นสุดเวลาของแผน ปี 2010) โดยจัดทำเป็นแผนที่แสดงการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของช่วงปี 2008– 2010 เพื่อศึกษาชนิด เนื้อที่ และภาพรวมของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินเมื่อสิ้นสุดเวลาการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของ สปป.ลาว ตารางการวิเคราะห์การเปลี่ยนแปลง (change matrix) ของ FAO (2006) ได้ถูกนำมาใช้ในการศึกษาชนิดและเนื้อที่ของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในแต่ละปี โดยอัตราการเปลี่ยนแปลงรวมของการใช้ประโยชน์ที่ดินในแต่ละปี สามารถคำนวณได้จาก

$$Luse_CR = \left[\sum_{ij}^n (\Delta A_{i-j} / A_i) \right] \times (1/t) \times 100\% \quad (1)^*$$

โดยที่ $Luse_CR$ คืออัตราการเปลี่ยนแปลง (change rate) การใช้ประโยชน์ที่ดินของช่วงเวลา t

A_i คือ เนื้อที่ของการใช้ประโยชน์ที่ดินชนิด i (class i) ณ เวลาที่เริ่มติดตามการเปลี่ยนแปลง

ΔA_{i-j} คือ เนื้อที่รวมของการใช้ประโยชน์ที่ดินชนิด i (class i) ที่ถูกเปลี่ยนไปเป็นการใช้ประโยชน์ที่ดินชนิดอื่น ๆ

n คือ จำนวนชนิดการใช้ประโยชน์ที่ดิน

สำหรับอัตราการเปลี่ยนแปลงของชนิดการใช้ประโยชน์ที่ดินในระหว่างช่วงเวลาที่ติดตามการเปลี่ยนแปลง คำนวณได้จาก

$$Type_CR = (A_i - UA_i) / A_i / (T_2 - T_1) \times 100\% \quad (2)**$$

การประชุมวิชาการดินและปุ๋ยแห่งชาติครั้งที่ 2 วันที่ 11-13 พฤษภาคม 2554

ณ ศูนย์การศึกษาและฝึกอบรมนานาชาติ มหาวิทยาลัยแม่โจ

โดยที่ Type_CR คือ อัตราการเปลี่ยนแปลง (change rate) ของการใช้ประโยชน์ที่ดินชนิด i ในช่วงเวลาติดตามการเปลี่ยนแปลง T1 ถึง T2
 A_i คือ เนื้อที่ของการใช้ประโยชน์ที่ดินชนิด i (class i) ณ เวลาที่เริ่มติดตามการเปลี่ยนแปลง
 UA_i คือ เนื้อที่ของการใช้ประโยชน์ที่ดินชนิด i (class i) ที่ยังคงไม่เปลี่ยนแปลง (unchanged) ในช่วงเวลาติดตามการเปลี่ยนแปลงนี้
 $(A_i - UA_i)$ คือ เนื้อที่ของการใช้ประโยชน์ที่ดินชนิด i (class i) ที่เปลี่ยนแปลงไป

นอกจากนี้ ยังได้ทำการศึกษาความรุนแรงของการใช้ประโยชน์ที่ดินในแต่ละปี (land use intensity) และระดับการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในช่วงเวลาหนึ่ง (degree of land use change) โดยความรุนแรงของการใช้ประโยชน์ที่ดินในแต่ละปีคำนวณได้จาก (Lai et al., 2002; He et al., 2002) ดังนี้:

$$I = 100 \times \sum_{i=1}^n (G_i \times C_i) \quad (3)$$

โดยที่ I คือ ค่าดัชนีความรุนแรงของการใช้ประโยชน์ที่ดิน (land use intensity index) ของพื้นที่นั้น ๆ

G_i คือ ค่าลำดับคะแนนการเปลี่ยนแปลงสำหรับการใช้ประโยชน์ที่ดินชนิด i

C_i คือ ร้อยละของเนื้อที่การใช้ประโยชน์ที่ดินชนิด i ที่ถูกจัดลำดับคะแนนการเปลี่ยนแปลง n คือ จำนวนชนิดของการใช้ประโยชน์ที่ดิน

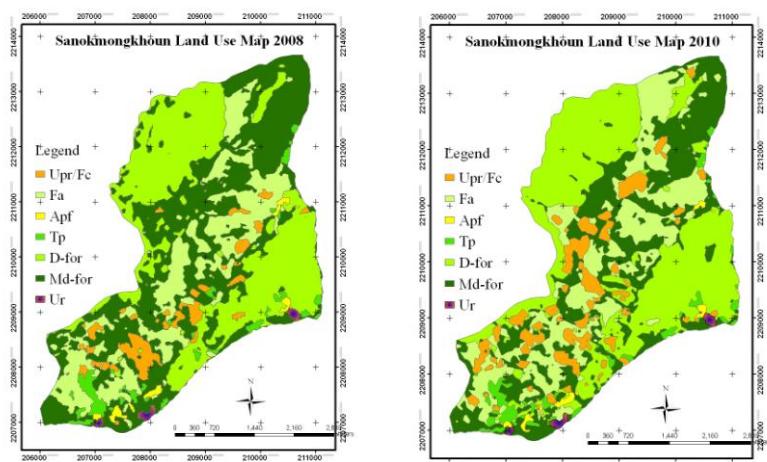
สำหรับระดับการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในช่วงเวลาหนึ่ง (degree of land use change) คำนวณได้จากค่าพารามิเตอร์ระดับการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน (Quan, et al., 2006) ดังนี้:

$$\Delta I_{b-a} = I_b - I_a \quad (4)$$

โดยที่ ΔI_{b-a} คือ ค่าพารามิเตอร์ระดับการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน

$I_b - I_a$ คือ ค่าดัชนีความรุนแรงของการใช้ประโยชน์ที่ดิน ณ เวลา b และ a ตามลำดับ

ΔI_{b-a} คือเป็นค่าชี้วัดระดับการพัฒนาของพื้นที่ ซึ่งคิดมาจากความรุนแรงของการเปลี่ยนแปลงสำหรับการใช้ประโยชน์ที่ดิน ณ ช่วงเวลาหนึ่ง ๆ กล่าวคือ หาก $\Delta I_{b-a} > 0$ หมายความว่า การใช้ประโยชน์ที่ดินของพื้นที่นั้นมีการเปลี่ยนแปลงอย่างต่อเนื่องไปตามทิศทางของการพัฒนาที่เพิ่มมากขึ้นตามลำดับของค่าดัชนี และในทางตรงกันข้าม หาก $\Delta I_{b-a} < 0$ หมายความว่า การใช้ประโยชน์ที่ดินไม่มีการเปลี่ยนแปลงไปตามทิศทางของการพัฒนา


(4) การศึกษาปัจจัยแรงขับเคลื่อนที่ทำให้เกิดการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน

ทำการวิเคราะห์สหสัมพันธ์ (correlation) เพื่อศึกษาความสัมพันธ์ระหว่างการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของพื้นที่ไร่เลื่อนลอย (ข้าวไร่และพืชไร่; Upr/Fc) ที่เกิดขึ้นในช่วงหลังของการดำเนินแผนฯ (ปี 2008-2010) กับปัจจัยทางด้านเศรษฐกิจ-สังคมของชุมชนและครัวเรือนบางประการ ที่คาดว่าจะเป็นแรงขับเคลื่อน (driving force) ทำให้เกิดการเปลี่ยนแปลงพื้นที่ไร่เลื่อนลอย

ผลการศึกษา

1. ฐานข้อมูลการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดิน

ผลการจำแนกข้อมูลการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดินของพื้นที่ศึกษาด้วยข้อมูลภาพดาวเทียมรายละเอียดสูง (SPOT-4, THEOS และ ALOS) ที่บันทึกข้อมูลของพื้นที่ศึกษาในช่วงเวลาการเตรียมแปลงเกษตรกรรมของปี 2008, 2009 และ 2010 ตามลำดับ โดยข้อมูลปี 2008 ใช้วิธีการจำแนกแบบไม่ควบคุม (Unsupervised Classification) และข้อมูลปี 2009 และ 2010 ใช้วิธีการจำแนกแบบควบคุม (supervised classification) สามารถแบ่งการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดินออกเป็น 7 ประเภทใหญ่ คือ ข้าวไร่และพืชไร่ (upland rice and field crop; Upr/Fc) ที่นารัง (abandoned paddy field; Apf) สวนปาไม้สัก (teak plantation; Tp) ไร่เหล่า (fallow; Fa) ป่าเต็งรัง (dipterocarp forest; D-for) ป่าเบญจพรรณ (mixed deciduous forest; Md-for) และ หมู่บ้าน (urban; Ur) ภาพที่ 1 และตารางที่ 1

ภาพที่ 1 แผนที่ผลการจำแนกการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดิน

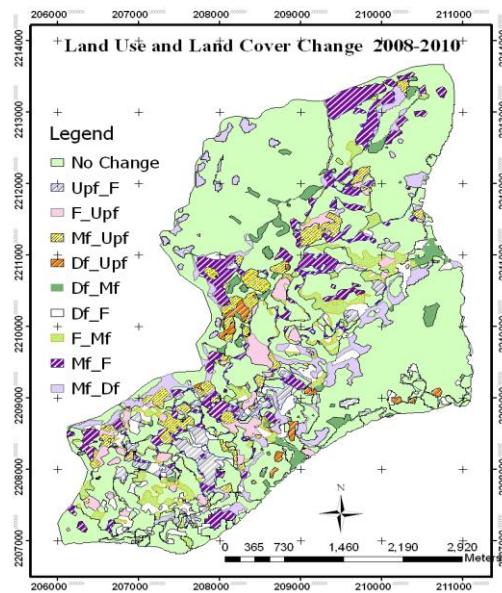
ตารางที่ 1 เนื้อที่การใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดิน ในปี 2008 และ 2010 ตามลำดับ

Land use type	Area (ha)				Change (ha)	Remark
	2008	%	2010	%		
Upland rice and Field crop (Upr/Fc)	89.08	4.56	166.56	8.53	77.48	Increase
Abandoned paddy field (Apf)	17.82	0.91	15.27	0.78	-2.55	Decrease
Teak Plantation (Tp)	56.64	2.90	56.48	2.89	-0.17	Increase
Fallow (Fa)	388.28	19.87	485.54	24.85	97.26	Increase
Dipterocarp forest (D-for)	638.14	32.66	630.02	32.25	-8.12	Decrease
Mixed Deciduous forest (Md-for)	754.56	38.62	590.65	30.23	-163.90	Decrease
Urban (Ur)	9.26	0.47	9.26	0.47	0.00	
Total	1953.77	100.00	1953.77	100.00		

ผลการจำแนกถูกต้องตรวจสอบค่าความถูกต้อง (accuracy assessment) ด้วยข้อมูลภาคสนามโดยใช้วิธีการคำนวณ Confusion Matrix และ Kappa Statistics (KHAT) (Congalton, 1991; Chust, et al., 2004) ดังแสดงตัวอย่างวิธีการคำนวณในตารางที่ 2 และตารางที่ 3 แสดงผลการตรวจสอบค่าความถูกต้องของการจำแนกการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดินของทั้ง 2 ปี (2008 และ 2010) ตามลำดับ

ตารางที่ 2 ตารางตรวจสอบค่าความถูกต้องการจำแนกการใช้ประโยชน์ที่ดิน ปี 2008

Land use	Upr/Fc	Apf	Tp	Fa	D-for	Md-for	Ur	Total	UA (%)	PA (%)	KHAT
Upr/Fc	70	1	1	0	2	1	0	75	93.33	83.33	0.9201
Apf	1	40	2	0	1	0	0	44	88.89	95.00	0.8771
Tp	0	2	75	3	0	3	0	83	90.36	90.00	0.8820
Fa	0	0	1	65	2	1	0	69	94.20	96.00	0.9307
D-for	3	0	1	2	60	7	0	73	82.19	89.00	0.7898
Md-for	0	0	4	5	5	55	0	69	79.71	75.00	0.7623
Ur	0	1	0	0	0	0	15	16	93.75	99.00	0.9354
Total	76	44	84	75	70	67	15	429	Overall ac.	88.58	0.8673


ตารางที่ 3 ผลการตรวจสอบค่าความถูกต้องการจำแนกการใช้ประโยชน์ที่ดินปี 2008 และ 2010

Land use	2008			2010		
	UA (%)	PA (%)	KHAT	UA (%)	PA (%)	KHAT
Upr/Fc	93.33	83.33	0.9201	92.39	83.33	0.9072
Apf	88.89	95.00	0.8771	89.55	95.00	0.8796
Tp	90.36	90.00	0.8820	79.78	90.00	0.7603
Fa	94.20	96.00	0.9307	85.14	96.00	0.8255
D-for	82.19	89.00	0.7898	84.75	89.00	0.8238
Md-for	79.71	75.00	0.7623	85.90	75.00	0.8304
Ur	93.75	99.00	0.9354	92.31	99.00	0.9212
Total	Overall ac.	88.65	0.8673	Overall ac.	86.81	0.8476

2 การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินและสิ่งปักคลุมที่ดิน (LULC)

(1) การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในระหว่างปีในช่วงครึ่งหลังของการดำเนินแผนฯ

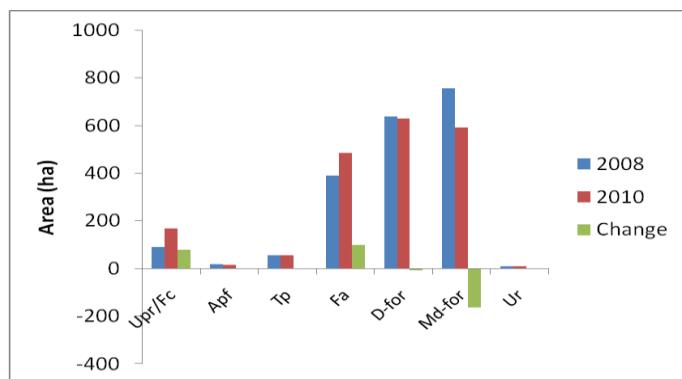
ผลการวิเคราะห์ข้อมูลการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินด้วยพังชันก์ Change Detection ของโปรแกรมจัดการข้อมูลภาพดาวเทียม ERDAS Imagine 9.2 (Leica, 2006) ได้จัดทำเป็นแผนที่แสดงการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในระหว่างปีในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ปี 2008– 2010 เพื่อศึกษาชนิด เนื้อที่ อัตราการเปลี่ยนแปลงรวม (Luse_CR) และอัตราการเปลี่ยนรายชนิด (Type_CR) ภาพที่ 4 แสดงการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในช่วงปี 2008 – 2010

ภาพที่ 4 การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในช่วงปี 2008– 2010

(2) การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในภาพรวมในช่วงครึ่งหลังของการดำเนินแผนฯ

ผลการวิเคราะห์ข้อมูลการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ได้จัดทำเป็นแผนที่แสดงการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในภาพรวมในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้เพื่อศึกษาชนิด เนื้อที่ อัตราการเปลี่ยนแปลงรวม (Luse_CR) และอัตราการเปลี่ยนแปลงรายชนิด (Type_CR) ของการใช้ประโยชน์ที่ดินในภาพรวมของปี 2008 – 2010 ภาพที่ 4

ผลการวิเคราะห์ตารางการเปลี่ยนแปลง (change matrix) เพื่อศึกษาชนิดและเนื้อที่ของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในภาพรวมในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป่าไม้ของสปป.ลาว (ตารางที่ 4) พบว่า ในช่วงปี 2008 – 2010 โดยภาพรวม มีการสูญเสียพื้นที่ป่าไม้สูงถึง 434.71 ha (2,716.93 ไร่) โดยแยกเป็นป่าผลัดใบผสม (ป่าเบญจพรรณ) 314.56 ha (1,966.0 ไร่) และป่าผลัดใบ 120.15 ha (750.93 ไร่) ซึ่งป่าเบญจพรรณส่วนใหญ่ได้ถูกเปลี่ยนไปเป็นพื้นที่ปลูกข้าวไว้และพืชไร่ (Upr/Fc) จำนวน 83.57 ha (522.31 ไร่) และพื้นที่ไร่เหล่า (Fa) จำนวน 150.81 ha (942.56 ไร่) และเป็นส่วนของการเริ่มผลัดใบของไม้บางส่วน จำนวน 72.36 ha (452.25 ไร่) ที่เหลือถูกเปลี่ยนไปเป็นชนิดการใช้ที่ดินอื่น ๆ บ้างเล็กน้อย ในส่วนของป่าผลัดใบ (D-for) ส่วนใหญ่ได้พื้นคืนกลับเป็นป่าเบญจพรรณ (Md-for) จำนวน 52.0 ha (325.0 ไร่) และถูกเปลี่ยนไปเป็นพื้นที่ปลูกข้าวไว้และพืชไร่ (Upr/Fc) จำนวน 15.60 ha (97.5 ไร่)


การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในภาพรวมในช่วงครึ่งหลังของการดำเนินแผนฯ (ปี 2008 – 2010) ที่เกี่ยวข้องกับการเกษตรกรรมที่สำคัญ ได้แก่ พื้นที่ปลูกข้าวไว้และพืชไร่ (Upr/Fc) ซึ่งมีพื้นที่อยู่เดิมในปี 2008 เป็นจำนวน 89.08 ha (556.75 ไร่) ในปี 2010 ได้ถูกทิ้งไปเป็นพื้นที่ไร่เหล่า จำนวน 50.8 ha (317.5 ไร่) และพื้นคืนเข้าสู่สภาพป่าผลัดใบ (D-for) และป่าผลัดใบผสม (Md-for) จำนวน 13.7 ha (85.6 ไร่) และ 15.2 ha (95.0 ไร่) ตามลำดับ รวมพื้นที่ที่เปลี่ยนแปลงไปเป็นจำนวนทั้งสิ้น 80.1 ha (500.6 ไร่) เมื่อคำนวณรวมพื้นที่

อื่น ๆ ที่เปลี่ยนมาเป็นพื้นที่ปลูกข้าวไร่และพืชไร่อื่น ๆ ด้วยแล้ว จำนวน 157.61 ha (985.06 ไร่) ในปี 2010 พื้นที่ปลูกข้าวไร่และพืชไร่อื่น ๆ จึงมีการเปลี่ยนแปลงสุทธิรวม 77.48 ha (484.25 ไร่) หรือร้อยละ 11.1 ของ พื้นที่ทั้งหมด ซึ่งเมื่อเปรียบเทียบกับพื้นที่ปลูกข้าวไร่และพืชไร่อื่น ๆ เมื่อปี 2008 แล้ว(89.08 ha) พบว่า พื้นที่ ปลูกข้าวไร่และพืชไร่อื่น ๆ มีอัตราการเปลี่ยนแปลงในช่วงปี 2008 – 2010 ที่สูงมาก คือ ร้อยละ 89.9 (Type_CR)

การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในทำการเกษตรอีกชนิดหนึ่งที่สำคัญและเกี่ยวข้องกับพื้นที่ ปลูกข้าวไร่และพืชไร่ (Upr/Fc) คือ พื้นที่ไร่เหล้า (Fa) ซึ่งมีการเปลี่ยนแปลงพื้นที่เป็นจำนวนมาก กล่าวคือ ส่วน หนึ่งได้ถูกกลับไปใช้เป็นพื้นที่ปลูกข้าวไร่และพืชไร่ (Upr/Fc) จำนวน 55.8 ha (348.7 ไร่) และอีกส่วนหนึ่ง ได้ พื้นคืนเข้าสู่สภาพป่าผลัดใบ (D-for) และป่าผลัดใบผสม (Md-for) จำนวน 19.4 ha (121.2 ไร่) และ 76.0 ha (475.0 ไร่) ตามลำดับ รวมพื้นที่ไร่เหล้าที่เปลี่ยนแปลงสูญเสียไปเป็นจำนวน 157.7 ha (985.6 ไร่) เมื่อคำนวณ รวมพื้นที่อื่น ๆ ที่เปลี่ยนมาเป็นพื้นที่ไร่เหล้าด้วยแล้ว จำนวน 255.0 ha (1,593.7 ไร่) ในปี 2010 พื้นที่ไร่เหล้า จึงมีการเปลี่ยนแปลงสุทธิรวม 97.2 ha (607.5 ไร่) หรือร้อยละ 13.9 ของพื้นที่ทั้งหมด ซึ่งเมื่อเปรียบเทียบกับ พื้นที่ไร่เหล้าเมื่อปี 2008 แล้ว (388.3 ha) พบว่า พื้นที่ไร่เหล้ามีอัตราการเปลี่ยนแปลงในช่วงปี 2008 – 2010 ที่สูงมาก คือ ร้อยละ 40.6 (Type_CR) ตารางที่ 4 แสดงตารางวิเคราะห์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน (change matrix) ในภาพรวมของพื้นที่ศึกษาในช่วงครึ่งหลังของการดำเนินแผนฯ (ปี 2008 – 2010) และภาพ ที่ 4 แสดงปริมาณเนื้อที่การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินทั้งในส่วนที่ถูกเปลี่ยนไปเป็นชนิดการใช้ที่ดินอื่น ๆ (Losses) และในส่วนที่เพิ่มขึ้นมา (Gain)

ตารางที่ 4 ตารางวิเคราะห์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน (change matrix) ในปี 2008 – 2010

Land Use Type	land use							Loss into 2010	Land use 2010	Area Net Changes		Type _CR	
	2008 (ha)												
	1,953.77	Upr/Fc	Apf	Tp	Fa	D-for	Md-for	Ur	(ha)	%	(%)		
Upr/Fc	89.08	8.95	0.21	0.21	50.79	13.71	15.20	-	80.13	166.5	77.4	11.1 89.9	
Apf	17.82	0.03	12.29	2.76	-	1.23	1.51	-	5.53	15.27	-2.5	-0.3 31.0	
Tp	56.64	2.51	0.38	37.77	5.00	5.03	5.94	0.01	18.87	56.48	-0.1	-0.02 33.3	
Fa	388.28	55.88	0.71	5.74	230.5	19.42	76.01	0.01	157.7	485.5	97.2	13.9 40.6	
D-for	638.14	15.60	0.78	3.26	48.4	517.9	52.00	0.08	120.1	630.0	-8.1	-1.16 18.8	
Md-for	754.56	83.57	0.91	6.64	150.8	72.63	439.99	-	314.5	590.6	-163.9	-23.5 41.6	
Ur	9.26	-	-	0.09	-	0.01	-	9.16	0.10	9.26	0	0 1.08	
Gain into													
Total	2010	157.61	2.98	18.71	255.0	112.0	150.66	0.10	697.1	1,953.7			

ภาพที่ 5 ปริมาณเนื้อที่การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในส่วนที่ถูกเปลี่ยนไปเป็นชนิดการใช้ที่ดินอื่น ๆ ปี 2008 - 2010

3. ปัจจัยแรงขับเคลื่อนที่ทำให้เกิดการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน (Driving Forces)

3.1 ปัจจัยแรงขับเคลื่อน ๆ ที่ทำให้เกิดการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน

ปัจจัยแรงขับเคลื่อน ๆ ที่ทำให้เกิดการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ได้แก่ จำนวนคนต่อครัวเรือน แรงงานภาคการเกษตร (farming work forces) แปลงเกษตรกรรม (no. of farm land) รายได้ของครัวเรือนเกษตรกร ความพอเพียงของข้าวสำหรับการบริโภคในครัวเรือน (sufficiency of rice for household consumption) นอกนี้ยังมี นโยบายสาธารณะ (public policy) เข้ามายกเว้นด้วย ในที่นี้หมายถึง กฎหมาย ข้อบังคับ หรือข้อกำหนด ในการใช้ประโยชน์ที่ดินเพื่อให้เป็นไปตามแผนหรือนโยบายตามที่รัฐบาลที่ตั้งไว้ นโยบายสาธารณะมีความเกี่ยวข้องกับการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ใน สปป.ลาว รัฐบาลได้จำกัดการถางป่าทำไร่เพื่อป้องกันป่าไม้ ได้วางข้อกำหนดในกฎหมายป่าไม้ มาตรา 29 ว่าด้วยการจำกัดการถางป่าทำไร่ โดยต้องการโฆษณาเผยแพร่นโยบายและระเบียบกฎหมายเกี่ยวกับป่าไม้ให้กับประชาชนรับทราบ เพื่อเปลี่ยนวิธีทำไร่แบบเลื่อนลอยให้เป็นการทำไร่แบบคงที่ อย่างไรก็ตาม การบังคับใช้กฎหมายและการปฏิบัติตามนโยบายและระเบียบกฎหมายเกี่ยวกับป่าไม้ยังไม่เข้มงวด จึงทำให้เกษตรกรละเมิดต่อนโยบายและระเบียบกฎหมาย

3.2 ความสัมพันธ์ระหว่างการเปลี่ยนแปลงพื้นที่ปลูกข้าวไว้และพืชไว้กับปัจจัยแรงขับเคลื่อน ๆ

ผลการศึกษาความสัมพันธ์ระหว่างการเปลี่ยนแปลงพื้นที่ปลูกข้าวไว้และพืชไว้ กับปัจจัยแรงขับเคลื่อน ๆ พบว่า การเปลี่ยนแปลงของพื้นที่ปลูกข้าวไว้และพืชไว้ มีความสัมพันธ์เชิงบวกกับจำนวนคนในครัวเรือน จำนวนแรงงานภาคการเกษตร ในปี 2008 และ แปลงปลูกข้าวไว้และพืชไว้ จำนวนแรงงานต่อครัวเรือน และ จำนวนคนต่อครัวเรือน ในปี 2010 แต่พื้นที่ข้าวไว้และที่ปลูกพืชไว้ มีความสัมพันธ์เชิงลบกับจำนวนผลผลิตข้าว ความพอเพียงของข้าวสำหรับการบริโภคในครัวเรือน ในปี 2008-2009 และ รายได้จากการทำ莎ร้ายน้ำจืด หรือไคร้ด (river weed income) ตารางที่ 10 แสดงค่าความสัมพันธ์ระหว่างการเปลี่ยนแปลงพื้นที่ปลูกข้าวไว้ และพืชไว้กับปัจจัยแรงขับเคลื่อน ๆ ในพื้นที่ศึกษา

ตารางที่ 6 ความสัมพันธ์ระหว่างการเปลี่ยนแปลงพื้นที่ปลูกข้าวไร่และพืชไร่กับปัจจัยแรงขับเคลื่อน ฯ

Social-economic factor	r
Household members 2008	0.518**
Labour per household 2008	0.813**
Parcel of Upr/Fc 2008-2010	0.770**
Rice Production 2008	-0.441**
Rice sufficiency 2008	-0.593**
Sesame Product 2008	-0.109
River weed income2008-2009	-0.409**
Other Income 2008-2009	-0.227

สรุปและอภิปรายผล

ผลการจำแนกการใช้ประโยชน์ที่ดินและวิเคราะห์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของพื้นที่ศึกษา กลุ่มบ้านสะนกมุกคุณ ในช่วงครึ่งหลังของการดำเนินแผนยุทธศาสตร์ด้านการป้าไม้ของสปป.ลาว (ปี 2008 – 2010) พบว่า ยังคงมีอัตราการเปลี่ยนแปลงจากพื้นที่ทรัพยากรป้าไม้ โดยเฉพาะป้าผลัดใบผสม (Md-for) ไป เป็นพื้นที่ปลูกข้าวไร่และพืชไร่ (Upr/for) เป็นจำนวนมาก นโยบายและการดำเนินแผนยุทธศาสตร์ด้านการป้าไม้ของสปป.ลาว (ปี 2005 – 2010) ยังไม่สามารถบรรลุผลสำเร็จมากนัก นอกจากนี้ ยังพบว่า การเปลี่ยนแปลง การใช้ประโยชน์ที่ดินในพื้นที่ปลูกข้าวไร่และพืชไร่ (Upr/for) มีความสัมพันธ์กับปัจจัยทางด้านเศรษฐกิจ-สังคม ที่เป็นแรงขับเคลื่อนต่อการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน โดยเฉพาะปัจจัยด้านจำนวนคนต่อครัวเรือน (household member) และงานภาคการเกษตร (farming work forces) แปลงเกษตรกรรม (number of farm land) รายได้ของครัวเรือนเกษตรกร ความพอเพียงของข้าวสำหรับการบริโภค (sufficiency of rice for consumption) เช่น เมื่อมีจำนวนคนต่อครัวเรือน แรงงานภาคการเกษตร แปลงเกษตรกรรมเพิ่มมากขึ้นเป็น ปัจจัยที่สำคัญทำให้พื้นที่ปลูกข้าวไร่และพืชไร่เพิ่มมากขึ้น ตรงข้ามกับรายได้ของครัวเรือน ความพอเพียงของ ข้าวสำหรับการบริโภคต่อปี ถ้าเกษตรกรมีรายได้จากส่วนนี้น้อย เป็นสาเหตุที่จะทำให้เกษตรกรพยายามที่จะ บุกรุกพื้นที่ป้าไม้ให้เป็นพื้นที่ปลูกข้าวและพืชไร่มากขึ้นเพื่อที่จะสร้างความพอเพียงให้กับครอบครัวของ เกษตรกรเอง

กิตติกรรมประกาศ

ขอขอบคุณ สำนักงานกองทุนสนับสนุนการวิจัย (สกว) ที่ได้สนับสนุนทุนการศึกษา และขอขอบคุณ คณาจารย์และเจ้าหน้าที่หลักสูตรเกษตรศาสตร์เชิงระบบ ศูนย์วิจัยเพื่อเพิ่มผลผลิตทางการเกษตร คณะ เกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่

เอกสารอ้างอิง

Chust, G., D. Ducrot, and J.L. Pretus. 2004. Land Cover Mapping with Patch-Derived Landscape Indices. *Landscape and Urban Planning* 69: 437-449.

Congalton, R.G. 1991. A Review of Assessing the Accuracy of Classification of Remotely Sensed Data. *Remote Sensing of Environment*. 37: 35-46.

FAO. 2006. Global Land Use Area Change Matrix: Input to the 4th Global Environmental Outlook (GEO-4). Forestry Department. Food and Agriculture Organization of the United Nations. Working paper 134. Rome.

He, C. Y., Zhou, H. L., Yu, Z. T. and Zhang, Q. T. 2002. Regional Land Use/Cover Information Processing. *Resources Science* (in Chinese). 24(2): 64-70.

Lai, Y. B., Xu, X., Wang, J. A., Wang, L., Yu, Y. Y. and Yang, C. Y. 2002. Analysis of LUCC Pattern of Physical Region in NSTEC. *Progress in Earth Sciences* (in Chinese). 17(2): 215-220.

Leica. 2006. ERDAS Imagine version 9. 0. Leica Geosystem. Geospatial Imaging, LLC. Atlanta, GA.

Laos Ministry of Agriculture and Forestry, 2010. *Strategy for Agriculture development 2011 to 2020*. Vientiane, Laos.

Liu, J. Y. and Buhe, A. S. 2000b. Study on spatial-temporal feature of modern land use change in China: Using remote sensing techniques. *Quaternary Sciences* (in Chinese). 20(3): 229-239.

Liu, S. H. and He, S. J. 2002. A Spatial Analysis Model for Measuring the Rate of Land Use Change. *Journal of Natural Resources* (in Chinese). 17(5): 533-540.

Messerli, B., 1997. Geography in a rapidly changing world. *IGU Bull.* 47, 65–75.

Quan, B., Chen J.F., Qiu H.L., ROMKENS, M. J. M., YANG, X.Q., JIANG S.F. and LI B.C. 2006. Spatial-Temporal Pattern and Driving Forces of Land Use Changes in Xiamen. *Pedosphere* 16(4): 477-488.

Thomas, David E., 2003. Montane Mainland Southeast Asia – A Brief Spatial Overview. In: Jianchu, X., and Mikesell, S. (Eds). *Landscapes of Diversity: Indigenous Knowledge, Sustainable Livelihoods and Resource Governance. In Montane Mainland Southeast Asia*. Proceedings of the III Symposium on MMSEA 25–28 August 2002, Lijiang, P.R. China. Kunming: Yunnan Science and Technology Press. pp. 25–40

Thomas, David E., B. Ekasingh, M. Ekasingh, L. Lebel, H. Minh ha, L. Ediger, S. Thongmanivong, X. Jianchu, C. Sangchyooswat, and Y. Nyberg. 2008. Lao PDR study sites: Emerging markets in Northern Laos in: *Comparative Assessment of Resource and Market Access of the Poor in Upland Zones of the Greater Mekong Region*. World Agroforstry Centre. (ICRAF).

UNESCO. 2004. IMPACT: The Effects of Tourism on Culture and the Environment in Asia and the Pacific: Tourism and Heritage Site Management in Luang Prabang, Lao PDR. UNESCO, Bangkok.

ชื่อเรื่องวิทยานิพนธ์ ปัจจัยที่มีผลต่อการสะสมของแคนดี้เมี่ยมและตะกั่วในระบบการผลิตผัก
ในท้องที่ตึก ดูเยน เมืองไทยเหงียน สารารณรัฐสังคมนิยมเวียดนาม

ผู้เขียน นายเหวี่ยน หงออบ เซิน หาย

ปริญญา วิทยาศาสตรมหาบัณฑิต (เกษตรศาสตร์) เกษตรศาสตร์เชิงระบบ

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ ดร. ชาญชัย แสงชัยสวัสดิ์	อาจารย์ที่ปรึกษาหลัก
รองศาสตราจารย์ ดร. อรรถดัชชัย จินตะเวช	อาจารย์ที่ปรึกษาร่วม
ผู้ช่วยศาสตราจารย์ ดร. เยาวราช เขาวพุนพล	อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

เมืองไทยเหงียนตั้งอยู่บนริมแม่น้ำเจ้า ซึ่งครอบคลุม 19 เขต และ 9 ชุมชน โดยเฉพาะเขต ตึก ดูเยน ซึ่งเป็นพื้นที่หลักในการปลูกผักของเมืองไทยเหงียน มีพื้นที่การผลิตผักขนาดใหญ่และมีผลผลิตมากที่สุด มีการจัดการสำหรับปลูกผักปริมาณมากเพื่อตอบสนองความต้องการผักสดของเมือง การผลิตผักดำเนินการโดยเกษตรกรรายย่อย เกษตรกรในเขต ตึก ดูเยน ได้ปลูกผักหลากหลายชนิด โดยใช้น้ำจากแหล่งน้ำที่หลากหลายไปเพื่อการชลประทาน มีการใช้น้ำและยาฆ่าแมลง เพื่อรักษาผลิตภัณฑ์ของการผลิต ปัญหาเกี่ยวกับการจัดการคุณภาพผักเป็นสิ่งที่คุณในชุมชนได้แสดงความกังวลจนทำให้มีการรวมตัวกันเพื่อจัดการกับปัญหาเหล่านี้ โดยเฉพาะปัญหาการสะสมของโลหะหนัก เช่น แคนดี้เมี่ยม และตะกั่วในผักที่เกษตรกรผลิต ได้ การผลิตผักในช่วงหลายปีอยู่ภายใต้ปัญหาของคุณภาพของน้ำและดินที่ใช้ในการผลิตซึ่งมีการปนเปื้อนของโลหะหนักโดยเฉพาะแคนดี้เมี่ยม และตะกั่ว เนื่องจากพื้นที่แห่งนี้ได้รับผลกระทบจากแหล่งน้ำเสียจากพื้นที่อุตสาหกรรมหลายแห่ง และมีบริเวณพื้นที่อยู่อาศัย ตลาดและห้างสรรพสินค้า ตั้งอยู่ในบริเวณพื้นที่ศึกษาตลอดสองข้างริมฝั่งแม่น้ำเจ้า

การศึกษานี้ดำเนินภายใต้วัตถุประสงค์เพื่อขอรับวิทยานิพนธ์ ปัจจัยที่มีผลต่อการสะสมของโลหะหนักในระบบการผลิตผักในเขต ตึก ดูเยน โดยเฉพาะ เพื่อเข้าใจลักษณะสังคมเศรษฐกิจของเกษตรกร สถานศึกษาดังนี้ Graduate School •
ตรวจสอบความถูกต้องและ
30 มี.ค. 2554
กัทรชาเรือง หมายเหตุ

ผลิตผักในพื้นที่ศึกษารวมถึงสถานการณ์การใช้น้ำชลประทาน สถานการณ์การใช้สารเคมีกำจัดแมลง การใช้ปุ๋ยและการปฏิบัติของของเกษตรกรในการผลิตผัก นอกจากนี้จากนั้นการศึกษานี้ได้ วัดการสะสมของแคดเมียมและตะกั่วในน้ำชลประทาน ในวันที่ใช้ในการเพาะปลูก และในผัก 3 ชนิด เพื่อศึกษาปัจจัยที่มีผลผลกระทบต่อการสะสมของแคดเมียมและตะกั่วในวันที่ทำการเพาะปลูก และผักที่ถูกเลือกในท้ายที่สุด

การศึกษานี้ถูกดำเนินระหว่างเดือนเมษายน ถึง มิถุนายน พ.ศ. 2553 ใน การศึกษานี้เลือก เกษตรกร 75 คน ที่ทำการปลูกผัก 3 ชนิด บริเวณริมฝั่งแม่น้ำแกง ใน ตำบลตุ๊ก คุเยน ค่าวิธีการสุ่ม ชั่งประกอบครัวเรือนที่ปลูกปอ ผักปลัง และมะระ อายุเฉลี่ย 25 ครัวเรือน ข้อมูลชุดแรกถูกเก็บโดย การสัมภาษณ์ด้วยแบบสอบถามและการสำรวจสถานที่เพื่อให้เข้าใจลักษณะเศรษฐกิจสังคมของ เกษตรกรรวมถึงสถานะของการผลิตผักในพื้นที่เป้าหมาย ร่วมกับการเก็บตัวอย่างผัก น้ำ และดิน ในพื้นที่ที่ถูกเลือกด้วยเครื่องระบุตำแหน่งบนพื้นโลก(GPS)

ข้อมูลจากการสำรวจภาคสนามและแบบสอบถามถูกนำมาวิเคราะห์ด้วยสถิติเชิงพรรณนา เพื่อขอรับทราบการณ์ของการผลิตผัก และวัดการสะสมของแคดเมียมและตะกั่วที่ปะปนในน้ำ ชลประทาน ดิน และผักทั้ง 3 ชนิด ในพื้นที่เป้าหมาย

การขอรับปัจจัยที่มีผลต่อการสะสมของแคดเมียมและตะกั่วในวันที่ทำการเพาะปลูก และผัก อาศัยแบบจำลองในการวิเคราะห์ 4 แบบ ซึ่งอยู่ในรูปแบบของการวิเคราะห์ปัจจัย และ สมการสหสัมพันธ์หลายตัวแปร โดยเฉพาะใช้การวิเคราะห์ปัจจัยเพื่อจัดกลุ่มของปัจจัยที่มี และ คำ สัมประสิทธิ์สหสัมพันธ์และนัยยะสำคัญทางสถิติที่ได้จากสมการสหสัมพันธ์เชิงเส้นตรงใช้เพื่อ สรุปแบบของอิทธิพลของแต่ละปัจจัยต่อการสะสมแคดเมียมและตะกั่วในวันและผักในพื้นที่ ศึกษา

ผลการศึกษาพบว่าสาเหตุสำคัญที่นำไปสู่การสะสมของแคดเมียมและตะกั่วในผักเกิดจาก การดูดซับแคดเมียมและตะกั่วจากสภาพแวดล้อมที่ทำการเพาะปลูก โดยเฉพาะดินที่ใช้ในการ เพาะปลูก โดยพบว่าดินในพื้นที่ศึกษาได้รับผลกระทบจากตั้งที่มีการปนเปื้อนของแคดเมียม ตะกั่ว เช่น แหล่งน้ำชลประทานที่มีการปนเปื้อนจากน้ำเสียจากองค์เสียและตั้งปัจจุบัน น้ำเสียจาก อยู่อาศัย นำเสียจากอุตสาหกรรม ฯลฯ กับ ซึ่งในพื้นที่ได้มีการใช้น้ำชลประทานบ่อยครั้ง

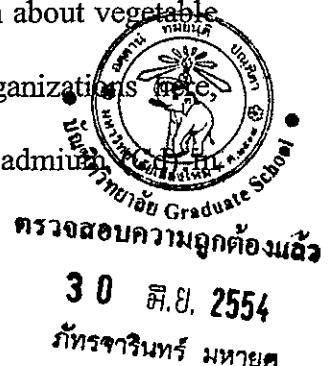
ปริมาณมาก นอกเหนือจากนั้นยังพบว่าปริมาณแอดเมิร์นและตะกั่วสามารถเคลื่อนข้ายอย่างรวดเร็ว มากอู่ในสภาพของดินสำหรับการเพาะปลูกที่เป็นกรด

ตราของสอนศึกษาบัณฑิตวิทยาลัย

๓๐ ส.ป. ๒๕๕๔

Thesis Title Factors Affecting Cadmium and Lead Accumulation
 in Vegetable Production Systems in Tuc Duyen Ward,
 Thai Nguyen City, Vietnam

Author Mr. Nguyen Ngoc Son Hai


Degree Master of Science (Agriculture) Agricultural Systems

Thesis Advisory Committee

Asst. Prof. Dr. Chanchai Sangchayoswat	Advisor
Assoc. Prof. Dr. Attachai Jintrawet	Co-advisor
Asst. Prof. Dr Yaovarate Chaovanapoonphol	Co-advisor

ABSTRACT

Thai Nguyen city is located on the bank of Cau river. It covers 19 wards and 9 communes. In particular, Tuc Duyen ward is the main vegetable growing area of Thai Nguyen city where has the largest vegetable growing area and highest yield. It provides a big vegetable production for the needs of fresh vegetables for the city. Production of vegetables here is done by small farmers. The farmers in Tuc Duyen ward has grown many kinds of vegetables, use a variety water sources for irrigation, fertilizers, pesticides to maintain productivity of vegetables. Problem about vegetable quality receives much concern from people and management organizations there, especially accumulation of heavy metals such as Lead (Pb) and Cadmium.

vegetable products. Production process in many years and quality of vegetables are much dominated by quality of water and soil contaminated heavy metals, especially Cadmium (Cd) and Lead (Pb) due to this area has affected by water released from various sources from many industrial zones, residential areas, central markets and supermarkets around the study area through Cau river.

This study conducted with the purpose to describe current situation of vegetable production systems in Tuc Duyen ward. Particularly, to understand the farmer's socio-economic characteristics, vegetable production status in the study area includes situation of using irrigation water, situation of using pesticides and fertilizer and practice of farmers in vegetable farming. In addition, this study also determines the accumulation of Cadmium (Cd) and Lead (Pb) in irrigation waters, cultivated soils and three selected vegetables. Finally to determine the factors affecting accumulation of Cadmium (Cd) and Lead (Pb) in cultivated soil and three selected vegetables.

This study was conducted between April to June 2010. In this study, 75 farmers who planted three selected vegetables along Cau river at Tuc Duyen ward were randomly selected in the study. It was composed of 25 households growing jute, 25 households growing basella alba and 25 households growing bitter melon. Primary data were collected through prepared interview questionnaires and field survey. Prepared questionnaires were used to understand the social-economic characteristic of farmers, the status of farming and vegetable production in the target area. Along with field survey, location of the fields where planting selected vegetables were determined by GPS (Global Positioning System) for collecting vegetables, water and samples.

The data from field survey and prepared questionnaires were analyzed using descriptive statistic to describe the situation of vegetable production, and determine the accumulation of Cadmium (Cd) and Lead (Pb) in irrigation water, cultivated soil and three selected vegetables in the target area.

To determine the factors affecting Cd and Pb accumulation in cultivated soil and in the three selected vegetables, four analytical models using factor analysis and multiple regression were used. Specifically, factor analysis was used to group the factors, and coefficients correlation and statistical significance in multiple regression were used to conclude which factors have strong influence and significance to Pb and Cd accumulation in cultivated soil and vegetables in the research area.

According to study results, the main cause leading to the Pb and Cd accumulation in vegetables highly due to vegetables absorbed Pb and Cd from farming environment, especially from cultivated soil environment. Specifically, cultivated soil environment in the study area effected by the supplement of substances containing Pb and Cd into cultivated soil environment, such as irrigation water source contaminated by wastewater sources from sewage sludge, residential waste water, industrial waste water, etc with frequency and large amounts of irrigation water. In addition is the mobility of Pb and Cd in the acidic cultivated soil environment.

FACTORS AFFECTING LEAD ACCUMULATION IN CULTIVATED SOIL AND VEGETABLES IN TUC DUYEN WARD, THAI NGUYEN CITY, VIETNAM

Nguyen Ngoc Son Hai¹, Chanchai Sangchayoswat²,
Attachai Jintrawet², Nguyen Ngoc Nong³

I. INTRODUCTION

Thai Nguyen province is an industrial center in northern region of Vietnam. It is the headquarters of many factories, enterprises, many major universities, colleges, schools and large hospitals. Thai Nguyen city is located on the bank of Cau river. Tuc Duyen ward is the main vegetable production area of Thai Nguyen city, with the largest vegetable producing area and with the highest yield. Problem about vegetable quality receives much concern from consumers and management organizations here, especially accumulation of heavy metals in vegetable products. Production process in many years and quality of vegetables are much affected by quality of water and soil contaminated heavy metals, especially lead (Pb) due to this area has affected by waste water sources from many industrial zones, residential areas around the study area through Cau river. The purposes of this study were to determine the accumulation of lead (Pb) in cultivated soil and in the three selected vegetables and to determine the factors affecting lead (Pb) accumulation in cultivated soil and the selected vegetables.

II. METHODOLOGY

Seventy five farmers who planted three selected vegetables (jute, basella alba and bitter melon) along Cau river at Tuc Duyen ward were selected for the study by using a simple random sampling method. Location of the

fields where planting selected vegetables was determined by GPS (Global Positioning System) when collecting vegetables, water and soil samples. Descriptive statistic, factors and multiple regression analysis were used to fulfill both objectives. Statistical Package for Social Science (SPSS) and LIMDEP, a program for factor analysis and multiple regression, were used for data analysis.

III. RESEARCH RESULTS AND DISCUSSION

3.1. The accumulation of lead (Pb) in three selected vegetables and in cultivated soil

Average of Pb content in three selected vegetables is 1.56 mg/kg which ranges from 0.23 mg/kg to 4.02 mg/kg. The standard deviation is about 0.81 mg/kg. Compared with allowed standard of the world FAO (0.5 mg/kg dry), Pb content in vegetables samples were polluted at a high level. Average Pb content in vegetables samples is 1.56 mg/kg about 3.1 times compared to permitted standard (0.5 mg/kg).

Comparing the content of Pb in vegetables found that jute contains the highest Pb content (75 percentile is 2.27 mg/kg), followed by bitter melon (75 percentile is 1.92 mg/kg) and basella alba (75 percentile is 1.61 mg/kg) (Figure 1).

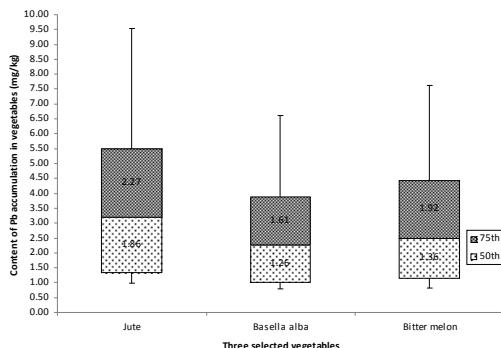
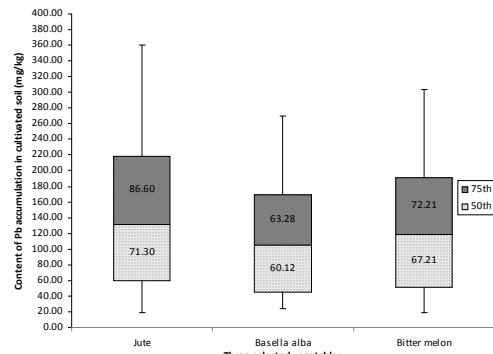



Figure 1. Accumulation of lead (Pb) in three selected vegetables¹ Figure 2. Accumulation of lead (Pb) in cultivated soil of three selected vegetables.

Plants uptake metals at different levels depending on the species and varieties (HMMVA, 2010). Each plant is capable of absorbing of heavy metal differently, and portions of vegetables were also accumulated an amount of heavy metals differently (Phuong, 2005). Many researchers had shown that some vegetables are capable of accumulating high levels of metals from the soil (Khan and Frankland, 1983).

Comparing the content of Pb in cultivated soils for planting different type of vegetables showed that Pb content in soil for planting jute (75 percentile is 86.60 mg/kg) is the highest, followed by bitter melon (75 percentile is 72.21 mg/kg) and basella alba (75 percentile

is 63.28 mg/kg) (Figure 2). This showed that cultivated soils of jute and bitter melon had high Pb contaminated sign and Pb contaminated in cultivated soil of basella alba was still lower than threshold content of permissible standard (Vietnam standard-70 mg/kg).

The correlation between Pb accumulation in cultivated soil and three selected vegetables showed in Figure 3. Correlation among Pb content in cultivated soils and three selected vegetable are high. Specifically, jute (0.50), basella alba (0.46), bitter melon (0.68).

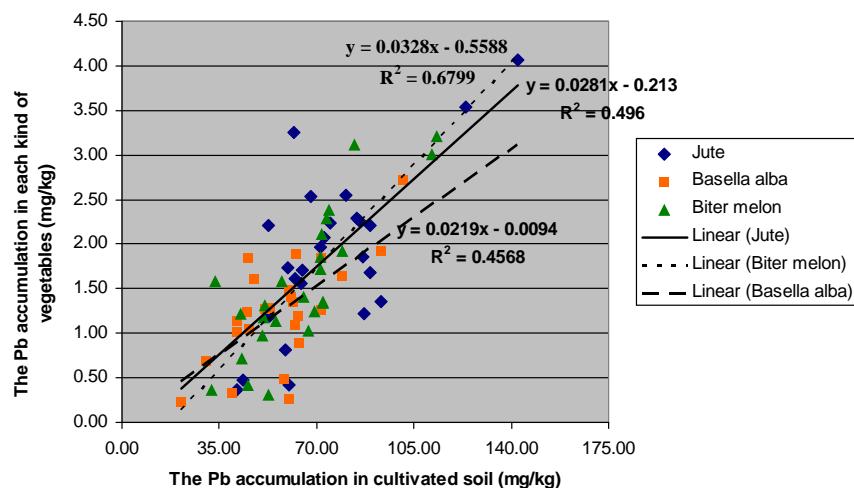


Figure 3. Correlation between Pb accumulation in cultivated soil and three selected vegetables

The results showed a favorable/responding correlation between Pb accumulation in cultivated soils for plating three selected vegetables and Pb accumulation in selected vegetables. This means that if Pb content in cultivated soil for planting jute is the highest so Pb content in jute is also the highest. This result corresponding with research results of Bride et al. (2002), the presence of metals in soil is strongly correlated with its absorption into the plants, particularly absorption of the plants also has a linear relationship with the addition of Pb in soil (Bride et al., 2002). Besides, according to research results of Kachenko and Singh (2004), the soil metal

concentrations appear to influence the uptake of Pb in vegetables. There is a significant correlation which was observed between soluble lead (Pb) from soil and lead (Pb) in some kinds of vegetables such as tomatoes, carrots.

3.2. Factors affecting lead (Pb) accumulation in vegetables

Table 1 showed the list of independent and dependent variables that used in the regression analysis of Pb accumulation in three selected vegetables (Y1) and cultivated soil (Y2).

Table 1. Variables and measurements in model of lead (Pb) accumulation in vegetables and soil

Independent variables	Measurement
X1= Age of the vegetables grower	Years
X2= Schooling years	Years
X3= Family size	No. of people in family
X4= Total area of cultivated	m ²
X5= Area of vegetable field	m ²
X6= Vegetable growing experiences	No. of years
X7= Number sources of irrigation water	Number
X8= Farmer using irrigation water from public water pond	Yes= 1, No= 0
X9= Average amount of irrigation water/day	litre/ m ²
X10= Time of watering/day	times/ day
X11= Farmer plant and produce vegetables following safe vegetable production process	Yes= 1, No= 0
X12= Farmer know about problem accumulation of heavy metals in vegetables	Yes= 1, No= 0
X13= Accumulation of lead (Pb) in cultivated soil	mg/kg *
X14= Accumulation of lead (Pb) in irrigation water	mg/litre **
Dependent variables	
Y1= Accumulation of lead (Pb) in vegetables	mg/kg
Y2= Accumulation of lead (Pb) in cultivated soil	mg/kg

* , ** Corresponding for Y1

** Corresponding for Y2

Result from the extraction method of Principal Component Analysis (PCA) and rotation method of Varimax with Kaiser normalization to facilitate the interpretation

interpretation of the results presented in Table 2. Independent variables from Table 1 were grouped into five components for PCA method.

Table 2. Rotated factors loading of independent variables

Variables	Component No.1	Component No.2	Component No.3	Component No.4	Component No.5
Pb in cultivated soil (X13)	0.81	-	-	-	-
Average amount irrigation water (X9)	0.78	-	-	-	-
Time watering (X10)	0.72	-	-	-	-
Pb in irrigation water (X14)	0.60	-	-	-	-
Total areas (X4)	-	0.85	-	-	-
Field area (X5)	-	0.80	-	-	-
Family size (X3)	-	0.58	-	-	-
Age (X1)	-	-	0.83	-	-
Experiences (X6)	-	-	0.72	-	-
Schooling years (X2)	-	-	-0.67	-	-
Use public pond (X8)	-	-	-	-0.78	-
Following safe vegetable production process (X11)	-	-	-	-	0.73
Number source water (X7)	-	-	-	-	0.60
Farmer know heavy metals accumulation in vegetables (X12)	-	-	-	-	0.52

Five components and dependent variables (accumulation of Pb in vegetables (Y1) was used to analyze by multiple regression analysis. Result from the analysis showed that Pb in vegetables has a very strong

correlation with component No.1 with highly significant. The relationship between accumulation of Pb in vegetables (Y1) (dependent variable) and all components (independent variable) showed in Table 3.

Table 3. Summary of the regression results of Pb accumulation model in vegetables

Variables	Coefficients	Three kind Vegetables (n=75)		
		Standard Error	t-radio	Sig
Hàng sè	1.54	0.08	19.93**	0.00
Component No.1	0.64	0.05	12.54**	0.00
Component No.2	0.05	0.05	1.06 ns	0.29
Component No.3	0.02	0.04	0.53 ns	0.60
Component No.4	0.07	0.05	1.37 ns	0.17
Component No.5	0.01	0.05	0.14 ns	0.89

R2= 0.73 (73%) Adjusted R2= 0.71 (71%)

F value 36.71 ** Durbin-Watson 2.19

Note: *, ** indicate the level of significance at 5% and 1% respectively.

The regression analysis showed that the constant and component No.1 was significant at 1 percent level of significance while the other components were not statistically significant (Table 3). The results of Pb accumulation in vegetables can be explained by five components about 71% and the remaining 29% may be due to error and other factors omitted in the model such as fertilizer factors. The significance of the model could reflect almost factors that affecting to Pb accumulation in vegetables. It can be concluded that Pb accumulation in vegetables is strongly and positively influenced by four variables in component No.1 which includes Pb in cultivated soil (X13), average amount irrigation water (X9), time watering (X10), Pb in irrigation water (X14). They are variables relate to practices in farming using irrigation water and characteristic content of Pb in cultivated soil and irrigation water.

The main cause leading to the Pb accumulation in vegetables highly due to vegetables absorbed Pb from farming environment, especially from soil environment.

Cultivated soil environment in the study area affected by the supplement of substances containing Pb into cultivated soil environment, including water contaminated by wastewater source from sewage sludge, residential waste water, and industrial waste water with frequency and large amounts of irrigation water (Hai, 2011). In addition, the acidic cultivated soil environment promotes high solubility of lead (Pb) (Hang, 2007; Jung, 2008).

3.3. Factors affecting lead (Pb) accumulation in cultivated soil

The list of independent and dependent variables that used in the model of Pb accumulation in cultivated soil was showed in Table 1.

Result from the extraction method of PCA and rotation method of Varimax with Kaiser normalization to facilitate the interpretation of the results presented in Table 4. Independent variables from Table 1 were grouped into five components.

Table 4. List of independent variables in each component

Variables	Component No.1	Component No.2	Component No.3	Component No.4	Component No.5
Total areas (X4)	0.87	-	-	-	-
Field area (X5)	0.79	-	-	-	-
Family size (X3)	0.56	-	-	-	-
Average amount irrigation water (X9)	-	0.78	-	-	-
Time watering (X10)	-	0.69	-	-	-
Pb in irrigation water (X13)	-	0.68	-	-	-
Age (X1)	-	-	0.84	-	-
Experiences (X6)	-	-	0.75	-	-
Schooling years (X2)	-	-	-0.69	-	-
Use public pond (X8)	-	-	-	-0.64	-
Farmer know heavy metals accumulation in vegetables (X12)	-	-	-	0.64	-
Following safe vegetable production process (X11)	-	-	-	-	0.70
Number source water (X7)	-	-	-	-	0.67

Five components and dependent variable (accumulation of Pb in cultivated soil (Y2)) was used to analyze by multiple regression analysis. Result from the analysis showed that Pb in cultivated soil has a very strong correlation with component No.2. The relationship between accumulation of Pb in cultivated soil (Y2) (dependent variable) and all components (independent variable) showed in Table 5.

Result from Table 5 showed that the constant, component No.1, component No.2 were significant at 1 percent of level of significance while the other components were non significant.

The results of Pb accumulation in cultivated soil can be explained by five components about 32%, and the remaining 68% may be due to error and other factors omitted in the model such as pH factor. However, the model has low significance, therefore the significance of the model could not reflect mostly factors affecting to Pb accumulation in cultivated soil. In addition, from the analysis can be concluded that Pb accumulation in cultivated soil is strongly positive influenced by three variables in component No.2 which includes average amount irrigation water (X9), time watering (X10), Pb in irrigation water (X13). They are variables relate to practices in farming using irrigation water and characteristic content of Pb in irrigation water.

Table 5. Summary of the regression results of Pb accumulation model in cultivated soil

Variables	Three kind Vegetables (n=75)			
	Coefficients	Standard Error	t-radio	Sig
Constant	65.46	3.21	20.39 **	0.00
Component No.1	5.49	2.03	2.71 **	0.00
Component No.2	11.91	2.11	5.65 **	0.00
Component No.3	-1.67	1.91	-0.94 ns	0.35
Component No.4	3.33	2.02	1.74 ns	0.08
Component No.5	1.77	0.05	0.87 ns	0.38

R²= 0.37 (37%)

Adjusted R²= 0.32 (32%)

F value 8.03 ***

Durbin-Watson 2.11

Note: *, ** indicate the level of significance at 5% and 1% respectively.

Besides, Pb accumulation in cultivated soil is very weak positive influenced by three variables in component No.1. Specifically, component No.1 consists

of total areas (X4), field area (X5) and family size (X3). They are variables relate to size of vegetables field, size of total farming area owned by farmers and size of farmer's family.

The main cause leading to the Pb accumulation in cultivated soil is due to cultivated soil absorbed and accumulated Pb from substances added into cultivated soil environment. Specifically, cultivated soil environment in the study area affected by the supplement of substances containing Pb into cultivated soil environment, including water contaminated by wastewater source from sewage sludge, residential waste water, industrial waste water, with frequency and large amounts of irrigation water (Hai, 2011). In addition, the solubility of lead (Pb) in the acidic cultivated soil environment (Hang, 2007; Jung, 2008).

IV. CONCLUSION

1. Pb content in vegetable samples was polluted at a high level. Average Pb content in vegetables samples is 1.56 mg/kg, about 3.1 times compared to permitted standard (0.5 mg/kg). Pb content in vegetable jute is the highest, followed by in bitter melon and the lastly in basella alba. Pb content in soil was close to the threshold content (65.50 mg/kg). Pb content in soil for planting jute had the highest Pb content, followed by in soil for planting bitter melon and lastly in soil for planting basella alba. There is a high corresponding correlation between Pb accumulation in cultivated soils for plating three selected vegetables and Pb accumulation in selected vegetables.

2. Pb accumulation in vegetables explained by independent variables of five components about 71%. Pb accumulation in vegetables is strongly and positively influenced by four variables relate to practices in farming using irrigation water and content of Pb in cultivated soil and irrigation water. The main cause leading to the Pb accumulation in vegetable highly due to vegetables absorbed Pb from farming environment, especially from cultivated soil environment. Therefore, it is logical to incorporate farmer groups into the decision making process to reduce the Pb accumulation in vegetables.

3. Pb accumulation in cultivated soil can be explained by independents variables of five components about 32%. Pb accumulation in cultivated soil is strongly

influenced by three variables relate to practices in farming using amount of irrigation water and characteristic content of Pb in irrigation water.

4. The main cause leading to the Pb accumulation in cultivated soil is due to cultivated soil absorbed and accumulated Pb from substances added into cultivated soil environment. Specifically, cultivated soil environment in the study area affected by the supplement of substances containing Pb into cultivated soil environment, including water contaminated by wastewater source from

sewage sludge, residential waste water, industrial waste water, etc with frequency and large amounts of irrigation water. In addition is the mobility of heavy metals (such as Pb) in the acidic cultivated soil environment. Therefore, in order to reduce the Pb accumulation in cultivated soils, for safe production of jute, basella alba, and bitter melon along Cau river in Tuc Duyen ward, decision making for planning and implementation must be based on information and feedback of all stakeholders.

REFERENCES

1. Bride, M. B. 2002. "Cadmium Uptake by Crops Estimated from Soil Total Cd and pH". *Soil science* 167(1):62 – 67.
2. Hai, N. N. S. 2011. "Factors Affecting Cadmium and Lead Accumulation in Vegetable Production Systems in Tuc Duyen Ward, Thai Nguyen City, Vietnam". M.S. Thesis (Agricultural Systems), Chiang Mai University, Thailand.
3. Hang, P. T. T. 2007. "Evaluating Situation of Land – Water Environment Serve to Project Develop Fresh Vegetable Area in Thai Nguyen City, Thai Nguyen Province". Ph.D, Thesis (Agricultural), Thai Nguyen University of Agricultural and Forestry, Vietnam.
4. HMMVA (Heavy Metal Management in Vietnam's Agriculture). 2010. www.avrdc.org/pdf/PROD8A_managing-metals_Vietnamese.pdf (Accessed on 10.4.2010).
5. Kachenko, A and B. Singh. 2004. Heavy Metals Contamination of Home Grown Vegetables Near Smelters in NSW. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5-9 December 2004. University of Sydney, Australia.
6. Khan, D. H and B. Frankland. 1983. "Effects of Cadmium and Lead on Radish Plants with Particular Reference to Movement of Metals through Soil Profile and Plant". *Plant and Soil* 70: 335-345.
7. Jung, M. C. 2008. "Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean". *Mine Sensors* 8: 2413-2423.
8. Phuong, N. T. L. 2005. "Research to Assess the Status and Capabilities of Pollution from Heavy Metals to Vegetables in Some Suburban Areas of Hanoi". Ph.D Thesis (Agriculture), Hanoi Agricultural University, Vietnam.

Tóm tắt

CÁC NHÂN TỐ ẢNH HƯỞNG ĐẾN SỰ TÍCH LŨY CHÌ TRONG ĐẤT CANH TÁC VÀ RAU TẠI PHƯỜNG TÚC DUYÊN, THÀNH PHỐ THÁI NGUYÊN, VIỆT NAM

Nguyễn Ngọc Sơn Hải¹, Chanchai Sangchayoswat²,
Attachai Jintrawet², Nguyễn Ngọc Nòng³

Nghiên cứu này được tiến hành với mục đích xác định sự tích lũy của chì (Pb) trong đất canh tác và ba loại rau được chọn. Bảy mươi năm chủ hộ gia đình trồng ba loại rau (đay, mùng tơi, mướp đắng) dọc theo sông Cầu tại phường Túc Duyên đã được lựa chọn ngẫu nhiên trong nghiên cứu này. Dữ liệu chính được thu thập thông qua phỏng vấn bằng bảng câu hỏi phỏng vấn chuẩn và nghiên cứu thực địa. Dữ liệu từ nghiên cứu thực địa và bảng câu hỏi đã được phân tích sử dụng phân tích nhân tố và hồi quy đa biến để xác định các nhân tố ảnh hưởng đến sự tích lũy Pb trong đất canh tác và trong ba loại rau được chọn. Nguyên nhân chính dẫn đến sự tích lũy Pb trong rau cao do các loại rau hấp thụ Pb từ môi trường canh tác, đặc biệt là từ môi trường đất canh tác. Môi trường đất canh tác tại khu vực nghiên cứu đã bị ảnh hưởng bởi việc bổ sung các chất có chứa Pb như nguồn nước tưới bị ô nhiễm bởi các nguồn nước thải từ bùn thải, nước thải khu dân cư, nước thải công nghiệp.Thêm vào đó là tính tan của Pb trong môi trường chua của đất canh tác. Chúng tôi đề nghị rằng các bên chính liên quan phải tham gia trong quá trình đưa ra các quyết định để giảm sự tích lũy của chì trong rau và đất canh tác tại phường Túc Duyên.

¹ Nguyen Ngoc Son Hai, Faculty of Natural Resources and Environment, Thainguyen University of Agriculture and Forestry, Vietnam.

² Chanchai Sangchayoswat, Assistant Professor, Department of Crop and Soil Sciences, Faculty of Agriculture, Chiang Mai University.

² Attachai Jintrawet, Associate Professor, Department of Crop Sciences and Natural Resources, Faculty of Agriculture, Chiang Mai University.

³ Nguyen Ngoc Nong, Associate Professor, Faculty of Natural Resources and Environment, Thainguyen University of Agriculture and Forestry, Vietnam

Thesis Title Assessment of Spatial Land Use Change in Pak Ou District,
Luangprabang Province, Lao PDR

Author Mr. Phoutthasack Phoummasone

Degree Master of Science (Agriculture) Agricultural Systems

Thesis Advisory Committee

Assoc. Prof. Dr. Benchaphun Ekasingh Advisor

Assist. Prof. Dr. Chanchai Sangchyooswat Co-advisor

Abstract

Rapid land use change has taken place in many regions of the Lao PDR, since the country initiated economic reforms and open door policies. Land use and land cover changes that occurred from 1990 to 2010 in the study area of three target villages namely: Phonsavang, Sanghai and Thinchaleon with the total area of 3,269.94 hectare consisted of 319 households and 1,609 people. 150 households were selected as the study samples. The study area is a reflection and representative of the Pak Oo district. The objectives of this study were to assess spatial land use change patterns in the last two decades from 1990 to 2010 and to determine factors affecting on land use change and their effects on farmers' livelihood.

In this study, land use change data was derived from satellite images (Landsat5 TM) taken on 15th January 1990 and on 7th February 2010 coupled with field surveys. Land use changes were assessed using remote sensing (RS) and

geographic information system (GIS). Land use type in 1990 consists of 7 classes and 9 classes in 2010.

Results of land use classification in 1990 found that water bodies cover 41.26 ha, deciduous forest 1,138.28 ha, mixed deciduous forest 1,518.75 ha, fallow 200.09 ha, upland field 300.03 ha, lowland field 57.02 ha and urban area 14.24 ha constituted 1.27%, 34.81%, 46.45%, 6.12%, 9.18%, 1.74% and 0.43% of the total area respectively. Land use classification in 2010 found that water bodies cover 57.69 ha (1.76%), deciduous forest 1,184.44 ha (36.22%), mixed deciduous forest 976.40 ha (29.86%), fallow 99.56 ha (3.40%), upland field 170.72 ha (5.22%), lowland field 92.77 ha (2.84%), urban area 62.64 ha (1.92%), teak plantation 514.69 ha (15.74%) and mixed fruit orchard 111.03 ha (3.40%) of the total area. The results indicate that severe land use changes from 1990 to 2010 have occurred in teak wood plantation and mixed fruit orchard increase of 100%, constituted 514.69 ha and 111.03 ha. These types of land use did not exist in 1990 while mixed deciduous forests, upland and fallows decreased to 542.35 ha (-35.71%), 100.53 ha (-50.24%) and 129.58 ha (-43.15%) respectively. The changes of land use in 1990-2010 are highly significant and be able to map out the distribution of land use change within the two decades.

Factor analysis showed that five spatial variables and five socio-economic variables influenced and affected land use change. The most important factors were slope and distance from urban of spatial variables, land size holding and amount of livestock.

This information can support land use planning in Pak Ou district for future land use planning and development.

ชื่อเรื่องวิทยานิพนธ์ การประเมินการเปลี่ยนแปลงเชิงพื้นที่การใช้ประโยชน์ที่ดินในเขตพื้นที่เมืองปากอู แขวงหลวงพระบาง สาธารณรัฐประชาธิปไตยประชาชนลาว

ชื่อผู้เขียน นายพุทธศักดิ์ ภูมุมะสสอน

ปริญญา วิทยาศาสตร์ครุศาสตร์ มหาบัณฑิต (เคมทรคสต.) เกณฑศาสตร์เชิงระบบ

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รองศาสตราจารย์ ดร. เบญจพรรดา เอกะสิงห์ อาจารย์ที่ปรึกษาหลัก
ผู้ช่วยศาสตราจารย์ ดร. ชาญชัย แสงจิโภสวัสดิ์ อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในหลายภูมิภาคของ ลาว ได้มีการเปลี่ยนแปลงไปอย่างรวดเร็ว นับตั้งแต่ประเทศเริ่มมีการปฏิรูปเศรษฐกิจและเปิดกว้างนโยบายกับต่างประเทศ การเปลี่ยนแปลงการใช้ที่ดินและสิ่งปลูกสร้างที่เกิดขึ้นจากปี ค.ศ 1990-2010 ในพื้นที่ศึกษาของ 3 หมู่บ้านเป้าหมายคือ บ้านโพนสว่าง บ้านช่างไหและบ้านถินเจริญ ซึ่งมีพื้นที่ทั้งหมด 3,269.94 ไร่ ประกอบด้วย 319 ครัวเรือน และประชากรทั้งหมด 1,609 คน โดยได้เลือกสุ่มเอา 150 ครัวเรือนเป็นตัวอย่าง การศึกษานี้เป็นการสะท้อนและเป็นกรณีตัวอย่างของเมืองปากอู วัตถุประสงค์ของการศึกษาในครั้งนี้ เพื่อประเมินการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในสองทศวรรษจากปี ค.ศ 1990-2010 และเพื่อศึกษาปัจจัยที่มีผลต่อการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินและผลกระทบต่ออุปกรณ์การดำเนินธุรกิจของเกษตรกร ในพื้นที่ศึกษา

ในการศึกษานี้ ข้อมูลการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ได้มาจากการสำรวจข้อมูลภาพดาวเทียม Lansat-5 TM ช่วงบันทึกเมื่อวันที่ 15 มกราคม ปี ค.ศ 1990 และวันที่ 7 กุมภาพันธ์ ปี ค.ศ 2010 บวกกับข้อมูลจากการสำรวจในพื้นที่ การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ได้ประเมินโดยการใช้ข้อมูลระยะไกลและเทคโนโลยีสารสนเทศทางภูมิศาสตร์ ประเภทการใช้ที่ดินในปี ค.ศ 1990 ประกอบด้วย 7 ประเภทและปี ค.ศ 2010 ประกอบด้วย 9 ประเภทการใช้ที่ดิน

ตรวจสอบความถูกต้องแล้ว

นพกฤตภัทร ๕๔

ผลของการจำแนกการใช้ประโยชน์ที่ดินในปี ค.ศ 1990 พบว่าเนื้อที่แห่งลั่นน้ำมี 41.26 เฮกตาร์ ป่าผลัดใบ 1,138.28 เฮกตาร์ ป่าผลัดใบผสม 1,518.75 เฮกตาร์ ไร่เหล่า 200.09 เฮกตาร์ ไร่ข้าว 300.03 เฮกตาร์ นาข้าว 57.02 เฮกตาร์ และเนื้อที่หมู่บ้าน 14.24 เฮกตาร์ คิดเป็นเปอร์เซ็นต์ เท่ากับร้อยละ 1.27%, 34.81%, 46.45%, 6.12%, 9.18%, 1.74% และ 0.43% ของพื้นที่ทั้งหมด ตามลำดับ การจำแนกการใช้ประโยชน์ที่ดินในปี ค.ศ 2010 พบว่าเนื้อที่แห่งลั่นน้ำมี 57.69 เฮกตาร์ (1.76%) ป่าผลัดใบ 1,184.44 เฮกตาร์ (36.22%) ป่าผลัดใบผสม 976.40 เฮกตาร์ (29.86%) ไร่เหล่า 99.56 เฮกตาร์ (3.40%) เนื้อที่ปลูกข้าวไร่ 170.72 เฮกตาร์ (5.22%) นาข้าว 92.77 เฮกตาร์ (2.84%) เนื้อที่หมู่บ้าน 62.64 เฮกตาร์ (1.92%) สวนปลูกไม้สัก 514.69 เฮกตาร์ (15.74%) และสวนไม้ผล ผสม 111.03 เฮกตาร์ (3.40%) ของพื้นที่ทั้งหมด ผลของการศึกษาแสดงให้เห็นว่าการเปลี่ยนแปลง ที่รุนแรงในการใช้ประโยชน์ที่ดินในช่วงระยะเวลาตั้งแต่ปี ค.ศ 1990-2010 คือสวนปลูกไม้สักและ สวนไม้ผลผสมมีการเพิ่มขึ้น 100% คิดเป็นเนื้อที่ 514.69 เฮกตาร์ และ 111.03 เฮกตาร์ ซึ่งการใช้ ที่ดินสองประเภทนี้ไม่ได้มีในปี ค.ศ 1990 ในขณะเดียวกันเนื้อที่ป่าผลัดใบผสม เนื้อที่ปลูกข้าวไร่ และ ไร่เหล่ามีการลดลง 542.35 เฮกตาร์ (-35.71%), 100.53 เฮกตาร์ (-50.24%) และ 129.58 เฮกตาร์ (-43.15%) ตามลำดับ การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินแต่ปี ค.ศ 1990-2010 ซึ่งมีการ เปลี่ยนแปลงเป็นอย่างมากและสามารถจัดทำแผนที่ของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน ในช่วงระยะเวลา 2 ทศวรรษ ได้

การวิเคราะห์ปัจจัยที่มีผลต่อการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินแบบ Factor Analysis พบว่า 5 ปัจจัยเชิงพื้นที่และ 5 ปัจจัยทางเศรษฐกิจสังคมมีผลต่อการเปลี่ยนแปลงการใช้ประโยชน์ ที่ดิน ซึ่งปัจจัยที่มีผลมากที่สุดคือระดับความลาดชันของพื้นที่ และระยะทางห่างจากชุมชนต่ำปัจจัยทางเศรษฐกิจสังคมที่มีผลมากที่สุดคือขนาดพื้นที่แปลง และจำนวนสัตว์เลี้ยงของเกษตรกรซึ่งมี ผล ต่อการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินมากที่สุด

ข้อมูลทั้งหมดนี้สามารถสนับสนุนการวางแผนการใช้ประโยชน์ที่ดินของของเมือง ปากอุ สำหรับการวางแผนการใช้ประโยชน์ที่ดินและการพัฒนาในอนาคต

Assessment of Spatial Land Use Change in Pak Ou District Luang Prabang Province, Lao PDR

Phoutthasack Phoummasone* Benchaphun Ekasingh** Chanchai Sangsyoswat**

Multiple Cropping Center, Faculty of Agriculture, Chiang Mai University

Proceedings of the 1st ASEAN Plus Three Graduate Research Congress (AGRC 2012), 1-2 March 2012, Chiang Mai, Thailand

Abstract

Rapid land use change has taken place in many regions of the Lao PDR, since the country initiated economic reform and open door policy. Over the last two decades, the landscape of northern Laos which consists of a continuum of rugged mountainous terrain is rapidly changing. The study area for assessing spatial land use change was selected 3 villages with the total area of 3,269.94 hectares in Pak Ou district, Luang Prabang province. In this study, land use change data were derived from satellite images (Landsat 5 TM) acquired in 1990 and 2010. Land use changes were assessed by using remote sensing and GIS. The study aimed to assess the spatial land use change pattern from 1990 to 2010. Land use type in 1990 consists of 7 classes and 9 classes in 2010. Supervised and unsupervised classification techniques were used to classify land use maps with the aid of ground truth control points obtained from field survey. Land use change analysis was used change detection in ERDAS Imagine Package accompany with ArcGIS. Accuracy assessment showed that 1990 image classification is 89.96% and 2010 is 84.38%. The results indicated that severe land use changes from 1990 to 2010 have occurred in teak plantation and mixed fruit orchard increase of 100%, while mixed deciduous forest, upland and fallow were decreased of 35.71%, 50.24% and 43.15%, respectively. It can conclude that the changes of land use in 1990 to 2010 are highly significant and be able to map out the distribution of land use change within the 2 decades, results of the study aim to develop replicable maps and presenting the pattern of land use change over the last 2 decades of the study area as part a region of Pak Ou district for further land use planning and development.

Keywords: Land use change, satellite imagery, GIS, remote sensing, Lao PDR

Introduction

Rapid land use change has taken place in many regions of the Lao PDR since the country initiated economic reform and open door policy. Over the last two decades, the landscape of northern Laos which consists of continuum rugged mountainous terrain is rapidly changing. Upland shifting cultivation had been considered the root cause of forest degradation in this region; many attempts have been made by the central government of Laos to restrict the expansion of slash and burn agricultural practices. Shifting cultivation in Laos has

been on the decline in the last two decades leading to increase in the areas of degraded forests (Thongmanivong and Fujita 2006). Intensification of agricultural land use not only affects the landscape, but also bears a significant impact on agricultural production with a potential to undermine the long term harmonious people environment relationships. There is an urgent need for evaluating the magnitude, pattern and type of land use changes for projecting future land use planning and development.

Satellite remote sensing in conjunction with Geographic Information Systems (GIS) has been widely applied and been recognized as a powerful and effective tool¹

* M.Sc. Agricultural Systems, Multiple Cropping Center, Faculty of Agriculture, Chiang Mai University

** Associate Professor, Agricultural Economic and Agricultural Extension Department and Multiple Cropping Center, Faculty of Agriculture, Chiang Mai University

¹** Assistant Professor, Soil Science and Natural Resource Department and Multiple Cropping Center, Faculty of Agriculture, Chiang Mai University

in detecting land use and land cover change (Ehlers et al., 1990 and Treitz et al., 1992). Satellite remote sensing provides cost

effective multi-spectral and multi-temporal data and turns them into information valuable for understanding and monitoring land use patterns and processes for building land use and land cover data sets. In recent years the techniques of satellite remote sensing and GIS have been increasingly used to examine the spatial and temporal patterns of land use and land cover change (Dai et al., 1996; Yeh and Li, 1996, 1997, 1999; Chen et al., 2000). GIS technology provides a flexible environment for storing, analyzing and displaying digital data necessary for change detection and database development. Satellite imagery has been used to monitor discrete land cover types by spectral classification or to estimate biophysical characteristics of land surfaces with spectral reflectance or indices (Steininger, 1996). Remote sensing and GIS based change detection studies have predominantly focused on providing the knowledge of how much, where, what type of land use and land cover change has occurred (Lambin, 1997). Supervised, unsupervised classification and change detection are the most commonly used methods in land use change classification (Jensen, 1996).

The aim of the study is to analyze and assessing the spatial land use change pattern from 1990 to 2010 of the study area in Pak Ou district, Luang Prabang province, Lao PDR by combining satellite remote sensing and GIS to quantify and analyze land use changes using Landsat5 TM data and field surveys.

Methods

Study area

The study area is located in Pak Ou district, Luang Prabang province, Lao PDR. It lies in the $19^{\circ} 57' 39''$ to $20^{\circ} 02' 22''$ N latitude and $102^{\circ} 13' 01''$ to $102^{\circ} 19' 47''$ E longitude with elevations ranging from 279

to 659 meters, this area surrounded by high mountains and rough valleys with an area of 3,269.94 ha. Located in Pak Ou district, far from the center point of Luang Prabang city to the north about 30 Km. The study site consists of 3 villages: Sanghai, Thinchaleon and Phonsavang which has 319 families with the population of 1,609 people.

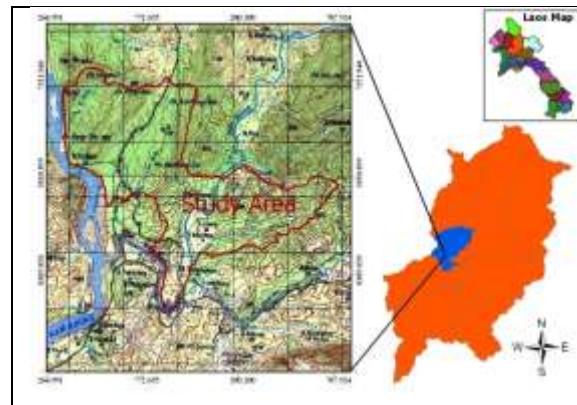


Fig. 1 Map location of the study area

Data and land use change classification

Changing in land use was derived from Landsat5 TM path 129, row 46 taken on 15th January 1990 and on 7th February 2010 and field survey data. Each Landsat image was enhanced using linear contrast stretching and histogram equalization to improve the image to help identify ground control points in rectification. The two dates of images were rectified to a common UTM coordinate system based on 1:50 000 scale topographic maps.

Unsupervised computer random was used for 1990 image and supervised signature extraction with the maximum likelihood algorithm employed to classify the 2010 images. Both statistical and geographical analyses of feature selection were conducted and bands 5, 4 and 3 were found to be most effective in discriminating each class and thus used for classification. The feature selection process reduced the number of bands to be processed in the database, but should not affect the classification accuracy (Jensen, 1996).

Land use classes included: (1) water, (2) deciduous forest, (3) mixed deciduous forest, (4) fallow, (5) upland field, (6) lowland field, (7) teak wood plantation, (8) mixed fruit orchard and (9) urban.

In performing land use change detection, a cross-tabulation detection method was employed. A change matrix was produced. Quantitative real data of the overall land use changes as well as gain and losses in each category between 1990 and 2010 can be compiled. The change matrix gives the knowledge of the main types of changes (directions) in the study area. In order to analyze the nature, rate and location of land use changes, a set of 'gains' and 'losses' images for each category was also produced. These 'change' images overlaid was constructed in a vector GIS environment. This GIS overlay intended to find out land use change information within each temporal. The reference data were collected from field survey and Google earth was also employed as reference for accuracy assessment when necessary.

Results

Land use change in the study area

The land use map for 1990 and 2010 were produced from Landsat5 TM images and displayed in Figures 3-5. The overall

accuracy of the land use classification for 1990 was determined to be 89.96% and 84.38 for 2010. The kappa indices 0.86% and 0.79% for 1990 and 2010 respectively. Overall, the user's and producer's accuracies were high. The accuracy is therefore sufficient for evaluation of land use classification.

Based on information from local inhabitants, land use type in 1990 can be categorized into 7 classes and 9 classes for 2010. Results of land use classification showed that land uses were summarized for the years 1990 and 2010 in Table 1. From 1990 to 2010 with their relative change in each class: water bodies, deciduous forest, lowland field and urban increased 16.43 ha 46.16 ha, 35.75 ha and 48.40 ha the total area, constituting a 39.82%, 4.06%, 62.70% and 339.89% increased from 1990, respectively.

From 1990 to 2010 there were 2 classes of land use increased with severe change occurred in teak wood plantation 514.69 ha and mixed fruit orchard 111.03 ha, both types which did not exist in 1990, they constituting a 100% increased.

On the other hand mixed deciduous forest, fallow and upland field decreased 542.35 ha, 100.53 ha and 129.58 ha constituting a 35.71%, 50.24% and 43.15% decreased from 1990, respectively.

Table 1 Results of land use classification.

Land use type	1990		2010		Relative Change	
	Area (ha)	(%)	Area (ha)	(%)	ha	%
WB	41.26	1.27	57.69	1.76	16.43	39.82
DF	1138.28	34.81	1184.44	36.22	46.16	4.06
MDF	1518.75	46.45	976.40	29.86	-542.35	-35.71
Fa	200.09	6.12	99.56	3.40	-100.53	-50.24
UpF	300.03	9.18	170.72	5.22	-129.58	-43.15
LoF	57.02	1.74	92.77	2.84	35.75	62.70
TP	-	-	514.69	15.74	514.69	100
MFO	-	-	111.03	3.40	111.03	100
Ur	14.24	0.43	62.64	1.92	48.40	339.89

Note: WB=Water Body, DF= Deciduous Forest, MDF = Mixed Deciduous Forest, Fa= Fallow, UpF= Upland field, LoF= Lowland Field, TP= Teak Plantation, M.F.O= Mixed Fruit orchard, Ur= Urban.

The land use change matrix from 1990 to 2010 was shown in Table 2. From the table, it was clear that there has been a considerable change 514.69 ha and 111.03 ha (100%) increased of teak wood plantation and mixed fruit orchard during the last 20 years) while there were a reduction of mixed deciduous forest, fallow and upland 542.35 ha (35.71%), 100.53 ha (50.24%) and 129.58 ha (43.15%), respectively.

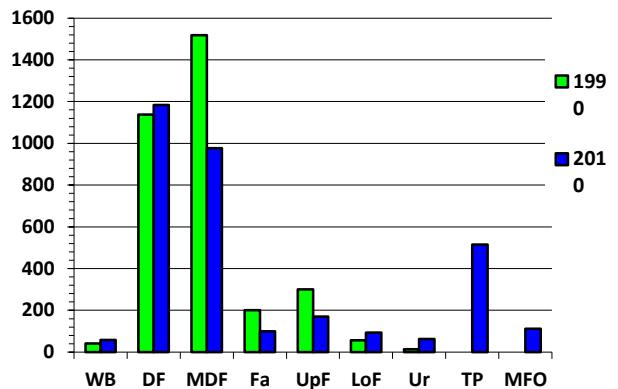


Fig.2 Changes of land use from 1990-2010.

Table 2 Land use change matrix from 1990-2010 (in hectares).

1990	2010									Total 1990
	WB	DF	MDF	Fa	UpF	LoF	Ur	TP	MFO	
WB	36.07	1.53	0.03	-	-	0.7	0.72	2.21	41.26	
DF	3.33	821.89	173.12	5.58	15.73	1.91	-	107.51	9.21	1138.28
MDF	9.98	303.06	610.09	43.49	99.62	56.79	40.35	278.93	76.44	1518.75
Fa	-	11.26	111.92	48.71	22.14	-	0.34	4.28	1.44	200.09
UpF	7.12	44.99	75.59	1.78	30.46	12.16	4.41	107.99	15.8	300.3
Lo F	0.88	1.52	5.53	-	2.77	21.65	6.9	12.05	5.72	57.02
Ur	0.31	0.19	0.12	-	-	0.26	9.94	3.21	0.21	14.24
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
Total 2010	57.69	1184.4	976.4	99.56	170.72	92.77	62.64	514.69	111.03	3269.94
C (ha)	16.43	46.16	-542.35	-100.53	-129.58	35.75	48.40	514.69	111.03	
C (%)	39.82	4.06	-35.71	-50.24	-43.15	62.70	339.89	100	100	

Note: WB=Water Body, DF= Deciduous Forest, MDF = Mixed Deciduous Forest, Fa= Fallow, UpF= Upland field, LoF= Lowland Field, TP= Teak Plantation, M.F.O= Mixed Fruit orchard, Ur= Urban C=Change.

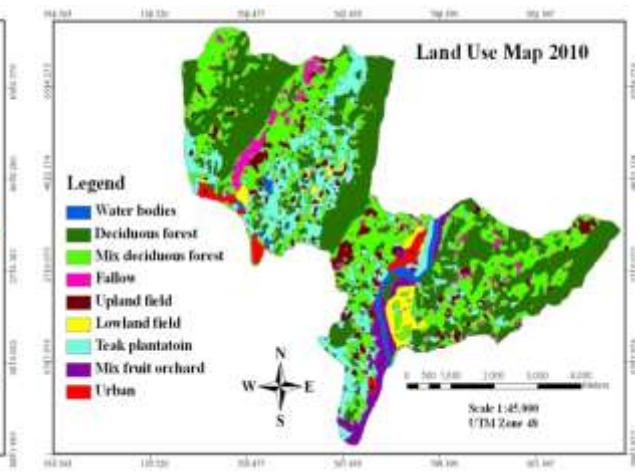



Fig.3 Map of land use classification in 1990.

Fig. 4 Map of land use classification in 2010.

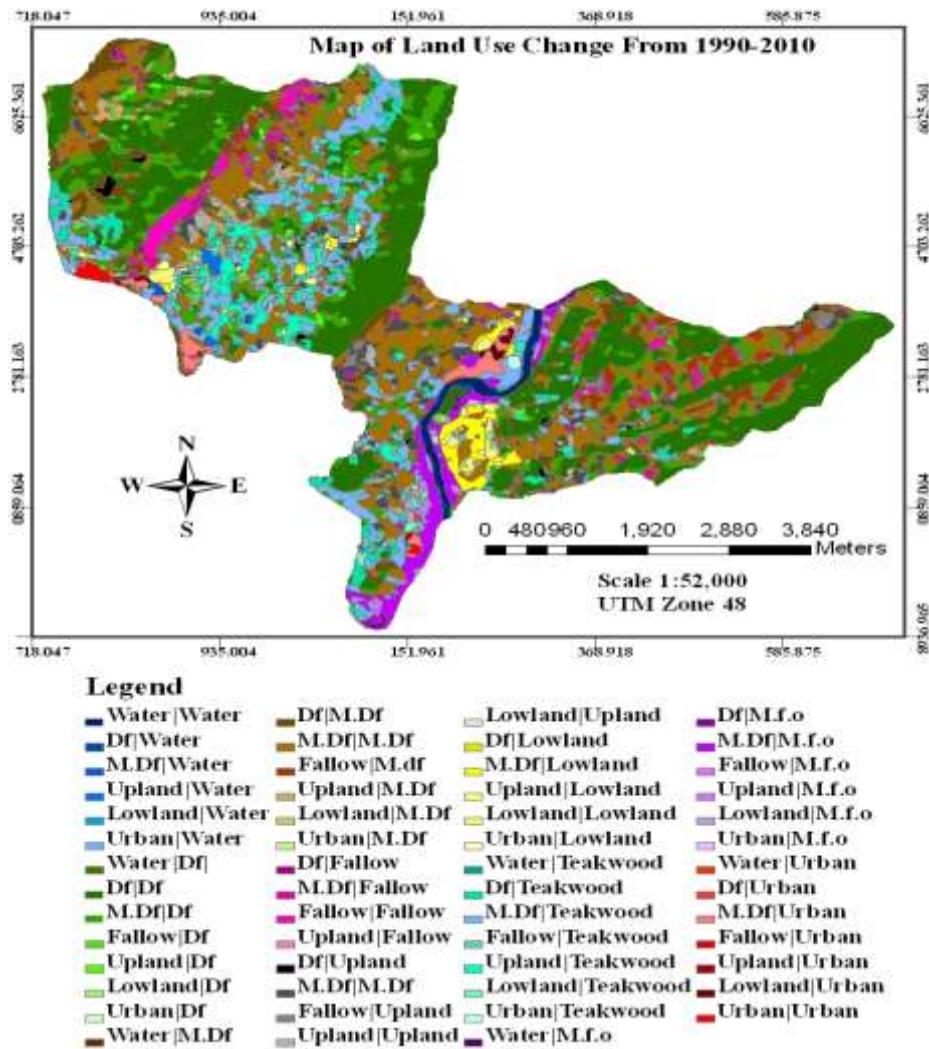


Fig.5 Map of land use change from 1990-2010.

Conclusion

This study describes how the remote sensing and GIS were combined to assess the spatial land use change pattern of the study area in Pak Ou district, Luang Prabang, Lao PDR during the period 1990 to 2010. It was found that severe land use change in the last two decades have occurred in teak wood plantation, mixed fruit orchard and urban areas while mixed deciduous forest, fallow and upland was decreased this was because during period of 1990-2010 those of land use were converted to teak wood plantation, mixed fruit orchard and small industrial factories growth and because of the farmers changed their job to occupy another job such as

workers in small industrial factories and private public services.

The use of Landsat5 TM data to detect land use changes has been generally a success and the digital image classification accompany with GIS has demonstrated its ability to provide comprehensive information on the direction, nature, rate and location of land use changes as a result shown on the map. Although the land use change maps have a reasonably high overall accuracy, the accuracy of different classes varies. Mixed deciduous forest class can be mistaken as several other classes due to their diversity. The integration of satellite remote sensing and GIS provides a means of moving the emphasis of land use change studies from patterns to processes.

Data and computational limits are becoming less significant due to advance in remotes sensing for change detection and in the incorporation of remotely sensed data and auxiliary data into GIS (Baker, 1989).

The most compelling research issues may be a lack of appreciation of the power of the integration and understanding of how to incorporate existing knowledge in useful for land use change assessment.

Acknowledgement

The authors are graceful to Thailand Research Fund (TRF) for financial support on case study in Lao PDR.

References

Baker, W. L. 1989. A review of models of landscape change. *Landscape Ecology* 2, 111-133.

Chen, S., Zeng, S. and Xie, C. 2000. Remote sensing and GIS for urban growth analysis in China. *Photogrammetric Engineering and Remote Sensing* 66, 593-598.

Dai, C., Tang, L., Jiang, P. and Lin, J. 1996. Satellite remote sensing for monitoring urban expansion and environmental remediation. In *Population Dynamics and Management of Urban Environment*, pp. 9-16. Beijing: The 47th IAF Congress.

Ehlers, M., Jadkowski, M. A., Howard, R. R. and Brostuen, D. E. 1990. Application of SPOT data for regional growth analysis and local planning. *Photogrammetric Engineering and Remote Sensing* 56, 175-180.

Jensen, J. R. 1996. *Introductory Digital Image Processing: A Remote Sensing Perspective* (2nd edn). Upper Saddle River, NJ: Prentice Hall.

Lambin, E. F. 1997. Modelling and monitoring land cover change processes in tropical regions. *Progress in Physical Geography* 21, 375-393.

Steininger, M. K. 1996. Tropical secondary forest re-growth in the Amazon: age, area and change estimation with Thematic Mapper data. *International Journal of Remote Sensing* 17, 9-27.

Thongmanivong, S. and Y. Fujita 2006. "Recent Land Use and Livelihood Transition in Northern Laos." *Mountain Research and Development* 26(3): 237-244.

Treitz, P. M., Howard, P. J. and Gong, P. 1992 Application of satellite and GIS technologies for land cover and land use mapping at the rural urban fringe: a case study. *Photogrammetric Engineering and Remote Sensing* 58, 439-448.

Yeh, A. G. O. and Li, X. 1996. Urban growth management in the Pearl River delta an integrated remote sensing and GIS approach. *The ITC Journal* 1, 77-85.

Yeh, A. G. O. and Li, X. 1997. An integrated remote sensing and GIS approach in the monitoring and evaluation of rapid urban growth for sustainable development in the Pearl River Delta, China. *International Planning Studies* 2, 193-210.

Yeh, A. G. O. and Li, X. 1999. Economic development and agricultural land loss in the Pearl River Delta, China. *Habitat International* 23, 373-390.

องค์กรดี พะจอมพล. 2555. การเก็บเกี่ยวและปัจจัยที่มีอิทธิพลต่อผลผลิตข้าวในเขตพื้นที่ลุ่มอาชัย น้ำฝนของที่รำเวียงจันทน์. วิทยานิพนธ์ปริญญาวิทยาศาสตร์บัณฑิต สาขาวิชาเกษตร เขิงระบบ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น.

อาจารย์ที่ปรึกษาวิทยานิพนธ์: ดร. นิสิต คำหล้า,
รศ. ดร. สุจินต์ สิมารักษ์

บทคัดย่อ

เพื่อขัดปัญหาความยากจนและหลุดพ้นจากการเป็นประเทศกำลังพัฒนา รัฐบาลของสาธารณรัฐประชาธิปไตยประชาชนลาวได้มีนโยบายในการเพิ่มความมั่นคงทางอาหาร โดยเฉพาะข้าว ซึ่งเป็นอาหารหลักของประชากรในประเทศ ดังนั้นการวิจัยนี้จึงมีวัตถุประสงค์คือ (1) เพื่อทำการศึกษาระบบการผลิตข้าว (2) เพื่อรับถึงปริมาณผลผลิตที่แท้จริงโดยใช้วิธีการเก็บเกี่ยวผลผลิตจากแปลงเกษตรกรตัวอย่างในพื้นที่ศึกษาและ (3) เพื่อรับปัจจัยที่มีอิทธิพลต่อผลผลิตข้าวในเขตพื้นที่ลุ่มอาชัยน้ำฝนของที่รำเวียงจันทน์ ผู้วิจัยได้เลือกหมู่บ้านซึ่งถือเป็นตัวแทนตามลักษณะทางภูมิภาคของพื้นที่รับคุณภาพน้ำฝนที่รำเวียงจันทน์ คือ หมู่บ้านหนองพระยา หมู่บ้านลาด coward และหมู่บ้านบ่อเหล็ก ใช้ข้อมูลทุกดิจิทัลที่เกี่ยวข้องกับคุณสมบัติทั่วไปของที่รำคุณภาพน้ำฝน ใช้วิธีการสัมภาษณ์แบบกึ่งโครงสร้าง (Semi-Structure Interview) กับผู้รู้ (Key Informants) จำนวน 3 รายในแต่ละหมู่บ้านเพื่อเข้าใจระบบทรัพยากรและวิถีชีวิตในหมู่บ้าน เก็บแบบสอบถาม (Questionnaires) กับกลุ่มตัวอย่าง จำนวน 89 ราย จำแนกตามประเภทของผลผลิตเพื่อเข้าใจระบบการปลูกข้าวและปัจจัยที่มีผลต่อผลผลิต และได้สุ่มเลือกเกณฑ์ตัวอย่าง 18 รายสำหรับการวัดผลผลิตข้าวและองค์ประกอบผลผลิต ใช้วิเคราะห์เนื้อหา (Content Analysis) สำหรับข้อมูลเชิงคุณภาพ และการวิเคราะห์ทางสถิติใช้โปรแกรม Excel MStatC และ SAS สำหรับข้อมูลเชิงปริมาณ

ส่วนใหญ่กระบวนการปลูกข้าวของเกษตรกรมีความคล้ายคลึงกันคือ การปลูกข้าวน้ำฝน มีการจัดการน้ำโดยการทำคันนาเพื่อเก็บและควบคุมน้ำที่ไม่แน่นอน ทั้งสามหมู่บ้านมีผลผลิตข้าวต่ำสุด-สูงสุด 3.00-5.46 ตันต่อเฮกเตอร์ มีค่าเฉลี่ย 4.08 ตันต่อเฮกเตอร์ (ค่าเบี่ยงเบนมาตรฐาน ± 0.72) ซึ่งว่างระหว่างผลผลิตสูงสุดและผลผลิตเฉลี่ยเท่ากับ 1.4 ตันต่อเฮกเตอร์ ในขณะที่ซึ่งว่างระหว่างผลผลิตต่ำสุดและผลผลิตเฉลี่ยเท่ากับ 0.9 ตันต่อเฮกเตอร์ ค่าเฉลี่ยของแต่ละองค์ประกอบคือ จำนวน กอต่อหันนึงตารางเมตร (25.72 กอ) จำนวนรวงต่อกอ (25.72 รวง) ความสูง (134.13 เซนติเมตร) จำนวนรวงต่อกอ (6.9 รวง) จำนวนเมล็ดต่อรวง (86 เมล็ด) จำนวนเมล็ดลีบต่อรวง (12 เมล็ด) และน้ำหนัก 1,000 เมล็ด (27.28 กรัม)

ผลผลิตเฉลี่ยของทั้งสามหมู่บ้านคือ บ้านหนองพระยา (4.55 ตันต่อเฮกตาร์) บ้านลาด coward (3.99 ตันต่อเฮกตาร์) และบ้านบ่อเหล็ก (3.70 ตันต่อเฮกตาร์) ผลผลิตข้าวมีความสัมพันธ์กับสภาพภูมิประเทศและความเหมาะสมของสภาพพื้นที่ใน ปริมาณการใส่ปุ๋ย การเตรียมดิน และการกำจัดความเสียหายจากหอยเชอร์ เป็นต้นดังนี้ จึงยังมีศักยภาพที่จะเพิ่มผลผลิตโดยการจัดการที่เหมาะสม เช่น การใช้ปุ๋ยซึ่งยังคงต่ำกว่าระดับแนะนำและการลดความเสียหายจากหอยเชอร์ ทั้งนี้ผลผลิตที่ได้จากการวิธีการเก็บเกี่ยวโดยส่วนใหญ่มีค่าสูงกว่าประมาณ 30% เมื่อเปรียบเทียบจากผลผลิตที่ได้จากการสัมภាយณ์เกย์ตระกร โดยสูงกว่าที่ระดับ 1.23 ตันต่อเฮกตาร์ ในแต่ของปัจจัยด้านองค์ประกอบผลผลิตพบว่าจำนวนรวงต่อโก ความหนาแน่นของกอต่อพื้นที่ และจำนวนเมล็ดเดิม เป็นปัจจัยที่สำคัญมากที่สุดสำหรับการเพิ่มผลผลิตข้าว อย่างไรก็ตามบางปัจจัยด้านการจัดการก็สำคัญเช่นกัน

Anongsak Phachomphonh. 2012. **Crop Cutting and Factors Influencing Rice Yield in Rainfed Lowland, Vientiane Plain.** Master of Science Thesis in Systems Agriculture, Graduate School, Khon Kaen University.

Thesis Advisors: Dr. Nisit Kamla,
Assoc. Prof. Dr. Suchint Simaraks

ABSTRACT

To achieve the goal and objectives of poverty eradication and move beyond the category of the least developed country, Lao PDR government determines to increase food security particularly rice which is the country's stable food. Therefore, the objectives of this research aimed to study rice cultivation system, to determine rice productivities by crop cutting method and also to identify its influencing factors of rainfed lowland rice in Vientiane plain, Lao PDR. Three villages namely; Nongphaya, Latkouy, Borlex were selected as representative of lowland in Vientiane plain, according to the villages' physical characteristics. Information related to general feature of the Vientiane plain were obtained for secondary data. In each village 3 key informants were selected for SSI to understand natural resources and livelihood system of villagers. A total 89 households from three villages were stratified and selected for interview by using questionnaires to obtain information on rice production system and identify the influencing factors on rice yield. And total 18 farmers' fields from three villages were randomly selected for rice crop cut study and its yield components. Data from SSI were analyzed by content analysis and the quantitative data were processed by computer using MS Excel, MStatC, SAS programs.

Almost all farmers interviewed practice similar rice production processes. Most of rainfed rice is grown in bunded paddy fields, essential to catch and control uncertain water level. Rice yield from crop cutting in all of three villages varied from 3.00 to 5.46 t ha⁻¹, with an average of 4.08 t ha⁻¹(SD = ± 0.72). The gap between the maximum and the average yields was 1.4 t ha⁻¹. While the gap between minimum and average yields was 0.9 t ha⁻¹ and yield components varied widely: number of hills

(m²) (25.72), number of panicles per hill (6.9), plant height (134.13 cm), number of filled grains per panicle (86 grains), number of un-filled grains per panicle (12 grains) and 1000 grain weight (g) (27.28).

The average grain yields in three different villages, Nongphaya Latkouy and Borlex villages were 4.55, 3.99, and 3.70 t ha⁻¹ respectively. Yields were associated with condition of the paddy field; topography, fertilizer input, land preparation, reduction of apple golden snail damage, etc. Therefore, there is much potential to increase the yield through proper managements. The actual yield from crop cutting was 30% over-the estimated yield data obtained from farmers interview, the gap was 1.23 t ha⁻¹. In terms of agronomic factors (yield component factors), the number of panicles per hill, hill density and number of filled grain were the most important factors for increasing rice yield. However, some of management factors were also important.

Rainfed Lowland Rice Cultivation Systems in Vientiane Plain, Lao P D R

ระบบการปลูกข้าวอาศัยน้ำฝนในที่ราบลุ่มเวียงจันทน์ สปป.ลาว

อนงค์ศักดิ์ พระจอมพล^{1*} รศ.ดร.สุจินต์ สิมารักษ์¹ และ ดร.นิสิต คำหล้า¹

Anongsak Phachomphonh^{1*}, Assoc. Prof. Dr. Suchint Simaraks¹ and Dr. Nisit Kamla¹

¹System Approaches in Agriculture, faculty of agriculture, Khon Kaen University, Khon kaen, 40002, Thailand

*Corresponding author: Anongsak Phachomphonh MSc student of Systems in Agriculture, Faculty of Agriculture, Khon kaen University, 40002 Thailand. Email : Packy_fan@hotmail.com

บทคัดย่อ

การวิจัยนี้จึงมีวัตถุประสงค์เพื่อทำความเข้าใจระบบการผลิตข้าวในที่ราบลุ่มโดยอาศัยน้ำฝนเป็นหลัก ได้เลือกหมู่บ้านซึ่งเป็นตัวแทนตามลักษณะทางกายภาพของพื้นที่ราบลุ่มเวียงจันทน์ คือ หมู่บ้านหนองพระยา หมู่บ้านลาดคำย และหมู่บ้านบ่อเหล็ก โดยใช้แบบสอบถาม (Questionnaires) กับกลุ่มตัวอย่าง จำนวน 89 ราย จากทั้งสามหมู่บ้านเพื่อทำความเข้าใจระบบการปลูกข้าว ส่วนใหญ่เกษตรกรมีกระบวนการปลูกข้าวที่คล้ายคลึงกัน คือ ปลูกข้าวครั้งเดียวในฤดูฝน และมีการจัดการนำโดยการทำคันนา เกษตรกรเริ่มปลูกข้าวในเดือนพฤษภาคมถึงมิถุนายนขึ้นอยู่กับปริมาณน้ำฝนในแต่ละปี มีการเตรียมดินเมื่อความชื้นในดินเหมาะสม หลังจากนั้นมีการเตรียมแปลงกล้า และปักดำเมื่อต้นก้าวอายุ 3-4 สัปดาห์ มีการใส่ปุ๋ยรวมถึงการกำจัดวัชพืช ศัตรูพืช และอื่นๆ จนกระทั่งเก็บเกี่ยวในช่วงเดือนตุลาคมถึงเดือนธันวาคม (ระยะเวลาขึ้นอยู่กับชนิดของพันธุ์ข้าวและวันปลูก) ทั้งสามหมู่บ้านมีผลผลิตข้าวตั้งแต่ 1.04–3.85 ตันต่อเฮกตาร์ มีค่าเฉลี่ย 2.5 ตันต่อเฮกตาร์ (ค่าเบี่ยงเบนมาตรฐาน ± 0.59) ผลผลิตเฉลี่ยของแต่ละหมู่บ้านไม่มีความแตกต่างกันมาก (2.53, 2.48 และ 2.47 ตันต่อเฮกตาร์ ตามลำดับ) แต่ผลผลิตส่วนใหญ่ยังอยู่ในระดับต่ำ ในขณะที่ผลผลิตข้าวสูงสุดอยู่ที่ 3.85 ตันต่อเฮกตาร์ ดังนั้น จึงยังมีศักยภาพในการเพิ่มผลผลิตข้าวต่อพื้นที่ด้วยการจัดการที่เหมาะสม เช่น การจัดการน้ำ การลดความเสี่ยหายนจากการทำลายของหอยเชอร์รี่ และอื่นๆ

คำสำคัญ : ข้าว / พื้นที่ราบลุ่มอาศัยน้ำฝน / ผลผลิต / ระบบการปลูก / เวียงจันทน์

ABSTRACT

This paper aimed to investigate rice production systems in rainfed lowland. Three villages namely Nongphaya, Latkouy and Borlex were selected as representatives of the lowland in Vientiane plain, according to physical characteristics. A total of 89 households from three villages were selected for interview by using questionnaires to obtain information on rice cultivation system. Almost all farmers interviewed practice similar rice production process. Most of rainfed rice is grown in bunded paddy fields only in rainy season, beginning in May or June depending on timing of rainfall. Land preparation starts when soil moisture is favorable. Then seedbed is prepared and ready for seedling transplantation after three to four weeks. Fertilizer application, weeding and snail controlling, etc... are practiced by most of the farmers. Harvesting and threshing usually occurred during October to early December (depending on varieties of rice and transplanting date). The rice yield from all of three villages varied from 1.04 to 3.85 t ha⁻¹, with an overall average of 2.50 t ha⁻¹ (SD = ± 0.59). The average rice yield from each village does not differ much in village (2.53, 2.48 and 2.47 t ha⁻¹), but considered to be as lower yield. However, the highest yield was 3.85 t ha⁻¹. Therefore, there is much potential to increase the yield through proper management such as fertilizers application which is still much lower than the recommend level, reduction from golden apple snail damage, etc.

Keywords : Rice / Rainfed Lowland / Production / Cultivation System / Vientiane Plain

Introduction

Lao PDR is primarily based on agriculture for her economy. The development policy, the government has been aiming to eradicate poverty and move beyond the category of least development country by the year 2020 (NPEP. 2003). To achieve this, the government has adopted the National Growth and Poverty Eradication Strategy. The first period of current strategic objectives of agricultural development are to improve rural livelihoods, reduce vulnerability of poor households, and create opportunities for diversifying livelihoods through market orientation. On the other hand, agricultural sector has changed rapidly because farmers are making a transition from subsistence to commercial farming as the results of this strategy. (Sithong et al. 2006). At present, the change of this rice policy helps farmers' adoption and expansion of intensive agriculture practices. They grow various economic crops, including maize, cassava, sugarcane, etc., for sale to increase their family's income (NAFRI. 2009).

Moreover, rice is the one of most important indicators determining the welfare status of the Lao people. In the past, rice was commonly grown mainly for domestic consumption only (Schiller et al. 2006). Presently, rice is becoming the most households' security crop, which can ensure food security and improve cash income for the rural households. (Basnayake et al. 2006). Thus, it is considered as the core staple food and as economic crop in Lao. Beside this, rice is major crop grown in all regions of the country, its cultivation covers more than 80% of the total cropped area and approximately 80% of the rice is grown on the seven lowland plains adjacent to the Mekong River. Moreover, the rice production in Laos can be divided into 3 systems, including the rainfed lowland, irrigated lowland and upland rice, 76%, 11% and 13% respectively (MAF. 2009). Thus, rainfed lowland rice production is a key strategy of agricultural planning. Therefore, to achieving full self-sufficiency in rice at the national level with increasing of population and to generate exportable surplus by 2015 (MAF. 2010).

and to respond to the government policy by achieving increase rice productivities it is necessary to understand the exiting production in a key area of the country.

Research Method

Information related to general feature of the Vientiane plain was obtained for secondary data. The study was conducted in three villages namely Nongphaya, Latkouy and Borlex, in Xaithani district, Vientiane plain. Village selection was based on large planted area of rice and soil texture characteristics. In each village with 3 Key Informants (Village headman, long experience and local knowledgeable farmers) were selected for semi-structured interview in order to understand the village system. A total 89 households from all three villages were selected by stratify sampling (high and low yield households as identified by village headmen) for interview by questionnaires to obtain information on rice production system. Data from SSI were analyzed by content analysis. Quantitative data were processed by computer using MS Excel program such as percentages, mean, maximum-minimum values, etc.

Results and Discussion

Characterization of Vientiane plain

The Vientiane plain is located between latitude $17^{\circ}47'00''$ – $18^{\circ}39'00''$ N and between longitude $102^{\circ}22'00''$ – $103^{\circ}22'00''$ E. with 150 to 200 meter elevation above sea level (SCCL. 1997). Most of the rainfed lowland rice areas are in two provinces i.e., Vientiane province and Vientiane capital with twelve districts. Xaithani district is represents of Vientiane plain, due to largest area of rice planting and covers three main soil textures; the major soil texture is sandy with small amount of clay. There are three classification of paddy fields; 1) Upper terrace rice field, is facing frequent drought, uncertain rainfall, having sandy soil covering about 61.8% of the rice area, 2) Middle terrace rice field, facing frequent short duration flood and drought, having sandy loam soil texture, covering about

31% of the total rice field. And 3) Lower terrace paddy rice, facing frequent wet season flood covering quite high heavy clay of content, covering 6.2% of the total paddy field. (Table 1)

Rice yield from each village

According to the farmers interview, rice yield from all of three villages varied from 1.04 to 3.85 t ha⁻¹, with an overall average of 2.50 t ha⁻¹ (SD = ± 0.59) (Table 2). However, the highest yield was 3.85 t ha⁻¹. Therefore, there is potential to increase the yield through proper management.

Rice cultivation systems

There are two rice cultivation systems in this area, rainfed and irrigated rice system. Rainfed rice is cultivated in the wet season while irrigated rice is cultivated in dry season. In both systems, rice field is flooded at least part of the growing season. Cropping cycle of wet season rice begins at end of May or June depending on rainfall, with the preparation of the nursery seedbed. After a month, young seedlings are transplanted. However, transplanting may be delayed if the wet season rain is late. Harvesting is starting from October to early December (depending on the varieties of rice and planting date). During the dry season, rice fields are often grazed by livestock. (Table 3)

Rice management practices

Almost all farmers interviewed practice similar rice production process. Almost all the farmers plow their main fields when there is sufficient moisture in the soil, usually 2 to 4 weeks before transplanting. The field is plowed again to make soil puddle by harrowing. Farmers apply cow manure with chemical fertilizers; the amount of fertilizer used and frequency of application often depend on individual farmers' financial resources.

Rice cultivar

There are several varieties of rice, used for cultivation. However, it can be classified into three

different types, early, medium and late mature varieties, within each type of variety there are traditional and improved varieties. Many farmers grow more than two different varieties in a cropping year, to match the land types and water availability. Usually early-maturing varieties (flowering in middle to late September) are traditionally grown in upper terrace where water supply is limited and uncertain. Medium and late-maturing varieties (flowering in middle to late October) are also typically grown in the lower terrace where water supply is more available. Table 4 shows that only two farmer in two villages (Latkouy, Borlex) can grow early and medium varieties due to the topographical condition.

Land preparation

Normally land preparation starts in May with favorable rainfall. The farmers used hand tractors for plowing, usually at about 15-20 cm depth with two time of plowing. Pand and Bhan9 found that rice yields were higher and weed dry matter was lower with deep tillage (21-28 cm) than with shallow tillage (7-14 cm). According to Boling10 rainfed lowland rice yield can be increased by the deep tillage because deep plowing conserves moisture and kill weeds. The first plowing is done to incorporate rice straw and other plants residues into the soil to hasten decomposition of plant materials, then they flood the field for two to three weeks to kill the insect pests and weeds. The second plowing is done to turn and mix the soil with water and to harrow at the same time to produce soil puddling and land levelling. Thus, timely of land preparation is important to avoid delay in crop establishment and to enable decomposition of organic material such as rice straw, crop residues.

Nursery management

The lowland rice in this area is transplanted, usually nursery is done in small area (about 5-10% of total area to be planted) the average quantity of rice seed sown in ricebed is about 60-90 kg ha⁻¹, seedlings are allowed to grow for 24 to 30 days before

transplantation depending on the rain. Cattle manure is applied before or at the same time of land preparation. Moreover, chemical fertilizer application is done 1 or 2 days before young seedlings are removed for transplanting, in order to easily pull off the seedlings.

Transplantation

Very few farmers have been trying to plant rice by broadcasting due to labor shortage. Usually transplantation is done from the middle to late July with proper stage of seedling growth (30 days) is preferred. Three to five of seedlings per hill are transplanted at about 15 x 15 cm or 20 x 20 cm spacing under normal condition with average population density of 20 to 25 hills per m^2 . Seedling is transplanted manually by using household or hire labor within the villages.

Fertilizer application

The most common fertilizers available commercially in the villages are N:P:K 16:20:00 and 46:00:00 (ureas). Based on the farmers interview, about 66% of farmers use only chemical fertilizer, 28% use chemical fertilizer with cattle manure and 17% use only cattle manure in their rice field (Table 5). In their seedbed they use rice husks or cattle manure.

Initially, 1-2 bags (1 bag = 50 kg) of chemical fertilizer (16-20-00) is applied about 10-15 days after transplanting (DAT), Then around 75 DAT 46-00-00 fertilizer is applied. However, some farmers mix different types of chemical fertilizer with different timing. However, according to Table 6, average of nutrient inputs in all three villages amounted 25.65 kg N, 6.09 kg P and 1.49 kg K ha^{-1} , illustrates that most of farmers in three villages apply N at the rate less than recommendation rate (60 kg N ha^{-1}) for the rainfed lowland rice production of the central part of Laos (Linquist and Sengxua. 2011). This practice might contribute to low yielding.

Pests' management

The Golden apple snail (*Pomacea canaliculata*) is the most recent and common rice pest influencing

yield in this area (Basilio R. 1991) reported that at 30 days after transplanting, medium-sizes nails (2-3 cm shell height) at a density of one and eight snails/ m^2 had reduced the number of tillers by 19% and 98%, respectively. Furthermore, 0.5 snails/ m^2 cause 6.5% and 8.0 snails/ m^2 cause 93% missing rice hills. In order to avoid the damage from the golden apple snail most of the farmers use more than 30 days old seedlings and transplant with higher number of plants per hill. This might provide some protection or reduce damage from the snail and also increase rice yield. However, 40% of farmers reduce snail damage by traditional practice (handpicking), 16% applied insecticide, 4% applied herbicide and 41% do not control the snail (Table 7). (Halwart M. 1994) summarized that crop establishment with different ages of seedlings and different numbers of seedlings per hill are considered as one of the major cultural methods for controlling snails. Moreover, (Sanico et al. 2001) founded that transplanting the of old seedlings (4-5 weeks) at increase number of seedling per hill could reduce snail damage in terms of missing hills and minimized yield losses.

Harvesting

Proper management and timing of harvesting can reduce rice yield loss. The farmers always observe when 80-85% of rice grains reach mature stage. Usually rainfed rice harvesting starts from October to early December (depending on varieties and planting date) and most farmers harvest their rice manually (using sickle) using household or hire labor within their villages. Harvested rice is dry by the sun in the rice field for a few days before threshing. And usually threshing is done by machine, but seed for the next season planting is threshed manually. After threshing, rice grains with 12-14% of moisture content are usually stored in small rice barns to protect rodent damage.

Conclusion

Management practices of rainfed lowland rice in Asian countries; Cambodia, Thailand, Nepal (Fujisaka. 1990)

are not differ much from the ones in Vientiane plain of Laos. However, this paper show that a combination of physical, methodological, biological and technological factors influence rice cultivation practices and yield of the Vientiane plain. Moreover, changed of rice management practices are observed. Farmers quickly adapted their farming systems according to the changes such as mechanizations.

The average yield of lowland rainfed rice (2.5 t ha^{-1}) is still low as compared to the neighboring countries such as Vietnam (5.5 t ha^{-1}), China (6.5 t ha^{-1}), etc. (FAOSTAT. 2010) and the yield from each village is not much different (2.53 , 2.48 and 2.47 t ha^{-1}), this may be related to the fact that most farmers apply cattle manure or other fertilizers less than recommendation. Moreover, soil fertility in these villages is low. There have a potential to increase the rice yield through proper soil management, pest management and fertilizers application.

Acknowledgements

The author is grateful for the financial support in full from the Thailand Research Fund (TRF). Special thank Assoc. Prof. Dr. Suchint Simaraks and Dr. Nisit Kamla for their valuable comments on earlier draft of this paper and many thanks are also expressed to all farmers.

References

Basilio R. (1991). **Problems of golden apple snail infestation in rice farming.** In : Acosta BO, Pullin RS, eds. **Environmental impact of the golden snail (*Pomacea* sp.) on rice farming systems in the Philippines.** ICLARM, Manila.

Basnayake J, Fukai S, Sipaeuth J, Schiller M, Monthathip C. (2006). **Advance in agronomic research in the lowland rice environments of Laos.**

Boling A, Tuong TP, Jatmiko SY, Burac MA. (2004). "Yield constraints of rainfed lowland rice in Central Java, Indonesia," **Field Crops Research.** 90 : 351-360.

FAOSTAT. (2010). **Statistics Division.** [Online], Available : <http://faostat.fao.org/site/567/default.aspx> [April 29, 2010].

Fujisaka S. (1990). "Rainfed lowland rice : building research on farmer practice and technical knowledge.Agric," **Ecosyst. Environ.** 33 : 57-74.

Halwart M. (1994). "The golden apples nail *Pomacea canaliculata* in Asian rice farming systems : present impact and future threat," **Int. J. Pest Manage.** 40 : 199-206.

Linquist B, Sengxua P. (2001). **Nutrient Managements in Rainfed Lowland rice in the Lao PDR IRRI and NAFRI.**

MAF (Ministry of Agriculture and Forestry). (2010). **Agricultural Development Plan for 5 years 2006-2010. Department of Planning. Ministry of Agriculture and Forestry.** Vientiane Capital, Lao PDR.

MAF (Ministry of Agriculture and Forestry). (2009). **Agricultural Statistics. Vientiane. Lao PDR.**

NAFRI (National Agriculture and Forestry Research Institute). (2009). "Impact of maize expansion on landscapes and livelihoods in Lao PDR: Case study in Xieng Khor district, Hua Phan Province," **News & Events/NAFRI Announcements.**

NPEP (National Poverty Eradication Programme). (2003). **Eight round table meeting Vientiane.** Lao PDR.

Pande HK, Bhan VM. (1966). "Effect of dept of tillage on yield of upland paddy and on associated weeds," **Exp. Agric.** 2 : 225-232.

Sanico AL, Peng S, Laza RC, Visperas RM. (2001). **Effect of seedling age and seedling number per hill on snail damage in irrigated rice.** Crop Protection.

Schiller JM, Hatsadong, Doungsila K. (2006). "A history of rice in Lao. In : Schiller.J.M, M.B. Chanphengxang, B. Linquist and S. Appa Rao (Editors) Rice in Lao," **international Rice Research institute.**

Sithong T, Khamla P, Yayoi F, Jefferson F. (2006). **Agrarian Land-Use Transformation in Northern Laos.**

SSLCC (Soil Survey and Land Classification Centre). (1997). Chemical properties and paddy soil fertilization in six plain in Lao.

Table 1 Soil distribution of Vientiane p

Soil texture	Area	
	Hectare (ha)	Percentage (%)
High sand Soil texture (SL, LS)	238.39	62
Medium of clay Soil texture (LL, CL, LC)	122.28	31.8
Heavy clay Soil texture (HC)	23.83	6.2
Total	384.44	100

Note: SL= Sandy Loam, LS= Loamy Sand, LL= Loamy loam, CL= Clay Loam, LC= Loamy Clay, HC= Heavy Clay

Table 2 Rice yield in three villages

Villages	Yield t ha ⁻¹			No. of HH	SD
	average	Min	Max		
I	2.53	3.85	1.04	27	0.70
II	2.48	3.43	1.60	32	0.47
III	2.47	3.75	1.04	30	0.62
Total	2.5	3.85	1.04	89	0.59

Note: Village I, II, III = Nongphaya, Latkouy and Borlex village respectively

Table 3 Seasonal land-use calendar of lowland paddy field

systems	Month											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Season	Dry season				Wet season					Dry season		
Rainfed lowland	Cattle raising				SW	TP				HT		←
Irrigated lowland	TP			HT	SW	TP				HT	SW	

Note: TP = Transplanting, SW= sowing rice, HT = Harvesting

Table 4 Varieties using in three different villages

Characteristics	Nongphaya village	Latkouy village	Borlex village
Physical	Low terrace	Low terrace & flat	Medium terrace
Water resources	Rain & semi-irrigation	Rain & Irrigation	Rain & semi-irrigation
Varieties	Early, medium & Late varieties	Early & medium varieties	Early & medium varieties

Table 5 Number farmers' type fertilizer application in main paddy field

Practices	Nongphaya village		Latkouy village		Borlex village		Total	
	No. of HH	Percentage (%)	No. of HH	Percentage (%)	No. of HH	Percentage (%)	No. of HH	Percentage (%)
None	0	0	2	6	1	3	3	3.4
CM only	0	0	1	3	0	0	1	1.1
CF	19	70	5	78	15	50	59	66.3
CM+CF	7	26	4	13	14	47	25	28.1
SN+CF	1	4	0	0	0	0	1	1.1
total	27	100	32	100	30	100	89	100

Note: HH= Households, CM= Cattle Manure, CF= Chemical Fertilizer, SN= Soil Night

Table 6 Average nutrient inputs in each village

village	Yield t ha ⁻¹	Organic fertilizer (kg ha ⁻¹)			Chemical fertilizer (kg ha ⁻¹)				Total (kg ha ⁻¹)		
					First period		Second period				
		N	P	K	N	P	K	N	P	K	
I	2.53	0.90	0.41	0.82	17.59	4.32	0.64	11.45	29.93	8.60	1.47
II	2.48	1.35	0.61	1.24	19.22	3.62	0.00	13.92	34.49	7.41	1.34
III	2.47	1.28	0.58	1.18	5.89	0.81	0.27	5.37	12.54	2.28	1.66
Mean	2.50	1.17	0.53	1.08	14.23	2.91	0.30	10.25	25.65	6.094	1.48

Note: Village I, II, III = Nongphaya, Latkouy and Borlex village respectively

First period = 1-30 DAT, Second period = 31-90 DAT transplanting

Table 7 golden apple snail control by farmers

Nongphaya village	Category		Latkouy village		Borlex village		Total	
	No. of HH	Percentage (%)	No. of HH	Percentage %	No. of HH	Percentage %	No. of HH	Percentage %
None	5	19	18	56	14	47	37	41.57
Hands catching	12	44	9	28	14	47	35	39.33
Insecticide	8	30	5	16	1	3	14	15.73
Herbicide	2	7	0	0	1	3	3	3.37
Total	27	100	32	100	30	100	89	100

ນຸ້ມທັນ ແກ້ວມະນຸດພາ. 2555. ກາຣະນາດຂອງໜູ້ຄາໃນພື້ນທີກາເກຍຕະແບນຄາງແລະເພາ ໃນກາກເໜືອ
ຂອງ ສປປ ລາວ: ກາຣະຈາຍເຊີງພື້ນທີ ແລະ ອັນດີຂອງເກຍຕະກຣ.
ວິທະຍານິພັນຮ່ມປະລຸງປາປັນຍືບັນທຶກ ສາຂາວິຊາເກຍຕະເຊີງຮະບນ ບັນທຶກວິທະຍາລ້ຍ
ມາຫາວິທະຍາລ້ຍຂອນແກ່ນ.

ອາຈາຍທີ່ປະການວິທະຍານິພັນ: ຮັ. ດຣ. ສຸຈິນທີ ສິມາຮັກຍື,
ຮັ. ດຣ. ອັນນັດ ພລຮານີ,
ຮັ. ດຣ. ອຣກອໜ້ຍ ຈິນຕະເວັຊ,
ພັ. ດຣ. ດາວວ ອຸນປະໄພ

ນທຄັດຢ່ອ

ກາຣທາໃຫ້ກາເກຍຕະແບນເລື່ອນລອຍຮູ້ອ່ານ ທີ່ເຮີຍກວ່າ “ກາເກຍຕະແບນຄາງ ແລະ ເພາ” (ກຄພ) ມີເສດີຍກາພເປັນໄອນາຍກາເພັນນັ້ນທີ່ດອນທີ່ສຳຄັນຍຸ່ດຢ່າງຂຶ້ນປະການທີ່ຂອງຮູ້ນາລາວ ນໂຍ
ນາຍນີ້ ເຮີຍກັ່ງໃຫ້ມີກາຣກຳຈັດ ກຄພ ໃຫ້ໜົດໄປຈາກພື້ນທີ່ໃນປີ ດ.ສ. 2015 ດ້ວຍກາເພັນຮະບນ
ກາຣປຸກພື້ນໃນພື້ນທີ່ດອນ ໃຫ້ມີຄວາມຫລາກຫລາຍດ້ານຊີວິກາພ ຄວາມມັນຄົງແລະມີປະສິທິກາພກວ່າ
ຮະບນເຄີມ ໃນຂະແໜງກັນ ຄວາມສັນພັນຮ່ວມໜ້າ ກາຣທາ ກຄພ ທີ່ໄມ່ຢັ້ງຍືນ ແລະກາຣກ່ອນດິຈິດຂອງ
ໜູ້ຄາ ໄດ້ມີກາຣສຶກຍາແລະຈັດພິມພ້ອຍ່າງແພ່ວ່າລາຍ ແຕ່ໄມ່ເຄຍມີກາຣສຶກຍາວິຈິຍ ເກື່ອງກັບປັ້ງປຸງທີ່ເລີຍໃນ
ປະເທດລາວ ເພື່ອສັນອົງຂໍ້ມູນຂ່າວສາຮ່ວມໜ້າ ສຳຮັບຮູ້ນັ້ນກວິຈິຍແລະນັກພັນນາເພື່ອມຸ່ງເປົາ
ໃຫ້ມີກາຣໃຫ້ກັບພາກຮຽນຫາດີໃນພື້ນທີ່ດອນທີ່ດີກວ່າ ໃນປະເທດລາວ ມີພື້ນທີ່ທຸ່ງໜູ້ປະມານ 0.8-1
ລ້ານເສດຕ້າ ອ້ອງປະມານ 3-4 % ຂອງພື້ນທີ່ປະເທດ ໃນຂະທີ່ພື້ນທີ່ ກຄພ ມີກາຣລດລົງຍ່າງຕ່ອນເນື່ອງ
ດ້ວຍເຫດຸທິຮະບນກາຣໃຫ້ປະໂຍບນພື້ນທີ່ໄດ້ເປີເລີຍໄປຈາກກາຣບັງຄັນໃຫ້ໂຍນາຍກາເພັນຮະບນຂອງຮູ້
ກາຣະນາດຂອງໜູ້ຄາຈາກເປັນກັບຄຸກຄາມຕ່ອພລິຕິກາພ ແລະ ຄວາມຍັ້ງຍືນຂອງຮະບນ ກຄພ ແບບດັ່ງເດີມ
ແລະຮະບນກາຣປຸກພື້ນໃນພື້ນທີ່ມີອູ້ແດ້ວ່າ

ຈານວິຈິຍຄັ້ງນີ້ ເນັ້ນສຶກຍາຫາຂໍ້ມູນເກື່ອງກັບພື້ນທີ່ທຸ່ງໜູ້ຄາໃນອຳເກອນນ້ຳນາກ ແຂວງຫລວງ
ພະບາງ ໃນກາກເໜືອຂອງປະເທດລາວ ດ້ວຍກາຣວິເຄຣະທີ່ຂໍ້ມູນຮັບຮູ້ຈາກຮະຍະໄກລ (Remotely sensed
data) ຂອງກາພຄ່າຍດາວເທິຍມ Landsat-5 ແລະຂໍ້ມູນຮະບນກົມືກາສຕ່ວັດສາຮນເທດ (Geographic
information system data) ແລະ ພັດກະະທບທີ່ເກີດຈາກກາຣະນາດຂອງໜູ້ຄາຕ່ອພື້ນທີ່ກາເກຍຕະ
ແລະກາຣດຳຮັບຮູ້ທີ່ຮັບຮູ້ໂດຍເກຍຕະກຣ. ໃນພື້ນທີ່ທີ່ມີໜູ້ຄາຮະນາດມາກທີ່ສຸດ

ທຸ່ງໜູ້ຄາໃນພື້ນທີ່ກາເກຍຕະ ໄດ້ຄູກສ້າງເປັນແຜນທີ່ຈາກກາພຄ່າຍດາວເທິຍມ Landsat -5
ທີ່ມີຄວາມຄູກຕ້ອງສູງ ໃນປັງຈຸນກາຣປຸກຄຸມຂອງທຸ່ງໜູ້ຄາມີປະມານ 2.5 % (4,878 ເສກຕ້າ) ຂອງພື້ນທີ່

อำเภอหน้ากากทั้งหมด และถูกจำแนกเป็นทุ่งหญ้าขนาดเล็ก (micro-grassland) เนื่องจากว่าแปลงส่วนมากมีขนาดเล็กกว่าครึ่ง hectare การวิเคราะห์ข้อมูลเชิงพื้นที่ยังแสดงให้เห็นอีกว่าการระบาดของหญ้าคามีการกระจายตัวไม่เท่ากัน มีการระบาดน้อยที่สุดในเขตภาคตะวันออกเฉียงเหนือ และภาคตะวันตกน้อยที่สุดในเขตภาคตะวันออกเฉียงใต้ 4.4 % ของพื้นที่เขตงานวิจัยครั้งนี้ ได้ให้ความเห็นว่า การทำเกษตรแบบเข้มข้นที่ทำให้ กดผด กล้ายเป็นระบบการปลูกพืชแบบคงที่ เป็นสาเหตุสำคัญที่ทำให้พื้นที่การศึกษามีการระบาดของหญ้าเกิดขึ้น

กดผด แบบดั้งเดิมยังคงเป็นระบบการใช้ประโยชน์ที่ดินทางการเกษตรที่สำคัญ เป็นแหล่งอาหารและรายได้ที่สำคัญของเกษตรกร หญ้าคามีเกิดขึ้นเมื่อทศวรรษครึ่งที่ผ่านมาคำลั้งส่งผลกระทบต่อการดำรงชีวิตของเกษตรกร ประมาณ 38% ของครัวเรือนทั้งหมดในหมู่บ้านป้าหมาย ความสัมพันธ์ทางวัฒนธรรม สาเหตุ-ผลกระทบ (positive cause-effect relationships) ของบรรดาปัจจัยการเร่งใช้ประโยชน์ในพื้นที่เดิม ช่วงพักการใช้ประโยชน์ที่ดินสั้นลง (short fallow periods) และ พื้นที่ปลูกพืชมีจำกัดอยู่รัฐโดยเกษตรกร เป็นปัจจัยหลักที่ทำให้หญ้าระบาดในอำเภอหน้ากาก หญ้าคามีได้ระบาดเข้าในพื้นที่การใช้ประโยชน์ที่ดินทุกประเภท และส่งผลกระทบต่อความชื้น เนื่องจากหญ้าคามีเพียงแต่ลดผลิตภาพของพื้นที่ที่ปลูกพืชเท่านั้น แต่ยังลดพื้นที่การเพาะปลูกลงอีกด้วย เนื่องจากการระบาดของของหญ้าคามีแบบ mixed และแบบ pure ตามลำดับ การกำจัดวัชพืช การพักช่วงการใช้ประโยชน์ที่ดิน การใช้สารเคมี การแลกเปลี่ยนแรงงาน การเปลี่ยนพืชปลูกและการหาจิกรรมนอกการเกษตร เป็นวิธีการการจัดการที่สำคัญของเกษตรกร อย่างไรก็ตามในทางปฏิบัติเกษตรรับผิดชอบอุปสรรคหลายประการ เช่น มีแรงงาน เงินทุน ข้าวกิน และพื้นที่ดินปลูกพืชไม่พอ

การแทรกแซงของรัฐบาลมีความจำเป็นอย่างมากในการส่งเสริมการใช้ทรัพยากรดินให้มีประสิทธิผล เพื่อสนับสนุนการเติบโตทางเศรษฐกิจพร้อมกับการรักษาสภาพแวดล้อม และความพายามนั้นควรเริ่มต้นพัฒนาในเขตที่มีการระบาดมากที่สุด อย่างไรก็ตาม อุปสรรคในการจัดการและเทคโนโลยีที่ใช้ในปัจจุบัน ทำให้เกษตรกรเลือกใช้ระบบการเกษตรแบบเข้มข้นได้ยาก ซึ่งเป็นแนวทางนโยบายการพัฒนาที่สำคัญของรัฐบาล เพื่อจัดการกับลิ่งที่ท้าทายเหล่านี้ ความรับรู้ของเกษตรกรเกี่ยวกับ สาเหตุ ปัญหา วิธีการการจัดการ และการแก้ปัญหา เริ่กร่องให้มีการเข้ามาแทรกแซงอย่างเป็นระบบ และผสมผสาน รวมถึงการแก้ปัญหาทางเทคโนโลยี สังคม เศรษฐกิจ และการเมืองเข้าด้วยกัน

เทคโนโลยีรับรู้จากระยะไกล (Remote Sensing) และเทคโนโลยีสารสนเทศทางภูมิศาสตร์ (Geographic Information System) ถูกพิสูจน์ ให้เห็นว่าเป็นเครื่องมือที่ประยุกต์ใช้ได้ดี ในการกำหนดพื้นที่การศึกษาโดยวัดคุณประสิทธิภาพของงานวิจัย การประยุกต์ใช้

ເທດໂນໂລຢີດັກລ່າວໃນພື້ນທີ່ການສຶກໝາອື່ນຈະມີຜລກະທບອຍ່າງມາກຕ່ອກາຈັດກາທຮັກພາກຮຽມໝາດີ ແລະກາເກຍດົກໃນພື້ນທີ່ດອນຂອງປະເທດລາວ ຍ່າງໄຮກໍຕາມ ເທດໂນໂລຢີຮັບຮູ້ຈາກຮະບະໄກລແລະ ເທດໂນໂລຢີສາຮສນເທກທາງກຸນີສາສຕ່ຣີເປັນສິ່ງຄ່ອນໜ້າງໃໝ່ສໍາຫັບປະເທດລາວ ໂດຍເຈັບພະອຍ່າງຍິ່ງ ທາງການແກ້ທີ່ອຂອງປະເທດ ແລະກາໃໝ່ປະໂຍ້ນເພື່ອສັນສົ່ນການຕັດສິນໃຈໃນກາວິຈັຍແລະ ການພັດທະນາຍັງມີນ້ອຍມາກ ດັ່ງນັ້ນຈາກວິຈັຍຄັ້ງນີ້ ໄດ້ເສັນອແນະວ່າກະທຽວເກຍດົກແລະປໍາໄມ້ຂອງ ລາວກວຽກກ່ອດັ່ງສູນຍີສາຮສນເທກທາງກຸນີສາສຕ່ຣີກາເກຍດົກ (Agrogeoinformatic Center) ແລະຮັບຜິດຈອບ ກາວິຈັຍແລະກາຝຶກອບຮມ ທີ່ແນ້ນການປະຢຸກຕີໃຫ້ເຄື່ອງມືອ ເທດໂນໂລຢີຮັບຮູ້ຈາກຮະບະໄກລ ເທດໂນໂລຢີສາຮສນເທກທາງກຸນີສາສຕ່ຣີ ແລະຮັບຜິດຈອບ ແລະຈັດກາກັບ ທຮັກພາກຮຽມໝາດີ ແລະກາເກຍດົກໃນກາວິຈັຍທີ່ອຂອງ ສປປ ລາວ

Bounthanh Keoboualapha. 2012. ***Imperata cylindrica* infestation in a slash and burn cultivation area of northern Lao PDR: spatial distribution and farmer's perceptions.** Doctor of Philosophy Thesis in Systems Agriculture, Graduate School, Khon Kaen University.

Thesis Advisors: Assoc. Prof. Dr. Suchint Simaraks,
Assoc. Prof. Dr. Anan Polthanee,
Assoc. Prof. Dr. Attachai Jintrawet,
Asst. Prof. Dr. Thaworn Onpraphai

ABSTRACT

Stabilization of shifting cultivation (SBC), also called as “slash and burn cultivation”, is one of the most important government policies for the upland development in Lao PDR. The policy called for completed eradication of the SBC by the year 2015 through the development of a more diversified, stable, and productive upland farming system. While links between unsustainable SBC and the formation of *Imperata* grassland (IGL) have been well documented, there has been limited research on the issues with the intention of providing appropriate information to research and development communities in Laos aiming at better use of natural resources in the uplands. In Laos, IGL was reported to have the potential to invade 0.8-1 million ha or about 3-4% of the country’s territory. While there has been a continuous reduction in SBC area as a result of land use systems changed imposed by the government development policies, the spread of IGL was expected to be a threat to the productivity and sustainability of the traditional SBC systems and the already intensified land use systems.

This research aims to acquire information about the IGL in Nambak district of Luang Prabang province in northern Laos based on the synthesis of remotely sensed data from Landsat-5 TM and GIS data, and the possible effects of IGL infestation on agricultural land uses and the livelihoods perceived by local farmers in the most *Imperata* infested area.

IGL in the study area was mapped from Landsat-5 TM imagery with highly acceptable accuracy. The current IGL cover was estimated at about 2.5% (4,878 ha)

of the district area and characterized as a ‘micro-grassland’ for most patch sizes being less than half a hectare. The spatial analysis showed that the IGL was unevenly distributed, ranging from 0.6 % in the least infested zone in the north-east and north-west to 4.4% in the most infested zone in the south-east part of the district. In addition, the study suggested that improper SBC intensification into more permanent crop production systems was a major cause of *Imperata* infestation in the study areas.

The traditional SBC remains the main agricultural land use system providing an important source of food and income for the farmers. IGL which was established about one and a half decades ago was reported to affect the livelihoods of 38% of the households in the target villages. The positive cause-effect relationships among the factors of accelerated land clearing, short fallow, and limited land perceived by local farmers were suggested to be the main cause of widespread *Imperata* infestation in Nambak district. *Imperata* had invaded all types of land uses, and affected their sustainability as it not only decreased the productivity of the land being cropped but also reduced the cultivated land as a result of mixed and pure infestation, respectively. Weeding, fallowing, applying chemicals, exchange labors, and change for new crops and off-farm activities were the common farmer’s management strategies; the effectiveness of implementing of such strategies, however, encountered many problems of lacking labors, capitals, rice shortage, and limited land.

In order to further utilize land resources more effectively to promote economic growth while maintaining the environment, government intervention is indispensable; development efforts should initially focus on the most affected areas. However, the constraints faced and the current technology used by the farmers will make it very difficult for them to adopt a more intensive agricultural system which is a high priority of the government upland development policy. To meet this challenge, knowledge about causes, problems, management strategies, and constraints perceived by local farmers require a more systematic and integrated interventions combining technological, social, economic, and political resolutions.

Remote Sensing (RS) and Geographic Information System (GIS) technologies were proved to be a cost-effective, accurate and transparent tool in determining the study area driven by the research objectives and their applications in other study areas would have significant impacts on the natural and agricultural resource management

in the uplands of Laos. However, the RS and GIS technologies are relatively new, in particular northern Lao region, and have hardly been utilized to support decision making in research and development. Therefore, the study suggests that MAF of GoL should establish an Agrogeoinformatic Center and charged with research and training activities that aim to apply RS, GIS, and system modeling tools to better understand, predict, and manage agricultural and natural resources in northern Lao PDR.

Imperata Grassland Mapping in Northern Uplands of Lao PDR: Area, Distribution, Characteristics, and Implications for Slash-and-Burn Cultivation

Bounthanh Keoboualapha,* Thaworn Onpraphai,** Attachai Jintrawet,** Suchint Simaraks,* and Anan Polthanee*

Slash-and-burn cultivation (SBC) is an important food and cash crop production system in mountainous regions of many countries in Southeast Asia. While links between unsustainable SBC and the formation of *Imperata* grassland (IGL) have been well documented, there has been limited research on the issues with the intention of providing appropriate information to communities in Laos aiming at better use of natural resources. This paper reveals the IGL area, distribution, and characteristics in the uplands of northern Laos, and discusses the importance of IGL for upland development based on the synthesis of remotely sensed Landsat-5 TM and GIS data. We have demonstrated the potential use of geoinformation technology as a set of informatics tools that can be applied in other area studies in Laos. Nineteen land uses/land covers of 196,317 hectares in Nambak District in northern Laos were mapped with an overall accuracy of 92.1% and a kappa statistic of 91.3%. IGL achieved >90% mapping accuracy. The current IGL was estimated at about 2.5% (4,878 hectares) of the district area and characterized as a “micro-grassland,” with most patch sizes being less than half a hectare. About 37% of the district area in the southeastern part was identified as the most *Imperata*-infested zone. The study suggests that improper SBC intensification into more permanent crop production systems is a major cause of *Imperata* infestation in the upland areas and that the spread of IGL can be a threat to the productivity and sustainability of traditional SBC systems and already intensified land use systems. In order to utilize land resources more effectively, government intervention is indispensable; and development efforts should initially focus on the most affected areas.

Keywords: *Imperata* grassland, slash-and-burn cultivation, land use intensification, remote sensing, supervised image classification, GIS

* บุญธรรม แก้วบิวลาพา; สุจินต์ สิมารักษ์; อนันต์ พลธาร์ System Approaches in Agriculture Program, Faculty of Agriculture, Khon Kaen University, 123 Moo 16 Mittapap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand

Corresponding author's e-mail: k.bounthanh@gmail.com

** อาจารย์ อ่อนประไฟ; รองศาสตราจารย์ จิตตະเวช Crop Science and Natural Resources Department and Multiple Cropping Center, Faculty of Agriculture, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand

I Introduction

Imperata cylindrica is one of the most dominant, competitive, and difficult weeds to control in the humid and sub-humid tropics of Asia, West Africa, and Latin America. There may be as much as 35 million hectares of *Imperata* grassland (IGL) in Asia, about 24.7 million hectares of which is in Southeast Asia (Garrity *et al.* 1997). Common names for *Imperata* are *nya kha* (Laos and Thailand), *thetke* (Myanmar), *co tranh* (Vietnam), *alang alang* (Indonesia), *lalang* (Malaysia), *cogon* (Philippines), *illuk* (Sri Lanka), and speargrass.

Links between slash-and-burn cultivation (SBC), also called “shifting cultivation,” and the formation of IGLs were well understood in Indonesia in the 1930s (Van Noordwijk *et al.* 1997). IGLs have developed mostly on former forestlands after repeated logging and subsequent treatment by fire, e.g., in shifting cultivation (Eussen and Wirjahardja 1973; Seavoy 1975; Suryatna and McIntosh 1980).

Shifting cultivation is probably the oldest farming system, and its practice is remarkably similar throughout the humid tropics (Nye and Greenland 1960). Traditionally, farmers slashed and burned a hectare or so of primary or secondary forest, grew food crops in polyculture for one or more years, and abandoned the land to secondary forest regrowth for 20 to 40 years, then repeated the cycle (Sanchez *et al.* 2005). This traditional shifting cultivation—with short cropping periods and long secondary forest fallow periods—is now rare, practiced primarily by indigenous communities disconnected from the market economy. It is socially and environmentally sustainable (Thrupp *et al.* 1997), although at low levels of agricultural productivity and at human population densities of less than 30 people per square kilometer (Boserup 1965).

When population pressure exceeds a critical density—that varies with agro-ecological zones and inherent soil fertility—traditional shifting cultivation is replaced by a variety of other agricultural practices that still involve clearing by slash-and-burn methods. Pedro Sanchez *et al.* (2005) suggest that the loosely used terminology be specified as follows: “shifting cultivation” refers to the traditional long-fallow rotational system, while “slash-and-burn” refers to other farming systems characterized by slash-and-burn clearing, short-term fallows, or no fallows at all. Both systems include the shortened fallow-food crop systems and the establishment of tree-based systems such as complex agroforestry, simple agroforestry, or monoculture tree crop plantations. Many of these systems are still rotational to some degree, with occasional slash-and-burn clearing when the productivity of the system declines.

The vegetative fallow phase restores carbon and nutrient stocks in the biomass, improves soil physical properties, and suppresses weeds (Nye and Greenland 1960; Sanchez 1976; Andriesse and Schelhaas 1987; Roder *et al.* 1997; Watanabe *et al.* 2004).

With the reduction of fallow periods to less than 10 years, and more commonly less than 5 years, the fallow vegetation is incapable of restoring sufficient nutrients in the biomass and suppressing weeds by shading for the subsequent cropping phase. Unlike shifting cultivation, slash-and-burn systems have less vegetative cover and often have exposed, compacted soils that increase water runoff and soil erosion rates (Lal *et al.* 1986). This change in vegetation and soil structure caused by shortened fallows results in systems with declining productivity, depending more and more on less and less fallow biomass. The frequent use of fire is replacing native species with exotic, aggressive ones and favoring grasses over woody species, creating treeless landscapes that have minimal productive and ecological value (Styger *et al.* 2007). In some cases, the systems reach a point at which the trees are replaced by other, highly degraded systems such as IGLs in Southeast Asia and West Africa (Garrity 1997).

Ecologically, *Imperata* infestation is an interrupted developmental phase in the ecosystem development process. An interrupted ecosystem, or a blocked phase, inhibits the processes leading to the next developmental phase. The blocked phase can be based on the absence of viable stumps, depletion of seed banks, and reduced inflow of seed from the surrounding landscape and/or soil conditions that do not allow for rapid growth of tree seedlings to a stage where they can replace the grass (Murniati 2002). IGL has many disadvantages compared to the forest in terms of biodiversity, total biomass for the maintenance of soil fertility, and carbon capture, and as a producer of useful materials for human populations. Therefore, efforts toward more productive land uses will contribute to economic growth, environmental protection, and rural poverty alleviation.

In Lao PDR, IGL has been estimated at about 0.8–1 million hectares (Charoenwatana 1989; Garrity *et al.* 1997). This *Imperata* land covers about 3% to 4% of the country's territory, which is equivalent to the current cultivated land area of the country. Although there has been extensive research and development focused toward making better use of IGLs in the region, limited information is available in Laos. In fact, the IGLs exist—and are expected to increase—as a result of shortened fallow periods driven by increased population density and shifting cultivation stabilization policies in many upland areas. To rehabilitate land infested by *Imperata*, it is very important to first understand the latter's area, distribution, and characteristics. This study was undertaken (1) to map and estimate the area of IGL in Nambak District of Luang Prabang province in northern Laos, and (2) to describe the existing IGL in relation to its spatial distribution and relationships with other land uses, and its importance for upland development using Remote Sensing (RS) and Geographic Information System (GIS) technologies. The findings of the study will not only help improve the understanding of IGL dynamics in the study area, but also provide valuable information to policy makers and resource managers to design and

develop more integrated research and development aimed at better use of natural resources in the uplands of Laos.

II Methods

II-1 Study Area

The study area is situated in Nambak District, Luang Prabang province, in northern Laos (Fig. 1), about 120 km northwest of the provincial capital. Geographically, it is located between latitudes 20°58'N and 21°15'N and longitudes 102°09'E and 102°37'E. The district covers an area of about 200,000 hectares, with a total population of about 65,400 inhabitants in 83 villages.

Nambak District represents a typical mountainous district of northern Laos. The district has a tropical climate with mild winters during October–March. Average monthly temperatures range from 20°C to 31°C, and annual rainfall ranges from 1,700 mm to

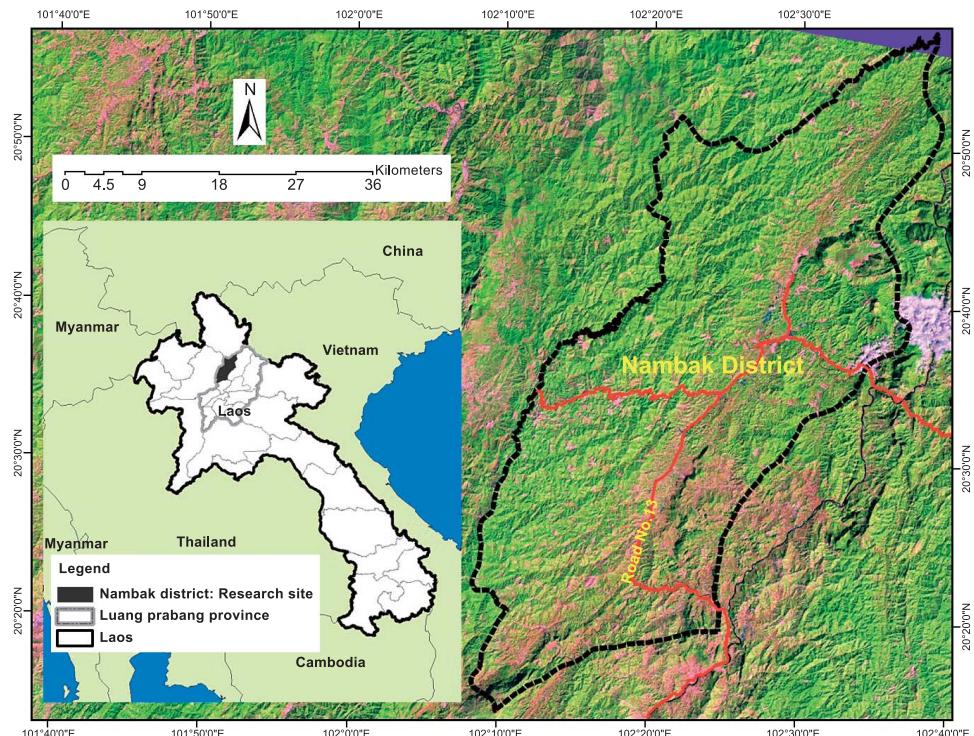


Fig. 1 Study Area: Nambak District of Luang Prabang Province, Northern Laos

1,900 mm. Flat alluvial land area with an altitude of less than 600 m accounts for less than a quarter, while low hills and mountains with an altitude of 600–1,000 m account for more than half of the territory. Areas with an elevation of more than 1,000 m form approximately one quarter of the district area (RDCC1 2002). SBC agriculture continues to be the main land use system by area, although the areas of upland rice have been reduced substantially in recent years (Personal communication with district officers). Local farmers are adapting themselves to cope with reduced fallow periods as a result of shifting cultivation stabilization policies promoted by the local authorities and increased population pressure.

II-2 *Remotely Sensed Data*

Landsat-5 TM imagery was chosen for this study. The image covering Nambak District (Fig. 1) was acquired in February 2010. The scene center location (lat/long) is 20.626/102.381 degrees, path/row - 129/46, output bands - 7, and pixel spacing - 25×25 m. The Landsat data was supplied in geo-rectified form and projected to the UTM zone 48N with the coordinate system referenced on the WGS 84 datum.

February was expected to be the most suitable period of the year for *Imperata* land cover detection by the sensor, because wet season crops in the uplands were completely harvested and burning operations for the next cropping had not yet started, although slashing may have been almost finished in many areas.

II-3 *Land Use/Land Cover Classes*

For this research, land cover/land use categories or classes were defined after consultation with local communities and observation in the fields during ground truth data collection. Differences in vegetation covers and land use practices were the main criteria used to distinguish between land use classes. A total of 19 land covers/land uses were identified for the study area (Appendix Table 1).

II-4 *Ground Truth Data Collection*

The supervised image classification method requires ground truth data to help identify information classes (land use categories), which are then used by the software to determine the spectral classes that represent them. In the fields, the land use/land cover classes indicated in Appendix Table 1 were cautiously observed for their characteristics, such as species, age, density, and land use types. A total of 275 points of the existing land covers of about 0.5 hectares were collected using a Global Positioning System (GPS) during November–December 2010, about nine months after the Landsat-5 TM data was obtained.

II-5 *Image Pre-processing*

ERDAS IMAGINE 8.4 software was used as a tool to correct degraded and/or distorted image data to create a more faithful representation of the original Landsat imagery. The single-band images of Landsat-5 TM were initially combined into a composite map and enhanced with false color of bands 5:4:3. The images were also enhanced using a haze-reduction function to remove the cloud cover. Finally, the image was subset for the study area and used for the image classification process described below.

II-6 *Image Classification*

In this study, the supervised classification method, using the Maximum Likelihood Classifier (MLC), was used for image classification. The MLC is the most widely employed classification algorithm for digital image classification (Bolstad and Lillesand 1991; Forghani *et al.* 2007).

The ground truth data of 275 points of 19 land use types were imported onto the Landsat image for creating the training areas, from which numerical signatures for each of the defined land use/land cover classes were assigned using Signature Editor Tools in ERDAS IMAGINE 8.4 software. In addition, a high-resolution satellite image from Google Earth was used to help distinguish the features of different land uses with respect to their tones, shapes, sizes, patterns, textures, and associations. After closely relating the Landsat imagery with Google satellite images, in addition to the 19 land uses from the ground truth data 2 more land uses were identified: clouds and shadow areas. After the signatures for each land use were identified, image classification using MLC was performed. A total of 22 land use classes, including 1 class of unclassified area, were generated. Finally, the resulting classification data were assessed for their mapping accuracy.

II-7 *Image Post-classification*

Following the mapping accuracy assessment, the classified image was generalized using the fuzzy convolution function with a 5×5 moving window in order to eliminate unnecessary details and extract a single or a small group of misclassified cells for a more general spatial analysis. The generalized image of 22 land uses was then reclassified into a thematic map consisting of 11 land use classes (Appendix Table 2), which is actually a 2010 land use map of Nambak District (Fig. 2). This resulting thematic map was used for the spatial analysis discussed below.

II-8 *Spatial Analysis*

In order to better understand the spatial distribution of IGLs and their relationship with

other land uses in the study area, a 10×10 km grid map in shapefile format was created using the Data Management Tool in ArcGIS 9.2. The generated grid map consists of 30 grids, with each grid cell representing 100 km^2 . The grid map was overlaid on the thematic map, from which land uses for each grid were extracted using the clipping function (Fig. 3); and then the areas and land use intensity were calculated. Based on this analysis, the *Imperata*-infested zones were classified into low, moderate, and high intensity. A purposive random sampling procedure was used to select the 15 odd-numbered grids for correlation analysis to statistically test the null hypothesis that there was no relationship between the IGL area and some of the main land uses. The sampling resulted in 15 odd-numbered grids: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29 (Fig. 3).

III Results and Discussion

III-1 Land Use/Land Cover Mapping

A total of 19 land use/land cover classes were identified for the study area during the field visits for ground truth data collection, and three land cover classes (cloud, shadow, and unclassified areas) were identified during the image classification process. Appendix Table 3 was used to determine the quality/accuracy of the classified data derived from the MLC algorithm on Landsat-5 TM dated February 2010. The columns represent reference data (i.e., ground truth) and suggest how many pixels are classified correctly by the proposed algorithm. The overall accuracy was estimated at 92.1%, which is well above the $\geq 85\%$ regarded as acceptable in the literature. The kappa statistic was calculated to be 91.3%, which corresponds to strong agreement, based on $\geq 80\%$, 40–80%, and $< 40\%$ for strong, moderate, and poor agreement respectively (Congalton and Green 1999).

IGL, which was the main objective of this study, was mapped with high accuracy: out of a total of 49 IGL pixels, 47 pixels (96%) were correctly classified into IGL and 2 pixels (4%) were misclassified as orchards and young rubber plantations. Rubber plantations achieved the lowest mapping accuracy: out of a total of 230 rubber plantation pixels, 177 pixels (77%) were classified correctly; and 1, 3, 17, 9, and 23 pixels were misclassified as teak plantations, IGL, orchards, mixed tree plantations, and young rubber plantations respectively (Appendix Table 3).

The classified land uses with lower mapping accuracy ($< 90\%$) were mixed deciduous forest, mixed tree plantations, young mixed deciduous forest, rubber plantations, and young rubber plantations. Misclassification of these existing land use classes was expected from the effects of mixed vegetation with unclear boundaries, topography, and

Table 1 Mapping Results: 2010 Land Use/Land Cover of Nambak District

Land Use/Land Cover Class	Polygons	Area (ha)	Area (%)	Mean (ha)	Median (ha)	Range (ha)	CV ^a (%)
Unclassified areas	47	781	0.4	16.6	1.4	325	337
Rural urban	1,711	2,008	1.0	1.2	0.2	113	450
Upland crop	1,299	2,116	1.1	1.6	0.8	41	171
Shrub forest	3,808	3,108	1.6	0.8	0.3	55	245
Open water and wet lands	3,500	3,149	1.6	0.9	0.3	114	361
Paddy	3,108	3,240	1.7	1.0	0.4	67	251
Orchard	5,023	3,445	1.8	0.7	0.3	25	193
<i>Imperata</i> grassland	5,109	4,878	2.5	0.9	0.4	33	187
Bush forest	8,111	14,647	7.5	1.8	0.7	70	201
Tree plantation	10,737	43,148	22.0	4.0	0.4	6,670	2,030
Natural forest	4,116	115,798	59.0	28.3	0.5	97,360	5,367
Total	46,569	196,318	100.0	—	—	—	—

Note: ^a Coefficient of variation.

soil conditions of particular land uses. Increased reference data (ground truth) would help improve mapping accuracy.

Nambak District has a relatively large area of forest reserves. Natural forest, which includes bamboo-dominated forest, mixed deciduous forest, and evergreen forest, is the most important land use, accounting for 59% (115,798 hectares) of the district area. Other forestlands, including orchards, bush and shrub forest, and tree plantations, account for 33% (64,348 hectares). Annual cropping area, including upland crops (clearing lands) and paddy, accounts for 2.8% (5,356 hectares). IGL occupies 2.5% (4,878 hectares). Urban land covers the smallest area: about 1% or 2,008 hectares (Table 1 and Fig. 2). The land uses were highly variable in patch sizes, with CVs ranging from 171% to 5,367% (Table 1 and Fig. 2). This situation is common in mountainous areas of northern Laos, due to the variability in topography and soils.

III-2 *Imperata* Grasslands in Nambak District: Area, Distribution, and Characteristics

The current IGL in Nambak District can be characterized as a “micro-grassland,” with most patch sizes being less than half a hectare, distributed throughout the study area. Large fields of 30 hectares are not common. As evidenced during our field visits, the *Imperata* fields were seen within individual fields and/or across fields in tree plantations, orchards, fallow lands, and upland cropping fields. Due to small field size, the IGLs in the study area could be managed mainly by local farmers and communities. Based on infestation level, IGL in Nambak District was classified into three zones.

Zone I is located in the northeast and northwest of the district (Fig. 3), occupying an area of 52,318 hectares or 27% of the district area. In this zone, IGL accounts for 0.6%

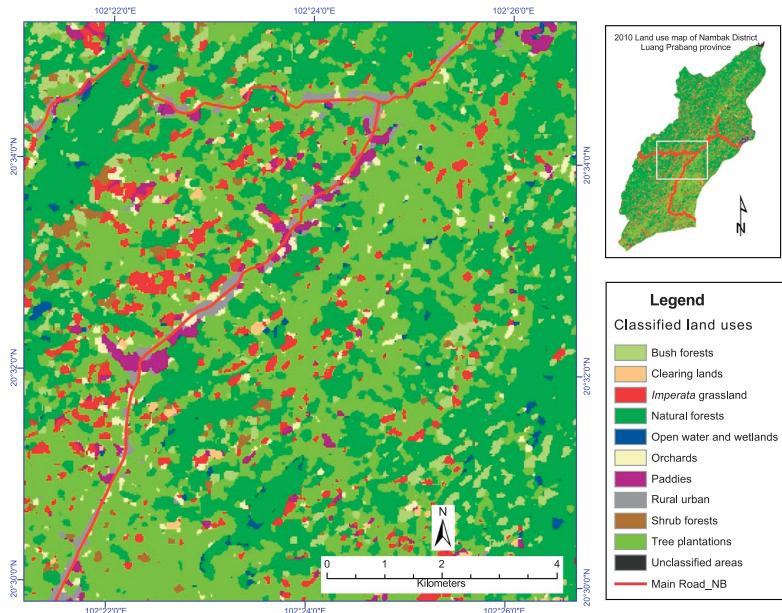


Fig. 2 Land Use Map of Nambak District in 2010, Luang Prabang Province

(308 hectares) of the total area of the zone or 6.3% of the total IGL area in the district. This zone has larger areas of natural and bush forests—73.1% and 11.7%, as compared to 65.3% and 6.9% in Zone II, 42.5% and 4.9% in Zone III, and 59% and 7.5% in the district (Table 2). There is less land use intensification, with 7.5%, 1.0%, 0.7%, and 0.4% of the total area being used for tree plantations, paddies, orchards, and upland crops respectively. Zone I was classified as the least *Imperata* infested zone or an area with a low level of land use intensification but rich in natural forest reserves (Table 3).

Zone II is located in the central lower north and the southwest and occupies an area of 71,774 hectares or about 37% of the district area. In this zone, IGL accounts for 1.9% (1,385 hectares) of the total area of the zone or 28.4% of the total IGL area in the district. This zone has larger areas of tree plantations, paddies, orchards, and upland crops—18.1%, 1.8%, 1.7%, and 1.1% respectively—as compared to Zone I. This part was classified as a moderate *Imperata* infested zone, with moderate intensive land use and moderate natural forest reserves.

Zone III is located in the southeast of the district, along National Road No. 13 from Luang Prabang to Oudomxai province, and occupies an area of 72,227 hectares or 37% of the district area. IGL in this zone takes up 4.4% (3,185 hectares) of the total area of the zone or 65.3% of the total IGL area in the district. This zone has the largest areas of

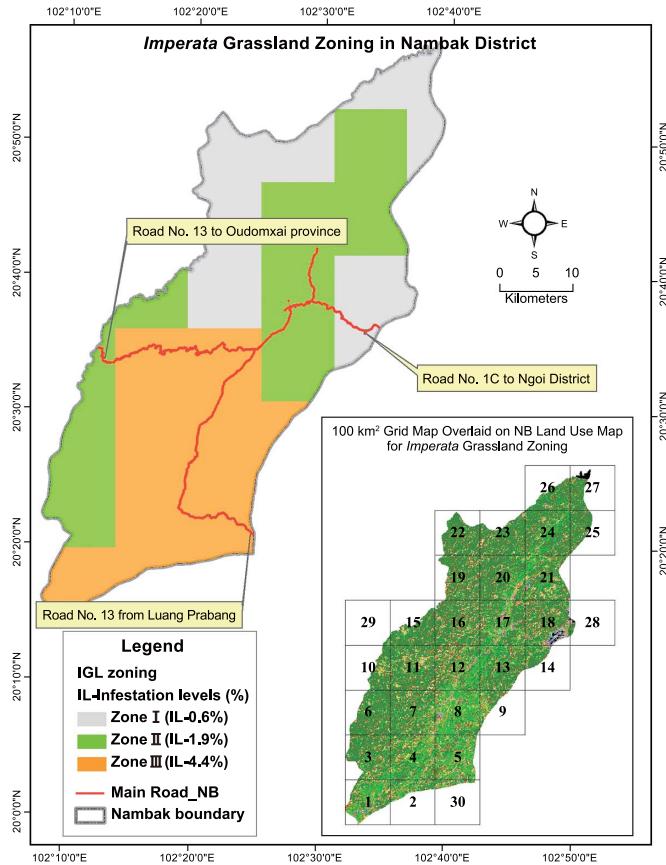


Fig. 3 *Imperata* Grassland Zoning Map of Nambak District

tree plantations, orchards, paddies, and upland crops—36.3%, 2.6%, 2.0%, and 1.6% respectively—as compared to Zone I and Zone II. This part was classified as the most *Imperata* infested area in Nambak District, with the highest land use intensification, largest areas of degraded forest, and less natural forest reserves.

III-3 Implications for Slash-and-Burn Cultivation

Information about areas planted with crops under SBC was not available from local authorities, although the SBC method is widely practiced in the study area. While information on crop species and areas planted to each crop was available, it was unclear whether the crops were grown under the SBC system. As a result, it was difficult to estimate the crop areas specific to SBC based on the available crop data. Remote sensing was used as a means of quickly identifying and delineating various land use/land cover types, a task

Table 2 *Imperata* Grassland Zoning^a

Land Use ^b	Zone I			Zone II			Zone III			All zones		
	Area (ha)	Area ^c (%)	Area ^d (%)	Area (ha)	Area (%)	Area (%)	Area (ha)	Area (%)	Area (%)	Area (ha)	Area (%)	Area (%)
UCL	777	1.5	99.5	4	0.0	0.4	1	0.0	0.1	782	0.4	100
RUB	761	1.5	37.9	469	0.7	23.3	778	1.1	38.7	2,008	1.0	100
OWW	935	1.8	29.7	964	1.3	30.6	1,250	1.7	39.7	3,149	1.6	100
PAD	498	1.0	15.4	1,278	1.8	39.4	1,464	2.0	45.2	3,240	1.7	100
ORC	360	0.7	10.5	1,187	1.7	34.5	1,897	2.6	55.1	3,444	1.8	100
UCR	234	0.4	11.1	756	1.1	35.7	1,126	1.6	53.2	2,116	1.1	100
SHF	136	0.3	4.4	915	1.3	29.4	2,058	2.8	66.2	3,109	1.6	100
BUF	6,145	11.7	42.0	4,933	6.9	33.7	3,569	4.9	24.4	14,647	7.5	100
IGL	308	0.6	6.3	1,385	1.9	28.4	3,185	4.4	65.3	4,878	2.5	100
TRP	3,924	7.5	9.1	12,998	18.1	30.1	26,226	36.3	60.8	43,148	22.0	100
NAF	38,240	73.1	33.0	46,885	65.3	40.5	30,673	42.5	26.5	115,798	59.0	100
All land uses	52,318	100.0	26.6	71,774	100.0	36.6	72,227	100.0	36.8	196,319	100.0	100

Note: ^a The superscript “^c” and “^d” are also applied for Zones II, III, and all zones.

^b UCL: Unclassified areas; RUB: Rural urban; OWW: Open water and wet lands; PAD: Paddies; ORC: Orchards; UCR: Upland crops; SHF: Shrub forest; BUF: Bush forest; IGL: *Imperata* grassland; TRP: Tree plantations; NAF: Natural forest.

^c Percent of all land uses.

^d Percent of all zones.

Table 3 Descriptions of *Imperata* Infested Zones

Zone No.	Locations	Infestation Levels ^a	Descriptions
I	Northeast and northwest	Low	Areas with mainly natural and bush forests; less land use intensification.
II	Central lower north and southwest	Moderate	Areas with moderate natural and bush forests; moderate land use intensification.
III	Southeast	High	Areas with the most intensive land use; more shrub forests; less natural and bush forests.

Note: ^a Low, Moderate, and High indicates 0.6%, 1.9%, and 4.4% of the zone’s area covered by IGL, respectively.

that would be difficult and time consuming using traditional ground surveys. For this study, Landsat-5 TM of February 2010 was used. Ground truth data collection on land uses was conducted during November–December of the same year. Mapping results reveal that in 2010 about 2,116 hectares of forestlands were cleared (Fig. 2). Based on this data, the area of upland crop under the SBC type of land use was estimated (Table 1 and Appendix Table 2). The results show that the upland crop area was considerably less than the crop area under tree plantations, orchards, and paddies, indicating that shifting cultivation stabilization efforts on the part of local authorities were successful in reducing SBC in the study area.

Table 4 Relationship between *Imperata* Grassland and Some Selected Land Uses (*n*=15)

Land Use ^a	Correlation Coefficients							
	PAD	ORC	UCR	SHF	BUF	IGL	TRP	NAF
PAD	—	0.91**	0.34	0.42	0.09	0.59*	0.73**	0.34
ORC	0.91**	—	0.38	0.63**	-0.13	0.72**	0.84**	0.17
UCR	0.34	0.38	—	0.58*	0.25	0.67**	0.25	0.61**
SHF	0.42	0.63**	0.58*	—	-0.16	0.90**	0.70**	0.17
BUF	0.09	-0.13	0.25	-0.16	—	0.02	-0.09	0.79**
IGL	0.59*	0.72**	0.67**	0.90**	0.02	—	0.83**	0.28
TRP	0.73**	0.84**	0.25	0.70**	-0.09	0.83**	—	0.05
NAF	0.34	0.17	0.61**	0.17	0.79**	0.28	0.05	—

Note: ^a PAD: Paddy; ORC: Orchard; UCR: Upland crop; SHF: Shrub forest; BUF: Bush forest; IGL: *Imperata* grassland; TRP: Tree plantation; NAF: Natural forest.

* Significant at the 0.05 level.

** Significant at the 0.01 level.

Correlation analysis reveals that changes in the upland crop area have no relationship with the area of tree plantations, orchards, or paddies but are strongly correlated with the area of IGL, natural forest, and shrub forest. The results also show that IGL is positively correlated with orchards, upland crops, shrub forest, and tree plantations and has some association with paddies (Table 4). This indicates that an increase in IGL areas is closely correlated with—or linked to—an increase in the areas of agricultural land use intensification. As a result, we suggest that improper SBC intensification into more permanent crop production systems is a major cause of *Imperata* infestation in the upland areas.

IV Conclusion

Satellite image classification results show that 19 land uses/land covers of 196,319 hectares of Nambak District of Luang Prabang Province in northern Laos were mapped with an overall accuracy of 92.1% and a kappa statistic of 91.3%. *Imperata* grassland (IGL) achieved more than 90% mapping accuracy.

The current IGL was estimated at about 4,878 hectares or 2.5% of the Nambak District area and characterized as a “micro-grassland,” with most patch sizes being less than half a hectare, distributed within individual fields and/or across fields of all types of land uses throughout the district area.

Based on *Imperata* infestation level, the study area was classified into three zones. About 37% of the district area in the southeastern part was identified as the most *Imperata* infested zone, characterized as the area with the most intensive land use, larger areas of

degraded forests, and less natural forest reserves as compared to the other two zones in different parts of Nambak District. The study results suggest that improper SBC intensification into more permanent crop production systems is a major cause of *Imperata* infestation in the upland areas. While there has been a reduction in SBC area as a result of shifting cultivation stabilization policies, the spread of IGL can be a threat to the productivity and sustainability of traditional SBC systems and already intensified land use systems. In order to further utilize land resources more effectively to promote economic growth while maintaining the environment, government intervention is indispensable; development efforts should initially focus on the most affected areas. We have demonstrated the potential use of geoinformation technology (remote sensing and GIS) with ground truth data as the basis of area informatics data sets that can be applied in other area studies in Laos.

Accepted: April 11, 2012

Acknowledgments

We express our sincere thanks to the Agriculture and Forestry Office of Luang Prabang province, the District Agriculture and Forestry Office of Nambak, and local community leaders and farmers in Nambak District for their support in our fieldwork. This study received financial support from the Thailand Research Fund under CLMV-T DSS Graduate Degree Program Research Initiative: 1st Phase (Contract No. RDG52O0003-LV01).

References

Andriesse, J. P.; and Schelhaas, R. M. 1987. A Monitoring Study of Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia: II. Nutrient Stores in Biomass and Soil—Results of Baseline Studies. *Agriculture Ecosystems and Environment* 19(4): 285–310.

Bolstad, P. V.; and Lillesand, T. 1991. Rapid Maximum Likelihood Classification. *Photogrammetric Engineering and Remote Sensing* 57(1): 67–74.

Boserup, E. 1965. *The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure*. Chicago: Aldine.

Charoenwatana, T. 1989. Lao People's Democratic Republic: Agroecosystems. Proceedings of the SUAN-EAPI Workshop on Lao Agroecosystems, Vientiane, July 31–August 3, 1989.

Congalton, R. G.; and Green, K. 1999. *Assessing the Accuracy of Remotely Sensed Data: Principles and Practices*. Boca Raton: Lewis Publishers.

Eussen, J. H. H.; and Wirjahardja, S. 1973. Studies of an *Alang-alang* (*Imperata cylindrica* (L.) Beauv.) Vegetation. *BIOTROP* 6: 2–24.

Forghani, A.; Cechet, B.; and Nadimpalli, K. 2007. Object-based Classification of Multi-sensor Optical

Imagery to Generate Terrain Surface Roughness Information for Input to Wind Risk Exposure Simulation. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, July 23–27, 2007, pp. 1–6.

Garrity, D. P., ed. 1997. *Agroforestry Innovations for Imperata Grassland Rehabilitation*. Dordrecht: Kluwer Academic Publishers.

Garrity, D. P.; Soekardi, M.; Van Noordwijk, M.; De La Cruz, R.; Pathak, P. S.; Gunasena, H. P. M.; Van So, N.; Huijun, G.; and Majid, N. M. 1997. The *Imperata* Grassland of Tropical Asia: Area, Distribution, and Typology. *Agroforestry Systems* 36: 3–29.

Lal, R.; Sanchez, P. A.; and Cummings, R. W., eds. 1986. *Land Clearing and Development in the Tropics*. Rotterdam: Balkema.

Murniati. 2002. From *Imperata cylindrica* Grasslands to Productive Agroforestry. Thesis, Wageningen University, Netherlands.

Nye, P. H.; and Greenland, D. J. 1960. *Commonwealth Bureau of Soils Technical Communication*, No. 51. Farnham: Commonwealth Agricultural Bureau.

Roder, W.; Phengchanh, S.; and Keoboualapha, B. 1997. Weeds in Slash-and-Burn Rice Fields in Northern Laos. *Weed Research* 37(2): 111–119.

Rural Development and Construction Company No. 1 (RDCC1). 2002. *Orientations for Socio-economic Development in Nambak District Period 2002–2010*. Agriculture and Rural Development Ministry, Vietnam.

Sanchez, P. A. 1976. *Properties and Management of Soils in the Tropics*. New York: John Wiley and Sons.

Sanchez, Pedro A.; Palm, Cheryl A.; Vosti, Stephen A.; Tomich, Thomas P.; and Kasyoki, Joyce. 2005. Alternatives to Slash and Burn: Challenge and Approaches of an International Consortium. In *Slash-and-Burn Agriculture: The Search for Alternatives*, edited by Cheryl A. Palm, Stephen A. Vosti, Pedro A. Sanchez, and Polly J. Erickson, pp. 3–37. New York: Columbia University Press.

Seavoy, R. E. 1975. The Origin of Tropical Grasslands in Kalimantan, Indonesia. *Journal of Tropical Geography* 40: 48–52.

Styger, E.; Rakotondramasy, H. M.; Pfeffer, M. J.; Fernandes, E. C. M.; and Bates, D. M. 2007. Influence of Slash-and-Burn Farming Practices on Fallow Succession and Land Degradation in the Rainforest Region of Madagascar. *Agriculture Ecosystems and Environment* 119: 257–269.

Suryatna, E. S.; and McIntosh, J. L. 1980. Food Crops Production and Control of *Imperata cylindrica* (L.) Beauv. on Small Farms. Proceedings of BIOTROP Workshop on *Alang alang*, Bogor, July 27–29, 1976. BIOTROP Special Publication No. 5, pp. 135–147.

Thrupp, L. A.; Hecht, S. B.; and Browder, J. O. 1997. *The Diversity and Dynamics of Shifting Cultivation: Myths, Realities, and Policy Implications*. Washington, DC: World Resources Institute.

Van Noordwijk, M.; Hairiah, K.; Partoharjono, S.; Labios, R. V.; and Garrity, D. P. 1997. Food-Crop-Based Production Systems as Sustainable Alternatives for *Imperata* Grasslands? *Agroforestry Systems* 36: 55–82.

Watanabe, E.; Sakurai, K.; Okabayashi, Y.; Nouanthing, L.; and Chanphengxay, A. 2004. Soil Fertility and Farming Systems in a Slash and Burn Cultivation Area of Northern Laos. *Southeast Asian Studies* 41(4): 519–537.

Appendix Table 1 Descriptions of the Main Land Uses/Land Covers in Nambak District, Luang Prabang Province, Northern Lao PDR

Land Use Classes	Label	Definitions
Evergreen forest Bamboo forest Mixed deciduous forest	EGF BAF MDF	Evergreen forest, bamboo dominant forest, and older mixed deciduous forest are classified as the natural forest. It is densely forested areas which can be both primary and secondary forests with a tree canopy cover (crown density) of more than 20% and tall trees (up to 25 m high). These types of forests are commonly designated for the conservation and protection areas.
Young mixed deciduous forest	YMF	Young mixed deciduous forest refers to young secondary forest with a crown density has been reduced below 20% for some reasons (i.e. logging or shifting cultivation). Dominant vegetations are mainly mixed vegetations of young bamboo and trees.
Shrub forest <i>Kiam</i> (tiger grass) and <i>Lao</i> forest	SHF KLF	Shrub forests are the natural forests with crown density of less than 20% because of logging, shifting cultivation or other heavy disturbance. Shrub forests are mainly dominated by herbaceous species such as <i>Chromoleana</i> dominant forest. Mixed <i>Kiam</i> and <i>Lao</i> dominant vegetations are reclassified as SHF.
Clearing lands	CLL	It refers to forest lands being cleared mainly for crop production.
<i>Imperata</i> grassland	IGL	Land area of at least 25 m × 25 m (625 m ²) dominated by <i>Imperata</i> grass of more than 80% are classified as <i>Imperata</i> grassland.
Orchards	ORC	Orchards are permanent types of cultivation. They are an agro-forestry system located mainly near paddy fields and villages. The main species paper mulberry, <i>Kiam</i> (tiger grass), <i>Kha</i> , banana etc.
Continuous cropping land	CCL	Lands being used for annual cropping mainly vegetable production.
Teak plantations	TEP	Forested areas covered by teak trees with a teak canopy cover of more than 20% and area of at least 0.5 ha. The teak plantations are normally older than one year.
Rubber plantations Young rubber plantation	RUP YRP	Forested areas covered by rubber trees with a rubber canopy cover of more than 20% and area of at least 0.5 ha. Young rubber plantations (>1–3 years old) are reclassified as RUP.
Mixed tree plantations	MTP	Forested areas covered by a mixture of timber and/or fruit trees (e.g. citrus) of more than one year old. It refers to lands with a tree canopy cover of more than 20% and area of at least 0.5 ha.
Paddies	PAD	Land areas being bunded and used for crop cultivation, mainly rice, are classified as paddies. In dry season, PAD may be left uncultivated due to lack of water.
Irrigated paddies	IRP	PAD fields with water supplied by irrigation systems being cultivated for rice and/or other annual crops.
Rural urban	RUB	Rural urban includes all areas being used for permanent settlements such as villages, towns, industrial areas etc. It also includes roads and lands opened for development.
Ponds	PON	It is a small area of still water.
Open water and wet lands	OWW	It refers to water bodies which include streams, rivers, and water logging areas.

Appendix Table 2 Descriptions of Land Use Reclassification

Classified Land Covers/Land Uses	Class Value	Reclass Value	Thematic Map
Unclassified areas	22	1	Unclassified areas
Clouds	1		
Rural urban	7	2	Rural urban
Ponds	18	3	Open water and wet lands
Open water and wet lands	19		
Paddies	2	4	Paddies
Irrigated paddies	21		
Orchards	10	5	Orchards
Continuous cropping lands	5		
Clearing lands	6	6	Upland crops
Shrub forest	4	7	Shrub forests
<i>Kiam</i> and <i>Lao</i> forest	12		
Young mixed deciduous forest	15	8	Bush forest
<i>Imperata</i> grassland	9	9	<i>Imperata</i> grassland
Teak plantation	3	10	Tree plantations
Mixed trees plantation	13		
Rubber plantation	16		
Young rubber plantation	17		
Mixed deciduous forest	8	11	Natural forests
Bamboo forest	11		
Evergreen forest	14		
Shadow ^a	20		

Note: ^a Shadow (including shade from cloud cover) was found mainly at high elevation areas with dense forest.

Appendix Table 3 Error Matrix of Landsat-5 TM Image Classification of Nambak District Using MLC (Overall Accuracy=92.1%; Kappa Statistic=91.3%)

Classified LandCover/ LandUses ^a	CLD	PAD	TEP	SHF	CCL	CLL	RUB	MDF	IGL	ORC	BAF	KLF	MTP	YMF	RUP	PON	OWW	SHD	IRP	Row User TT Acc.
1 CLD	366	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	366 100
2 PAD	0	202	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	202 100
3 TEP	0	0	276	2	1	0	0	0	0	0	0	0	2	0	0	1	0	0	0	282 98
4 SHF	0	0	11	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71 85
5 CCL	0	0	1	58	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	61 95
6 CLL	0	0	0	0	104	0	0	0	0	0	0	0	0	0	0	0	0	0	0	104 100
7 RUB	0	0	2	0	2	0	46	0	0	0	0	0	0	0	0	0	0	0	0	50 92
8 MDF	0	0	0	0	0	0	0	441	0	0	1	0	0	0	10	0	3	0	0	455 97
9 IGL	0	0	0	0	0	0	0	0	47	1	0	0	0	0	0	3	1	0	0	52 90
10 ORC	0	0	0	0	0	0	0	1	63	0	0	0	0	0	0	17	3	0	0	84 75
11 BAF	0	0	0	0	0	0	0	0	0	196	0	3	3	0	0	0	0	0	0	202 97
12 KLF	0	0	0	0	0	0	0	0	0	0	31	0	0	5	0	3	0	0	0	45 69
13 MTP	0	10	0	0	0	0	0	0	0	7	0	60	1	0	9	0	0	0	0	87 69
14 EGF	0	0	0	0	0	0	0	0	0	3	0	0	137	0	0	0	0	0	0	140 98
15 YMF	0	0	0	0	0	0	0	74	0	0	0	0	0	89	0	0	0	0	0	163 55
16 RUP	0	0	7	0	0	0	0	0	0	6	0	0	5	0	177	8	0	0	0	203 87
17 YRP	0	0	0	0	0	0	5	1	0	0	1	0	0	23	93	0	0	0	0	123 76
18 PON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	10 22 55
19 OWW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38	3	0	41 93
20 SHD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	66	0	67 99
21 IRP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	436	436 100
Column TT	366	202	307	62	61	104	48	526	49	70	207	32	70	141	104	230	111	12	39	69 446 3256
Prod. accuracy	100	100	90	97	95	100	96	84	96	90	95	97	97	86	86	77	84	100	97	96 98

Note: ^a CLD: Clouds; PAD: Paddies; TEP: Teak plantations; SHF: Shrub forest; CCL: Continuous cropping land; CLL: Clearing land; RUB: Rural urban; MDF: Mixed deciduous forest; IGL: *Imperata* grassland; ORC: Orchards; BAF: Bamboo forest; KLF: *Kaom* and *lao* forest; MTP: Mixed tree plantations; EGF: Evergreen forest; YMF: Young mixed deciduous forest; RUP: Rubber plantations; YRP: Young rubber plantations; PON: Ponds; OWW: Open water and wet lands; SHD: Shadow; IRP: Irrigated paddies.

ສາຍທອງ ວິໄລວັງສ. 2556. ກາຣເປີ່ຍນແປລົງຂອງກາຣົລິດໜ້າວແລກກາຣົມາດກາງເລື່ອກໃນກາຣົຈັດກາຣົ
ພົລິດໜ້າວນາປີໃນທຸ່ງຮາບເວີຍຈັນທີ ສປປ.ລາວໂດຍໃຊ້ແບນຈຳລອງ CSM-CERES-Rice
ວິທານິພັນຊືບປະລຸງສູາປັບປຸງສູາຄຸມສູັບສູດ ສາຂາວິຊາເກຍຕະເຮີງຮະບນ ບັນຫຼິດວິທາລັຍ
ມາຮາວວິທາລັຍຂອນແກ່ນ.

ອາຈາຍ໌ທີ່ປັບປຸງວິທານິພັນຊືບ: ພ.ດ.ຮ. ປະເມສ ບຣະທຶງ,
ສ.ດ.ຮ. ອາວັນດີ ພັດ ໂອນທັບ,
ພ.ດ.ຮ. ເກົກ ປັ້ນເໜັນເພື່ອຮ

ນທັດຍ່ອ

ກາຣວິຈັກຮັງນີ້ມີວັດຖຸປະສົງຄໍ່ຫລັກເພື່ອ 1) ໃຫ້ຮາບຄືກາຣເປີ່ຍນແປລົງຂອງກາຣົລິດໜ້າຈາກ
ກາຣົລິດເພື່ອຍັງຊີ່ໄປເປັນກາຣົລິດເພື່ອຂາຍອັນເປັນພົມມາຈາກກາຣົພັດນາດ້ານເກຮຍງົງກິຈທີ່ຮວດເຮົວ ແລະ
2) ເພື່ອກຳຫັນດກກາຣົຈັດກາຣົພົລິດໜ້ານາປີທີ່ເໝາະສົມໃນທຸ່ງຮາບເວີຍຈັນທີ ສປປ.ລາວໂດຍໃຊ້ແບນຈຳລອງ
CSM-CERES-Rice ສໍາຫັບວັດຖຸປະສົງຄໍ່ແຮກ ໄດ້ທຳກາຣສໍາວົງຄວາມເຮືອນໃນ 4 ພື້ນທີ່ໃນທຸ່ງຮາບເວີຍ
ຈັນທີ ສປປ.ລາວ ໂດຍກາຣສັນກາຍຜູ້ຮູ້ 16 ດາວໂຫຼດ ແລະເກຍຕະກຣ 139 ດາວ ຜົດກາຣສຶກຍາພວ່າ ເກຍຕະກຣ
57% ປຸລູກໜ້າທີ່ເປົ້ອບຣິໂກຄໃນຄວາມເຮືອນແລະເພື່ອຂາຍ ອີກ 43% ປຸລູກເປົ້ອບຣິໂກຄເທົ່ານັ້ນ ສັດສ່ວນຂອງ
ໜ້າທີ່ຂາຍໃນພື້ນທີ່ຂລປະການມີ 27% ແລະ ໃນພື້ນທີ່ອາສີນໜ້າຝານມີ 9% ສ່ວນເທິກໂນໂລຢີໃໝ່ເໝ່າ ພັນຊືບ
ປັບປຸງ ຮດແທຣກເຕົວຮ ກາຣວ່ານເມັດຄູ່ຢືນເຄມີ ກາຣກຳຈັດແມ່ລັງແລະຄົດຮູ່ພື້ນ ມີກາຣໃໝ່ໃນທຸກພື້ນທີ່ໃນ
ຂບະທີ່ຮດເກີ່ຍວໜ້າເພີ່ມມີກາຣນຳມາໃໝ່ໃນພື້ນທີ່ຂລປະການກາຣໃໝ່ເທິກໂນໂລຢີໃໝ່ເໝ່າ ດັ່ງກ່າວມີຄວາມ
ແຕກຕ່າງກັນຮວ່າງພື້ນທີ່ ແຕ່ໄໝມີຄວາມແຕກຕ່າງຮວ່າງເກຍຕະກຣທີ່ປຸລູກໜ້າເປົ້ອບຣິໂກຄຮູ່ອ
ເກຍຕະກຣທີ່ປຸລູກທີ່ເປົ້ອບຣິໂກຄແລະເພື່ອຂາຍທີ່ໃຫ້ເຫັນວ່າກາຣົລິດໜ້າໃນ ສປປ.ລາວ ຍັງຄອງຢູ່ໃນຊ່ວງແຮກ
ຂອງກາຣເປີ່ຍນັ້ນຈາກກາຣົລິດແບນເພື່ອຍັງຊີ່ໄປເປັນກາຣົລິດເພື່ອກາຣົກໍາ ເນື່ອຈາກເກຍຕະກຣສ່ວນ
ໃຫຍ່ມີກາຣໃໝ່ເທິກໂນໂລຢີໃໝ່ນຳມາຍ່າງແລ້ວ ດັ່ງນັ້ນ ກາຣສ່ວນເສຣິມເທິກໂນໂລຢີເຫັນວ່າ ໂດຍໄດ້ກຳລັງ
ຢູ່ທີ່ເໝາະສົມໃນກາຣປັບປຸງກາຣົລິດໜ້າໃນ ສປປ.ລາວ

ເພື່ອຕອນວັດຖຸປະສົງຄໍ່ຫລັກຂອ້ອີ່ 2 ໄດ້ທຳກາຣທົດລອງປຸລູກໜ້າ 4 ວັນປຸລູກ (6 ກຣກພຸດມ 5
ສິງຫາມ 9 ກັນຍານ ປີ 2553 ແລະ 14 ມັງກອນ 2554) ທີ່ຈັງຫວັດຂອນແກ່ນ ປະເທດໄທ ໂດຍໃຊ້
ແພນກາຣທົດລອງແບນSplit-plot design ທີ່ມີກາຣຈັດ main-plot ແບບ Randomized Complete Block
(RCB) ມີ 3 ຊົ່ວໂມງໃນໂຕເຈນ 3ອັຕຣາຄືອ 0, 60 ແລະ 120 ກກ.ຂອງໃນໂຕເຈນຕ່ອເສກຕາຮເປັນປັ້ງຈັຍ
ທົດສອນໃນ main-plot ແລະໜ້າເໜີຍ 2 ພັນຊືບ (TDK8 ແລະ TDK11) ເປັນປັ້ງຈັຍທົດສອນໃນ sub-plot
ບັນທຶກຂໍ້ມູນລົດິນ ຂໍ້ມູນລາກາສຂໍ້ມູນລວນອອກຄອກແລະວັນເກີນເກີ່ຍວ່າ ດັ່ນນີ້ພື້ນທີ່ໃນ (LAI) ແລະນ້າໜັກ
ແທ້ງຂອງໜ້າ ຜົດກາຣທົດລອງແສດງໃຫ້ເຫັນວ່າ ວັນອອກຄອກແລະວັນເກີນເກີ່ຍວ່າຂ້າວ 2 ພັນຊືບສັນລົງ

เลือกน้อยเมื่อทำการปักชำนาญในฤดูฝนวันปลูกที่เหมาะสมสำหรับข้าว 2 พันธุ์ในฤดูฝนคือ ในช่วงเดือนกรกฎาคมถึงเดือนสิงหาคม การเพิ่มอัตราในโตรเจนไม่มีผลต่อวันออกดอกและวันเก็บเกี่ยวของข้าวทั้ง 2 พันธุ์ การเพิ่มปุ๋ยในโตรเจนที่ระดับ 120 กก.ของในโตรเจนต่อเฮกตาร์ให้ค่า LAI น้ำหนักแห้งและผลผลิตข้าวสูงที่สุดและข้าวพันธุ์ TDK8 มีลักษณะการเจริญเติบโตดีที่สุดในทุกวันปลูก

ข้อมูลข้าวที่ได้จากการทดลองที่ปลูกในวันที่ 6 กรกฎาคม 2553 และ วันที่ 14 มกราคม 2554 ที่อัตราปุ๋ย 120 กก.ของไนโตรเจนต่อเฮกตาร์ได้นำมาใช้เพื่อประมาณค่าสัมประสิทธิ์ทางพันธุกรรมของข้าวพันธุ์ TDK8 และ TDK11 โดยใช้แบบจำลอง CSM-CERES-Rice ส่วนข้อมูลที่เหลือจากการทดลองได้ใช้สำหรับการประเมินแบบจำลอง ผลการประมาณค่าสัมประสิทธิ์ทางพันธุกรรมแสดงให้เห็นว่าค่าจำลองวันอุดดอกและวันเก็บเกี่ยว น้ำหนักแห้งและผลผลิตข้าวที่จำลองได้จากการประมาณค่าสัมประสิทธิ์พันธุกรรมสอดคล้องกับค่าสังเกตจากแปลงทดลองจริง สำหรับผลการประเมินแบบจำลองซึ่งให้เห็นว่าข้าว 2 พันธุ์ที่ปลูกภายใต้การใช้ปุ๋ยไนโตรเจน 3 อัตราความแตกต่างระหว่างค่าสังเกตจากแปลงทดลองจริงและค่าที่ได้จากการจำลองสำหรับช่วงเวลาระหว่างวันปีกคำจนถึงวันอุดดอกเปรียบ-prawnระหว่าง 0-6 วันและสำหรับช่วงเวลาระหว่างวันปีกคำจนถึงวันเก็บเกี่ยวเปรียบ-prawnระหว่าง 0-14 ค่า RMSE_u ของน้ำหนักแห้งรวมอยู่ระหว่าง 0-34% และของผลผลิตอยู่ระหว่าง 23-54%

ชุดข้อมูลที่ได้จากแปลงของเกษตรกรในอำเภอเมืองไซทานี นครหลวงเวียงจันทร์ยังนำมาใช้ในการประเมินแบบจำลอง และทำการจำลองข้อมูลวันออกดอก วันเก็บเกี่ยว การเจริญเติบโตและผลผลิตของข้าวพันธุ์ TDK8 และ TDK11 ภายใต้การจัดการการผลิตข้าวแบบต่างๆ (วันปีกดำ 8 วัน x ความหนาแน่นของประชากร 2 ระดับ x อัตราปั้ยในโตรเจน 3 อัตรา) ร่วมกับข้อมูลสภาพอากาศย้อนหลัง 11 ปี (ปี 2544-2554) ผลการศึกษาพบว่าอายุเก็บเกี่ยวที่ได้จากการจำลองสถานการณ์และการสังเกตมีความสอดคล้องกันดี โดยมีความแตกต่างไม่เกิน 4 วันแบบจำลอง ยังประเมินผลผลิตข้าวได้สอดคล้องกับผลผลิตจริงได้ดีมาก โดยมีความแตกต่างกันระหว่าง 1.2-5.6% แบบจำลองยังให้ข้อมูลว่าการปักดำโดยใช้ต้นกล้า 1 ต้นให้ผลผลิตสูงที่สุดคือ 4,243.7 และ 4,203.8 กก.ต่อเฮกตาร์สำหรับพันธุ์ TDK8 และ TDK11 ตามลำดับวันที่ 15 มกราคม เป็นวันปีกดำที่ให้ผลผลิตสูงที่สุดทั้ง 2 สายพันธุ์ โดยพันธุ์ TDK8 และ พันธุ์ TDK11 ให้ผลผลิต 5,023.5 และ 4,915.7 กก.ต่อเฮกตาร์ตามลำดับ การเพิ่มอัตราปั้ยในโตรเจนจาก 0 เป็น 60 และ 120 กก.ต่อเฮกตาร์สามารถเพิ่มผลผลิตข้าวพันธุ์ TDK8 ได้ถึง 55.5 และ 90.4% ตามลำดับ และเพิ่มผลผลิตข้าวพันธุ์ TDK11 ได้ถึง 53.2 และ 79.3% ตามลำดับ ผลจากการศึกษานี้แสดงให้เห็นว่าแบบจำลอง CSM-CERES-Rice เป็นเครื่องมือที่มีประสิทธิภาพสามารถช่วยในการกำหนดการจัดการที่เหมาะสมสำหรับ

ระบบการผลิตข้าวในทุ่งรำบเวียงจันทน์และอาจประยุกต์ใช้กับระบบการผลิตทางการเกษตรในพื้นที่อื่นๆ ของ สปป.ลาว และอาจเชี่ยดวันออกเฉียงได้ดีอีกด้วย

Saythong Vilayvong. 2013. **Changes in Rice Production and Determination of Management Options for Lowland Rice Production in the Vientiane Plain of the Lao PDR Using the CSM-CERES-Rice Model.** Doctor of Philosophy Thesis in Systems Agriculture, Graduate School, Khon Kaen University.

Thesis Advisors: Asst. Prof. Dr. Poramate Banterng,
Prof. Dr. Aran Patanothai,
Asst. Prof. Dr. Krirk Pannangpech

ABSTRACT

The main objectives of this study were 1) to examine whether rice production in the Lao PDR has changed from subsistence to commercial production as a consequence of rapid economic development and 2) to determine the suitable management practices for rice production in the Vientiane plain, Lao PDR. For the first objective, the household survey was conducted in 4 areas in the Vientiane plain, with data collected from 16 key informants and 139 sample households. The results showed that 57% of farmers grew rice both for home consumption and for sale, while the remaining 43% grew rice for home consumption only. The share of rice sold amounted to 27% of the total rice production in the irrigated areas and 9% in the rainfed areas. New technologies, i.e., improved varieties, tractors, direct seeding, fertilizers, herbicides and pesticides were used in all areas, while combine harvesters have just been introduced to the irrigated area. Differences in the use of new technologies were observed among areas but not between farmers who grew rice for home consumption or for dual purposes. It was concluded that rice production in the Lao PDR is still in an early stage in the transition from subsistence to commercial orientation. As most farmers have already adopted at least some improved technologies, their further promotion would be an appropriate strategy for improving rice production in the Lao PDR.

For the second objective, an experiment (planted on July 6, August 5, September 9, 2010 and January 14, 2011) was conducted at Khon Kaen province, Thailand in 4 planting dates. In each date, a split-plot in randomized complete block design with 3 replications was employed. N-fertilizer at 0, 60 and 120 kg N ha⁻¹ were assigned to main-plots and 2 improved glutinous rice cultivars (TDK8 and TDK11)

were arranged in sub-plots. Data on soil and climate, crop phenology, leaf area index (LAI), above ground dry matter were collected from the experimental fields. The results indicated that the phenology of two rice cultivars was slightly shorter when planting date was delayed in the wet season. The suitable planting date for both cultivars in the wet season was between July and August. It was recorded that increase rates of nitrogen application have no significant effect on the phenology for both cultivars. Application of nitrogen fertilizer at 120 kg N ha⁻¹ gave the highest LAI, dry matter and grain yield. TDK8 had the highest crop growth characteristics in all planting dates.

Data from the crops planted on July 6, 2010 and January 14, 2011 with an application of 120 kg N ha⁻¹ were used to determine the genetic coefficients for TDK8 and TDK11 using the CSM-CERES-Rice model. The remaining experimental data were used for model evaluation. The results from genetic coefficients determination showed that the derived genetic coefficients provide simulated values of phenological events, biomass accumulation and grain yields that were in good agreement with their corresponding observed values. The model evaluation results indicated that for two rice cultivars grown under three rates of N-fertilizer application, the differences between observed and simulated values for time between transplantation and anthesis varied from 0-6 days, and for time between transplantation and maturity varied from 0-14 days. The normalized root mean square error (RMSE_n) values for biomass accumulation ranged from 0-34% and for grain yield ranged from 2-354%.

The observed data sets from farmers' fields in the Xaythani district, Vientiane capital were also used for model evaluation. The phenological events, growth and yield for the combinations of crop management scenario (8 transplantation dates x 2 levels of plant densities x 3 rates of N-fertilizer application) for TDK8 and TDK11 were simulated by the model with historical weather data over 11 years (2001-2011). The results indicated good agreements between simulated and observed data for harvesting date with the difference being within four days. The model also gave very good agreements between observed and simulated yields with the RMSE_n values ranging from 1.2-5.6%. The model suggested that plant density of 1 seedling hill⁻¹ produced the highest grain yields, being 4,243.7 and 4,203.8 kg ha⁻¹ for TDK8 and TDK11, respectively. The transplanting date at 15 January produced the highest yield for both cultivars, being 5,023.5 and 4,915.7 kg ha⁻¹ for TDK8 and TDK11, respectively.

Increasing the rate of N-fertilizer from 0 to 60 and 120 kg ha⁻¹ could increase yield of TDK8 by 55.5 and 90.4%, respectively, and of TDK11 by 53.2 and 79.3%, respectively. The results from this study suggest that the CSM-CERES-Rice model can be a valuable tool for determining suitable management practices for rice production systems in the Vientiane plain and in other rice production areas in Laos and Southeast Asia.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere appreciation to the Thailand Research Fund (TRF) through the CLMV-T DSS Graduate Degree Program Research Initiative: 1st Phase Grant Number RDG52O0003-LV05 of Assoc. Prof. Dr. Attachai Jintrawet, Chiang Mai University, Thailand for giving me a full scholarship to undertaken a Ph.D. degree study.

Sincere appreciation is also expressed to my advisor, Asst. Prof. Dr. Poramate Banterng, for his guidance and valuable suggestions throughout my field work and thesis writing, without his supervision this thesis would not have been completed.

I am also grateful to my co-advisors, Prof. Dr. Aran Patanothai and Asst. Prof. Dr. Krirk Pannangpech, and members of thesis examination committee, Assoc. Prof. Dr. Attachai Jintrawet and Prof. Dr. Anan Polthanee, for their suggestions in finalizing the thesis.

Special thanks are made to the staffs at the Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen, Thailand for their assistances in conducting the work during field experiments. Thanks are expressed to the villagers in the Xaythani district, Vientiane Capital, Lao PDR for providing valuable information during the household survey.

Finally, I am indebted to the Faculty of Agriculture, National University of Laos for giving me the chance to study a Ph.D. degree.

Saythong Vilayvong

Evaluation of CSM-CERES-Rice in simulating the response of lowland rice cultivars to nitrogen application

Saythong Vilayvong¹, Poramate Banterng^{1,2*}, Aran Patanothai¹, Krirk Pannangpatch¹

¹Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

²Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

*Corresponding author: bporam@kku.ac.th

Abstract

The objective of this study was to evaluate the ability of CSM-CERES-Rice to simulate responses of lowland rice cultivars to different N-fertilizer applications in a tropical area. Experiments on 4 planting dates (July 6, August 5, and September 9, 2010 and January 14, 2011) were conducted in Khon Kaen province, Thailand. A split-plot randomized complete block design with 3 replications was used. Three N-fertilizer application rates (0, 60 and 120 kg N ha⁻¹) and 2 rice cultivars (TDK8 and TDK11) were assigned to the main-plots and sub-plots, respectively. Soil, plant, management and climatic data were collected from 4 experimental fields. The data from crops planted on July 6, 2010 and January 14, 2011 with application of 120 kg N ha⁻¹ were used for model calibration. The remaining experimental data were used for model evaluation. The results for model calibration showed that the derived genetic coefficients provide simulated values of phenological events, biomass accumulation and grain yields that were in good agreement with their corresponding observed values. The model evaluation results indicated that for 2 rice cultivars grown under 3 rates of N-fertilizer application, the differences between observed and simulated values for time between transplantation and anthesis varied from 0-6 days, and for time between transplantation and maturity varied from 0-14 days. The normalized root mean square error (RMSE_n) values for biomass accumulation ranged from 0-34% and for grain yield ranged from 2-354%. In general, however, these results indicate that CSM-CERES-Rice can be used as a tool to support decision-making for rice production in tropical area.

Keywords: Fertilizer, Lao's rice cultivar, Nitrogen management, *Oryza sativa* L., Simulation model.

Abbreviations: ⁰Cday_Celsius degree days; CSM-CERES-Maize_Cropping system model-Crop Environment Resource Synthesis-Maize; CSM-CERES-Rice_Cropping system model-Crop Environment Resource Synthesis-Rice; CSM-CROPGRO-Soybean_The generic cropping system model for soybean; DAT_Days after transplantation; DSSAT_Decision Support System for Agrotechnology Transfer; GDD_Growing degree day; h_Hour; KDM_L_Khao Dok Mali; N_Nitrogen; O_Observed value; RD_Rice Department; RMSE_n_Root mean square error; RMSE_n_Normalize root mean square error; S_Simulated value; SD_Standard deviation of the mean; TDK_Tha Dok Kham.

Introduction

Rice is the most important staple food for half of the world's population, especially in Asia. It is the most important grain with regard to human nutrition and caloric intake, providing more than one-fifth of the calories consumed by humans worldwide. Rice is the third highest grain produced after maize and wheat with approximately 158 million ha harvested, 88.9% in Asia (Food and Agriculture Organization, 2010). Today, the need for information to aid decision-making about suitable management practices and rice production improvement is rapidly increasing. The generation of new data through agronomic research methods is insufficient to meet these needs. Conducting experiments at particular points in time and space is time consuming and expensive due to the many years of data collection that are required. In recent years, several dynamic crop growth simulation models have been developed as tools to support decision-making for agronomic research, land-use planning and crop production. These models have been contained within the Decision Support System for Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2010). Use of the models to determine

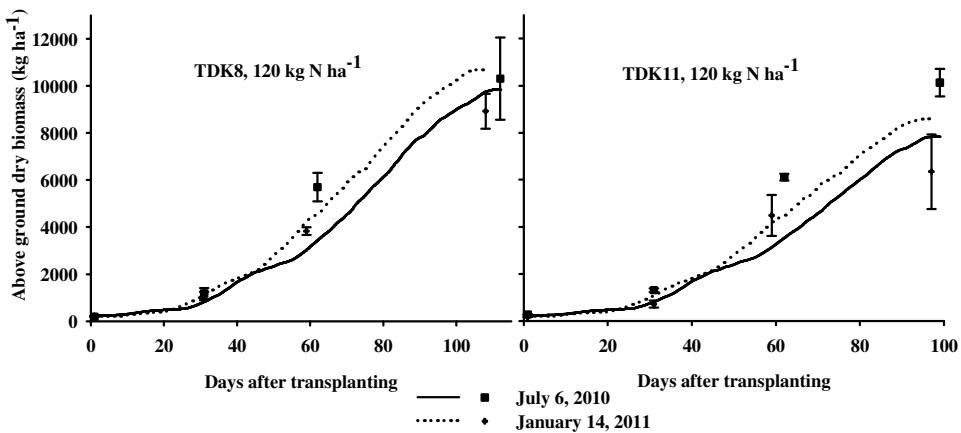
suitable crop management practices has been studied. For example, Soler et al. (2007a, b) applied the Cropping System Model-Crop Environment Resource Synthesis-Maize (CSM-CERES-Maize) to optimize maize planting dates in Brazil. Banterng et al. (2010) used the generic cropping system model for soybean (CSM-CROPGRO-Soybean) to determine the optimal management practices for soybean in Thailand. In addition, Ahmad et al. (2012) used CSM-CERES-Rice for identifying the optimal combination of plant density and N levels for rice production in Pakistan. CSM-CERES-Rice is widely used as a technological tool to support strategic decision-making (Sarkar and Kar, 2006). This model has been evaluated in a variety of rice-growing areas. For example, in India, Timsina et al. (2004) showed that the model performed satisfactorily in terms of grain yield and N uptake when simulated results were compared to data from field experiments from 3 locations in northwest India. In the temperate Kashmir valley in India, Singh et al. (2007) noted that the model could be used to estimate crop productivity and optimize management practices. Yao et al. (2005) showed that

the model could simulate days to anthesis, grain number, yield and biomass in diverse agro-environments of China. In Thailand, Cheyglinted et al. (2001) found that the model reasonably simulated the phenology and yields of the RD23 and KDM105 cultivars. CSM-CERES-Rice was also used to simulate the influence of the rate and timing of N-fertilizer application in acid sulphate soils on yields of KDM105. Another study by Kerdruk (2002) found that the model was able to simulate suitable planting time and yield potential of KDM105 under natural rainfall and irrigation in Tung Samrit area, Nakhon Rachasima province, Thailand. In a recent study, Ahmad et al. (2012) concluded that the model was able to simulate growth and yield of irrigated rice in the semiarid climate of Pakistan. However, studies on the use of CSM-CERES-Rice have not covered all commercial rice cultivars in tropical areas, including Laos's lowland rice cultivar. Thus, application of CSM-CERES-Rice to Laos's rice cultivar is necessary to increase the potential of widely using this model in tropical areas. Currently, there are 2 improved Lao glutinous rice cultivars (TDK8 and TDK11) that are commonly used by farmers in the Vientiane plain. TDK8 and TDK11 account for 73% and 15% of the total rice seed distribution, respectively (Rice and Cash Crops Research Center, 2010). The objective of this study was to evaluate the performance of CSM-CERES-Rice in simulating responses of 2 lowland rice cultivars (TDK8 and TDK11) to different N-fertilizer applications in a tropical area.

Results

Model calibration

The genetic coefficients that determine the duration of vegetative and reproductive growth are shown in Table 1. These genetic coefficients are the first new sets of genetic coefficients for TDK8 and TDK11 cultivars in Laos. The growing degree days for the basic vegetative phase to panicle initiation, the photoperiod sensitivity coefficient, and growing degree days from beginning of grain filling to physiological maturity were 415, 195, and 520 Celsius degree days ($^{\circ}\text{C}\text{day}$), respectively for TDK8 and 409, 199, and 400 $^{\circ}\text{C}\text{day}$, respectively for TDK11. The critical day lengths of TDK8 and TDK11 were 10.6 and 11.2 hours, respectively. The potential spikelet number coefficient was 40 for TDK8 and 42 for TDK11, while the single grain weight was 0.025 g for both cultivars. The tillering coefficient for both cultivars was very similar (0.8 for TDK8 and 0.9 for TDK11). The temperature tolerance was 0.8 for both cultivars. A perfect agreement between simulated and observed values was obtained for phenology of both cultivars planted on July 6, 2010 and January 14, 2011 (Table 2). There was a difference of only 1 day for the number of days from transplantation to anthesis and the number of days from transplantation to maturity for TDK8. For TDK11, the model perfectly simulated the number of days from transplantation to anthesis and the number of days from transplantation to maturity for plants planted on January 14, 2011. There was a difference of 1 day for the number of days from transplantation to anthesis of TDK11 planted on July 6, 2010. Simulated and observed values of above ground biomass dry weights at 4 different growth stages of 2 rice cultivars grown under treatment with 120 kg N ha^{-1} planted on July 6, 2010 and January 14, 2011 are shown in Fig 1. The model underestimated and overestimated total above ground dry biomass of both cultivars planted on July 6, 2010 and January 14, 2011, respectively. For plantings on July 6, 2010, the RMSE values for total above ground dry biomass of TDK8 were 27, 200, 1305 and 273 kg ha^{-1} for the 1st, 2nd, 3rd


and 4th growth stages, respectively; the RMSE_n values were 14, 17, 23 and 3% for the 1st, 2nd, 3rd and 4th growth stages, respectively (Table 3). The RMSE values for total above ground dry biomass of TDK11 were 20, 280, 1490 and 1330 kg ha^{-1} for the 1st, 2nd, 3rd and 4th growth stages, respectively; the RMSE_n values were 7, 21, 24 and 13% for the 1st, 2nd, 3rd and 4th growth stages, respectively. For TDK8 planted on January 14, 2011, the RMSE values for total above ground dry biomass were 13, 28, 232, and 1017 kg ha^{-1} for the 1st, 2nd, 3rd and 4th growth stages, respectively; the RMSE_n values were 6, 3, 6 and 11% for the 1st, 2nd, 3rd and 4th growth stages, respectively. The RMSE values for total above ground dry biomass of TDK11 were 16, 214, 178 and 1296 kg ha^{-1} for the 1st, 2nd, 3rd and 4th growth stages, respectively; the RMSE_n values were 9, 30, 4 and 20% for the 1st, 2nd, 3rd and 4th growth stages, respectively. At harvest maturity, a good correlation was found between simulated and observed grain yield of 2 rice cultivars grown under treatment with 120 kg N ha^{-1} and planted on July 6, 2010 and January 14, 2011 (Table 4). The model underestimated the grain yield of both cultivars planted on July 6, 2010 and overestimated the grain yield for plantings on January 14, 2011. The RMSE values over 2 planting dates varied from 38-203 kg ha^{-1} for TDK8 and 571-855 kg ha^{-1} for TDK11. The RMSE_n values ranged from 1-7% and 23-27% for TDK8 and TDK11, respectively (Table 4).

Model evaluation

CSM-CERES-Rice was evaluated by using the genetic coefficients in Table 1 and independent data sets of TDK8 and TDK11 grown under N-fertilizer applications of 0 and 60 kg N ha^{-1} for plantings on July 6, 2010 and January 14, 2011 and 0, 60 and 120 kg N ha^{-1} for plantings on August 5 and September 9, 2010. For both rice cultivars grown under 0 and 60 kg N ha^{-1} applications and planted on July 6, 2010 and January 14, 2011, a good correlation was found for most comparisons between simulated and observed number of days from transplantation to anthesis and to maturity (Table 5). However, for TDK8 planted on August 5, 2010 and treated with 3 different N-fertilizer application rates, the model overestimated the time from transplantation to anthesis by 4-6 days and the time from transplantation to maturity by 11-14 days. For TDK11, the model overestimated the time from transplantation to anthesis by 2-3 days and the time from transplantation to maturity by 10-11 days (Table 5). For TDK8 grown under 3 different N-fertilizer application rates and planted on September 9, 2010, the model also overestimated the days from transplantation to anthesis and to maturity by 3 and 5 days, respectively. For TDK11, the model overestimated the time from transplantation to anthesis by 1-2 days and the time from transplantation to maturity by 7-8 days. The average deviations between simulated and observed anthesis dates under different N-fertilizer application rates were within 1-9% for TDK8 and 0-5% for TDK11, while the average deviations for maturity dates varied from 1-16% for TDK8 and 1-12% for TDK11. A comparison between simulated and observed values for total above ground dry weight at 4 different growth stages of 2 rice cultivars grown under different N-fertilizer application rates for plantings on July 6, August 5 and September 9, 2010 and January 14, 2011 are shown in Fig 2. Based on visual inspection, the trends indicate that the model can predict above ground dry biomass of 2 rice cultivars grown under 3 different N-fertilizer application rates quite well. The RMSE values for 2 rice cultivars grown under different N-fertilizer application rates in all 4 planting dates were in an acceptable range. The RMSE values for TDK8 for the 1st, 2nd, 3rd and the 4th growth stages varied from 10-115,

Table 1. The genetic coefficients for the TDK8 and TDK11 cultivars.

Genetic coefficient	Cultivar name	
	TDK8	TDK11
Phenology coefficient		
Growing degree day (GDD) for the basic vegetative phase ($^{\circ}\text{C}\text{day}$)	415	409
Photoperiod sensitivity coefficient ($^{\circ}\text{C}\text{day}$)	195	199
GDD from the beginning of grain filling to physiological maturity ($^{\circ}\text{C}\text{day}$)	520	400
Critical day length (h)	10.6	11.2
Growth coefficient		
Potential spikelet number coefficient	40	42
Single grain weight (g)	0.025	0.025
Tillering coefficient	0.8	0.9
Temperature tolerance	0.8	0.8

Fig 1. Simulated (lines) and observed (symbols) values for total above ground dry biomass (kg ha^{-1}) at different growing stages of 2 rice cultivars grown with 120 kg N ha^{-1} applications in plantings on July 6, 2010 and January 14, 2011 in Khon Kaen, Thailand.

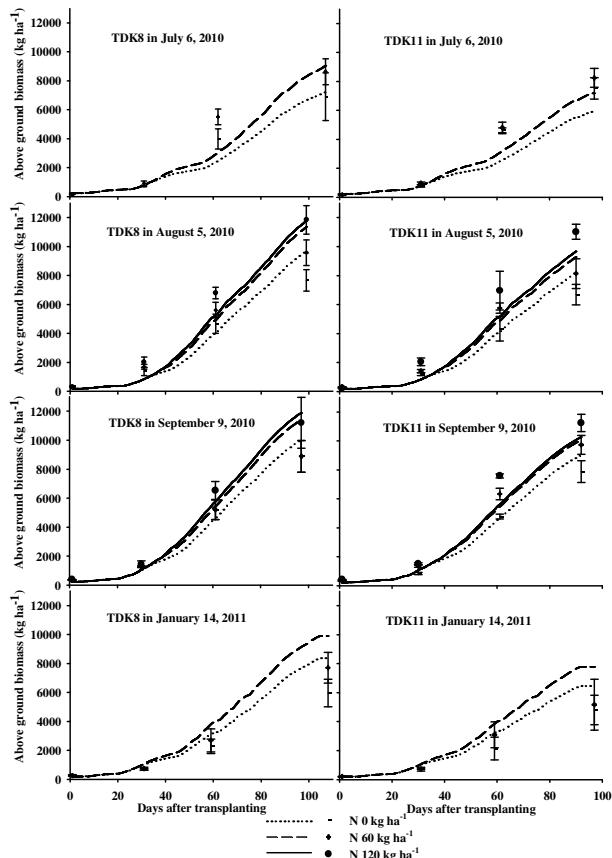
33-667, 138-1417 and 23-1653 kg ha^{-1} , respectively. For TDK11, the RMSE values ranged from 1-119, 5-697, 57-1715 and 209-1516 kg ha^{-1} for the 1st, 2nd, 3rd and the 4th growth stages, respectively (Table 6). In addition, the RMSE_n values for both rice cultivars grown under different N-fertilizer application rates in all 4 planting dates were generally low. The RMSE_n values for TDK8 varied from 4-30, 4-33, 3-26 and 0-23% for the 1st, 2nd, 3rd and the 4th growth stages, respectively. For TDK11, the RMSE_n values for the 1st, 2nd, 3rd and the 4th growth stages ranged from 1-28, 1-34, 1-30 and 2-29%, respectively. By comparing simulated and observed grain yield of both rice cultivars grown under different N-fertilizer application rates, good correlations were found for plantings on July 6 and August 5, 2010 and January 14, 2011 (Table 7). The RMSE values were generally in an acceptable range and varied from 42-390 kg ha^{-1} for TDK8 and 98-420 kg ha^{-1} for TDK11. The RMSE_n values were generally lower and between 2-15% for TDK8 and 4-18% for TDK11 (Table 7). However, the model provided a very high overestimation of grain yield for plantings on September 9, 2010.

Discussion

This study is an attempt to evaluate the applicability of CSM-CERES-Rice for simulating responses of 2 lowland rice cultivars to different N-fertilizer applications in a tropical area. The results from model calibration based on the data collected from the experiments on 2 planting dates indicated that the derived genetic coefficients related to growth and development of individual rice cultivar were sensitive enough

to capture the differences among TDK8 and TDK11 cultivars. The model simulated most of phenological events total above ground dry biomass and grain yield of TDK8 and TDK11 reasonably well with the derived genetic coefficients. The differences between observed and simulated values for total above ground dry biomass and grain yield as indicated by the RMSE_n values are in an acceptable range found in the other studies, which vary from 1 to 27% (Saseendran et al., 1998; Cheyglinti et al., 2001; Ahmad et al., 2012). For model evaluation with independent data sets, the results indicated that the model performed fairly well in simulating phenological development. The deviation between simulated and observed timing for anthesis and maturity of both rice cultivars was similar to a study by Yao et al. (2005) who found that the simulation deviated 10% from the observed anthesis duration. The overestimation occurred because the life cycle of the rice crop in the 2 planting dates used for model calibration (Table 2) was longer than the life cycle of plants used for model evaluation (Table 5). The simulated and observed values for total above ground dry biomass and grain yield of 2 rice cultivars are acceptable when compared to previous studies. Ahmad et al. (2012) reported that the difference between simulated and observed values ranged from 2-15% for total above ground dry biomass and 2-3% for grain yield. Yao et al. (2005) also found that the simulation deviated from observed yield by 15%. In addition, Timsina and Humphreys (2006) reported that the difference between simulated and observed values for biomass and grain yield was approximately 23%. However, we found an overestimation of grain yield for plantings on September 9,

Table 2. Simulated (S) and observed (O) values for days after transplantation to anthesis and maturity of 2 rice cultivars grown under 120 kg N ha⁻¹ application and planted on July 6, 2010 and January 14, 2011 in Khon Kaen, Thailand.


Cultivar	Planting date	Anthesis date (DAT)			Maturity date (DAT)		
		S	O±SD	S-O	S	O±SD	S-O
TDK8	July 6, 2010	77	78±1	-1	112	112±2	0
	January 14, 2011	75	74±1	+1	107	108±2	-1
TDK11	July 6, 2010	70	71±1	-1	99	99±2	0
	January 14, 2011	65	65±1	0	97	97±3	0

DAT is days after transplantation. SD is the standard deviation of the mean.

2010. This was the result of a severe flood during anthesis stage (November 3-15, 2010), and the grain yield was reduced by at least 45-101% for TDK8 and 36-91% for TDK11 when compared to the normal observed grain yield from plantings on August 5, 2010. The variation between simulated and observed values for grain yield was largely due to uncontrolled factors that affected rice plants in the experimental fields such as flood, crabs and diseases, which were not accounted for by the model. In addition, the observed data from the experimental fields were variable. Therefore, future experiments for model evaluation should be performed in research stations with good management practices to avoid these undesirable factors. The results from both model calibration and evaluation in this study illustrated the potential of CSM-CERES-Rice for simulating the response of 2 lowland rice cultivars to different rates of N-fertilizer application. In addition, the genetic coefficients of TDK8 and TDK11 cultivars derived from experimental data sets from 2 different planting dates are also sufficiently accurate for further application of CSM-CERES-Rice to support decision-making. Therefore, the information of this study would support creditability of the model applicable as a viable information technology tool in assisting to determine alternate N-fertilizer management strategies for lowland rice production in tropical areas such as choosing suitable rate and time for N-fertilizer application in specific production area.

Materials and methods

Four experiments were conducted in a farmer's rice field in the Khon Kaen province, Thailand (16° 28' N, 102° 48' E, 200 m above mean sea level) during June 2010 to May 2011. Each experiment was laid out in a split-plot design with 3 replications. The experimental sub-plot size was 5 x 4.5 m. The three N-fertilizer treatments were randomized in the main-plots. The rates of fertilizer used in this study were no N-fertilizer application (control), N-fertilizer application at a rate of 60 kg N ha⁻¹ (the rate recommended by Linquist and Sengxua (1999) for lowland rice in central Laos), and N-fertilizer application at a rate of 120 kg ha⁻¹ (2 times of the recommended rate). Two Lao's rice cultivars (TDK8 and TDK11) were randomly assigned to the sub-plots. Before rice transplantation, N, P₂O₅ and K₂O were applied as basal fertilization at the recommended rate of 37.5 kg ha⁻¹ (Douangsila et al., 2010). The first three experiments were conducted under rain-fed conditions, and approximately 30-day-old rice seedlings were transplanted on July 6, 2010, August 5, 2010 and September 9, 2010. The forth experiment was irrigated condition, and 30-day-old rice was transplanted on January 15, 2011. The plant spacing was 25 x 25 cm and 3 seedlings hill⁻¹. Urea fertilizer was applied to the plots corresponding to the designated fertilizer treatment in 3 split applications; 30% was applied at 20 days after transplantation, 40% applied at 35 days after transplantation, and 30% more applied at 60 days after transplantation (Vergana, 1979). After completion of rice transplantation, the insecticide Abamectin (1.8% W/VEC) was applied at a rate of 40 cc/20 litre of water

Fig. 2. Simulated (lines) and observed (symbols) above ground dry biomass of 2 rice cultivars grown under 3 N-fertilizer application rates in plantings on July 6, August 5 and September 9, 2010 and January 14, 2011 in Khon Kaen, Thailand.

for prevention of golden snails and crabs for the first month after transplantation. 2,3-dihydro-2,2-dimethylbenzofuran-7-y (dibutylaminothio) methylcarba-mate (20% W/V EC) and methyl benzimidazol-2-ylcarbamate (50% WP) were often sprayed at rates of 110 cc and 10 g in 20 litres of water, respectively, to prevent the rice pests and diseases. Weeding was often performed by hand, and irrigation was well managed to minimize water stress on the rice crop. For data collection, soil samples were collected before conducting the experiment at 3 spots in the experimental site at different depths from the soil horizon (0-15, 15-30, 30-45, 45-60, 60-75, 75-90, and 90-105 cm). The soil samples were then analysed for soil bulk density and soil texture (percentage of sand, silt and clay) by the hydrometer method (Ashworth et al., 2001) and for chemical properties including pH, electric conductivity, organic matter, total nitrogen, available

Table 3. Root mean square error (RMSE) and normalize RMSE (RMSE_n) for total above ground dry biomass at different growing stages of 2 rice cultivars grown under 120 kg N ha⁻¹ application and planted on July 6, 2010 and January 14, 2011 in Khon Kaen, Thailand.

Cultivar	Planting date	RMSE (kg ha ⁻¹)				RMSE _n (%)			
		1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th
TDK8	July 6, 2010	27	200	1305	273	14	17	23	3
	January 14, 2011	13	28	232	1017	6	3	6	11
TDK 11	July 6, 2010	20	280	1490	1330	7	21	24	13
	January 14, 2011	16	214	178	1296	9	30	4	20

Table 4. Observed and simulated values, root mean square error (RMSE) and normalize RMSE (RMSE_n) for grain yield of 2 rice cultivars grown under 120 kg N ha⁻¹ application and planted on July 6, 2010 and January 14, 2011 in Khon Kaen, Thailand.

Planting date	Crop traits	Cultivar	
		TDK8	TDK11
July 6, 2010	Observed yield±SD (kg ha ⁻¹)	2958±106	3741±585
	Simulated yield (kg ha ⁻¹)	2904	2532
	RMSE (kg ha ⁻¹)	38	855
	RMSE _n (%)	1	23
January 14, 2011	Observed yield±SD (kg ha ⁻¹)	2776±441	2121±295
	Simulated yield (kg ha ⁻¹)	3063	2928
	RMSE (kg ha ⁻¹)	203	571
	RMSE _n (%)	7	27

SD is the standard deviation of the mean.

phosphorus, exchangeable potassium, exchangeable calcium, and cation exchange capacity by using soil analysis procedures (Pansu and Gautheyrou, 2006). Daily rainfall, maximum and minimum air temperature, and solar radiation for 2010 and 2011 were obtained from the Khon Kaen Field Crop Center, Khon Kaen province, Thailand. Crop phenological events included anthesis and maturity dates were recorded when 70% of the rice plants in each plot had reached those stages (Yin and Kropff, 1998; Anzoua et al., 2010). Above ground plant biomass was assayed by a monthly destructive harvest from 4 hills starting from the transplantation day to the final harvesting day, a total of 4 sampling times. For each sample, plants were oven dried at 80°C degree for 4 days until a constant weight was obtained and the above ground dry biomasses were then recorded. Grain yield was measured by harvesting plants in the yield sampling area of each sub-plot. Additionally, all management information of the experiment was recorded.

This included seeding date, transplantation date, row spacing, crop varieties, time and amount of fertilizer applied, weeding, and pest and disease controls. For model calibration, the data from plantings on July 6, 2010 and January 14, 2011 that included soil, management and climatic data in addition to plant data for 2 rice cultivars grown under an N-fertilizer application rate of 120 kg N ha⁻¹ were entered into the DSSAT v4.5. The soil profile information was created and estimated in the DSSAT v4.5 shell by using the soil data that were collected before conducting the experiments. There are 8 genetic coefficients that define developmental and growth characteristics of rice cultivars (Table 1). The phenology coefficients enable the model to simulate phenological events such as anthesis and maturity, and the growth coefficients simulate biomass accumulation and potential grain yield of a specific variety (Hoogenboom et al., 2010). In calibrating the genetic coefficients, the model was first run by using the genetic rice coefficients contained in the DSSAT v4.5. The values of the 8 genetic coefficients were adjusted until close matches were achieved between simulation and observation for phenology, above ground biomass and yield for 2 planting dates.

The accuracy of the procedure used to estimate the genetic coefficients was determined by comparing the simulated values of development and growth characteristics with their corresponding observed values. The RMSE value (Wallach and Goffinet, 1987) was used to test the agreement between simulated and observed data; a low RMSE value is desirable. The RMSE_n value gives a measure (%) of the relative difference of simulated versus observed data. The simulation is considered excellent if the RMSE_n value is less than 10%, good if the RMSE_n is greater than 10% and less than 20%, and fair if the RMSE_n is greater than 20% and less than 30% (Loague and Green, 1991). For model evaluation, the soil, management, climatic and plant data for 0 and 60 kg N ha⁻¹ treatments for plantings on July 6, 2010 and January 14, 2011 and for 0, 60 and 120 kg N ha⁻¹ treatments for plantings on August 5 and September 9, 2010 were entered in to the DSSAT v4.5. CSM-CERES-Rice was run with the calibrated genetic coefficients. Model evaluation was also performed by comparing the simulated values with their corresponding observed values with RMSE and RMSE_n analyses.

Conclusion

The results from this study showed an acceptable agreement between simulated and observed values for phenological events, total above ground dry biomass and grain yield of 2 rice cultivars for both model calibration and evaluation. Some differences between observation and simulation were due to flood, crabs and diseases which were not accounted for by simulation as well as a deviation of observed values. Therefore, in order to increase an accuracy of model simulation, further experiment should be performed in the research stations with well managements. However, this is an initial evidence to show the potential of CSM-CERES-Rice in simulating development, growth and yield of Laos's rice cultivars under different N-fertilizer application and in various planting dates, and this also indicated the possibility in using CSM-CERES-Rice as a decision-supporting tool for rice

Table 5. Simulated (S) and observed (O) values for days after transplantation to anthesis and to maturity of 2 rice cultivars grown under different N-fertilizer application and planted on July 6, August 5 and September 9, 2010 and January 14, 2011 in Khon Kaen, Thailand.

Planting date	Cultivar/N rate	Anthesis date (DAT)			Maturity date (DAT)		
		S	O±SD	S-O	S	O±SD	S-O
July 6, 2010	TDK8/ 0 kg N ha ⁻¹	77	77±1	0	111	110±1	+1
	TDK8/ 60 kg N ha ⁻¹	77	78±1	-1	111	111±1	0
	TDK11/ 0 kg N ha ⁻¹	70	72±1	-2	98	99±2	-1
	TDK11/ 60 kg N ha ⁻¹	70	71±1	-1	98	98±1	0
August 5, 2010	TDK8/ 0 kg N ha ⁻¹	74	68±1	+6	113	99±2	+13
	TDK8/ 60 kg N ha ⁻¹	74	68±1	+6	113	98±2	+14
	TDK8/ 120 kg N ha ⁻¹	74	68±1	+4	113	99±2	+11
	TDK11/ 0 kg N ha ⁻¹	67	64±1	+3	100	89±2	+11
	TDK11/ 60 kg N ha ⁻¹	67	65±1	+2	100	90±1	+10
	TDK11/ 120 kg N ha ⁻¹	67	64±1	+3	100	90±2	+10
September 9, 2010	TDK8/ 0 kg N ha ⁻¹	70	67±1	+3	111	96±1	+5
	TDK8/ 60 kg N ha ⁻¹	70	67±1	+3	110	95±2	+5
	TDK8/ 120 kg N ha ⁻¹	70	67±1	+3	111	96±2	+5
	TDK11/ 0 kg N ha ⁻¹	64	62±1	+2	98	91±2	+7
	TDK11/ 60 kg N ha ⁻¹	64	62±1	+2	98	91±1	+7
	TDK11/ 120 kg N ha ⁻¹	64	63±1	+1	98	90±2	+8
January 14, 2011	TDK8/ 0 kg N ha ⁻¹	75	74±1	+1	107	108±2	-1
	TDK8/ 60 kg N ha ⁻¹	75	75±1	0	107	108±2	-1
	TDK11/ 0 kg N ha ⁻¹	65	65±1	0	94	97±2	-3
	TDK11/ 60 kg N ha ⁻¹	65	65±1	0	94	97±2	-3

DAT is days after transplantation. SD is the standard deviation of the mean.

Table 6. Root mean square error (RMSE) and normalize RMSE (RMSE_n) for total above ground dry biomass at different growth stages of 2 rice cultivars grown under 3 N-fertilizer application rates and planted on July 6, August 5 and September 9, 2010 and January 14, 2011 in Khon Kaen, Thailand.

Cultivar	Fertilizer (kg N ha ⁻¹)	July 6, 2010				August 5, 2010				September 9, 2011				January 14, 2011			
		1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th
TDK8																	
RMSE (kg ha ⁻¹)	0	10	33	867	192	110	307	370	1189	115	117	420	1653	30	168	490	1396
	60	42	64	1417	252	84	488	383	1040	68	119	138	1460	36	145	663	1266
	120	-	-	-	-	65	667	889	23	92	203	432	397	-	-	-	-
RMSE _n (%)	0	4	4	22	3	29	22	8	16	27	14	11	23	12	30	22	23
	60	30	7	26	3	25	29	7	11	20	9	3	16	13	27	25	16
	120	-	-	-	-	22	33	13	0	24	14	7	4	-	-	-	-
TDK11																	
RMSE (kg ha ⁻¹)	0	4	5	1182	936	53	205	133	881	68	128	57	666	1	188	636	957
	60	44	82	920	614	79	330	501	669	65	157	491	209	3	202	455	1516
	120	-	-	-	-	20	697	1715	767	119	246	1134	553	-	-	-	-
RMSE _n (%)	0	2	1	26	12	19	17	3	13	20	15	1	8	1	26	30	20
	60	27	8	19	7	25	23	9	8	19	12	8	2	1	28	15	29
	120	-	-	-	-	9	34	21	7	28	16	15	5	-	-	-	-

Table 7. Observed and simulated values, root mean square error (RMSE) and normalized RMSE (RMSE_n) for grain yield of 2 rice cultivars grown under 3 N-fertilizer application rates and planted on July 6, August 5 and September 9, 2010 and January 14, 2011 in Khon Kaen, Thailand.

Planting date	Cultivar					
	TDK8			TDK11		
	kg N ha ⁻¹			0	60	120
July 6, 2010						
Observed yield±SD (kg ha ⁻¹)	2285±142	2697±291	-	2191±202	2451±212	-
Simulated yield (kg ha ⁻¹)	2142	2624	-	1881	2281	-
RMSE (kg ha ⁻¹)	83	42	-	179	98	-
RMSE _n (%)	4	2	-	8	4	-
August 5, 2010						
Observed yield±SD (kg ha ⁻¹)	2558±230	4218±1003	3962±382	2092±162	2880±554	2858±552
Simulated yield (kg ha ⁻¹)	3234	3678	3801	2746	3459	3585
RMSE (kg ha ⁻¹)	390	312	93	378	334	420
RMSE _n (%)	15	7	2	18	12	15
September 9, 2010						
Observed yield±SD (kg ha ⁻¹)	466±201	748±162	734±129	946±230	1023±186	1186±66
Simulated yield (kg ha ⁻¹)	3323	3679	3875	2787	3185	3250
RMSE (kg ha ⁻¹)	1649	1692	1808	1063	1248	1192
RMSE _n (%)	354	226	243	112	122	100
January 14, 2011						
Observed yield±SD (kg ha ⁻¹)	2050±145	2323±231	-	1481±103	2544±502	-
Simulated yield (kg ha ⁻¹)	2349	2816	-	1923	1893	-
RMSE (kg ha ⁻¹)	173	285	-	255	376	-
RMSE _n (%)	8	12	-	17	15	-

SD is the standard deviation of the mean. Blanks were used for model calibration.

production in tropical countries such as Thailand and Lao People's Democratic Republic.

Acknowledgement

This study was supported by the Thailand Research Fund through the CLMV-T DSS Graduate Degree Program Research Initiative: 1st Phase of Assoc. Prof. Dr. Attachai Jintrawet, Chiang Mai University, Thailand. Assistance in conducting the work was received from the Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen, Thailand.

References

Ahmad S, Ahmad A, Tojo Soler CM, Ali H, Zia-Ul-Haq M, Anothai J, Hussain A, Hoogenboom G, Hasanuzzaman M (2012) Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. *Precis Agric* 13:200-218

Anzoua KG, Junichi K, Toshihiro H, Kazuto I, Yutaka J (2010) Genetic improvements for high yield and low soil nitrogen tolerance in rice (*Oryza Sativa L.*) under a cold environment. *Field Crop Res* 116: 38-4

Ashworth J, Keyes D, Kirk R, Lessard R (2001) Standard procedure in the hydrometer method for particle size analysis. *Commun Soil Sci Plan* 32:633-642

Banterng P, Hoogenboom G, Patannothis A, Singh P, Wani SP, Pathak P, Tongpoonpol S, Atichart S, Srihaban P, Buranaviriyakul S, Jintrawet A, Nguyen TC (2010) Application of the cropping system model (CSM)-CROPGRO-Soybean for determining optimum management strategies for soybean in tropical environments. *J Agron Crop Sci* 196:231-242

Cheyglinted S, Ranamukhaarachchi SL, Singh G (2001) Assessment of the CERES-Rice model for rice production in the Central Plain of Thailand. *J Agr Sci* 137:289-298

Douangsila K, Sengxue P, Rasabandit S, Phothisan C, Kheovongvichit T (2010) Integrated Agricultural Techniques for Improving of Rice Productivity. Ministry of Agriculture, National Agriculture and Forestry Research Institute, Rice and Cash Crop Research Center, Vientiane, Lao People's Democratic Republic

Food and Agriculture Organization (2010) Food and Agriculture Organization Statistics Division, 11 June 2012. Available at:<http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor>

Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Batchelor WD, Hunt LA (2010) Decision Support System for Agrotechnology Transfer (DSSAT) version 4.5. Honolulu University of Hawaii. CD-ROM

Kerdruk V (2002) Application of Crop Modeling and GIS for Agroclimatic of KDML105 in Tung Samrit, Nakhon Rachasima, Thailand. Suranaree University of technology Thailand

Linquist B, Sengxue P (1999) Nitrogen Management for the Rainfed Lowland Rice Systems of Laos. In: Fukai S, Basnayake J (Ed) Increased Lowland Rice Production in the Mekong Region. ACIAR Proceedings 101: 20-30

Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: Overview and application. *J Contam Hydrol* 7:51-73

Pansu M, Gautheryou J (2006) Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. Springer-Verlag Berlin Heidelberg New York

Rice and Cash Crops Research Center (2010) Distribution of rice seed during 2009 to 2010. Ministry of Agriculture, National Agriculture and Forestry Research Institute, Vientiane Capital Lao People's Democratic Republic, Soft copy

Sarkar R, Kar S (2006) Evaluation of management strategies for sustainable rice-wheat cropping system, using DSSAT seasonal analysis. *J Agr Sci* 144:421-434

Saseendran SA, Singh KK, Rathore LS, Rao GSLHVP, Mendiratta N, Narayan KL, Singh SV (1998) Evaluation of the CERES-Rice V.3.0 model for the climate conditions of the state of Kerala, India. *Meteorol Appl* 5:385-392

Singh H, Singh KN, Hasan B (2007) Evaluation of CERES-rice model (V. 4.0) under temperate conditions of Kashmir valley, India. *Cereal Res Commun* 35:1723-1732

Soler CMT, Hoogenboom G, Sentelhas PC, Duarte AP (2007a) Growth analysis of maize grown off-season in a subtropical environment under rainfed and irrigated conditions. *J Agron Crop Sci* 193:247-261

Soler CMT, Sentelhas PC, Hoogenboom G (2007b) Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. *Eur J Agron* 27:165-177

Timsina J, Humphreys E (2006) Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review. *Agr Syst* 90:5-31

Timsina J, Pathak H, Humphreys E, Godwin D, Singh B, Shukla AK, Singh U (2004) Evaluation of, and yield gap analysis in rice using, CERES Rice ver. 4.0 in northwest India. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress Brisbane. Indian Council of Agricultural Research.

Vergana BS (1979) A Farmer's Primer on Growing Rice. International Rice Research Institute. Los Banos, Laguna, Philippines

Wallach D, Goffinet B (1987) Mean squared error of prediction in models for studying ecological and agronomics systems. *Biometrics* 43:561-573

Yao F, Xu Y, Feng Q, Lin E, Yan X (2005) Simulation and validation of CERES-rice model in main rice ecological zones in China. *Acta Agron Sin* 31:545-550

Yin X, Kropff MJ (1998) The effect of photoperiod on interval between panicle initiation and flowering in rice. *Field Crop Res* 57: 301-307

From: [English Editorial Office](#)
To: [Bounthanh Keoboualapha](#)
Subject: Acceptance of your research report_Southeast Asian Studies
Date: Thursday, February 07, 2013 8:39:09 AM

Dear Dr. Bounthanh Keoboualapha,

We are very pleased to inform you that your research report titled "Farmer's Perceptions of Imperata cylindrica Infestation in a Slash and Burn Cultivation Area of Northern Lao PDR" has been accepted by the editorial board of Southeast Asian Studies and will be included in our December issue, Vol.2, No.3.

The galley proofs of your report will be sent to you in October.

We appreciate your giving acknowledgement to Southeast Asian Studies when you include the data of your two accepted papers in Prof. Cairne's book.

Sincerely yours,

Narumi Shitara
Managing Editor
Southeast Asian Studies