

บทคัดย่อ

ประเทศไทยจัดเป็นประเทศไทยที่ผู้บริโภครับประทานอวัยวะภายใน(Visceral organ) หรือเครื่องใน สัตว์ไม่ว่าจะเป็น สุกร ไก่หรือวัว ซึ่งจัดเป็นผลผลอยได้ ที่เหลือจากการฆ่าสัตว์ เครื่องในที่เหมาะสมแก่การบริโภคจะต้องผ่านการตรวจสอบแล้วว่าสามารถบริโภคได้ อีกทั้งเครื่องใน และหนังที่ได้จากสัตว์นั้น มีรสชาติที่อร่อย ราคาถูก สามารถนำมาประกอบอาหารได้หลากหลาย มีคุณค่าทางโภชนาการที่ครบถ้วนหรืออาจมีแร่ธาตุบางชนิดที่มากกว่าเนื้อสัตว์ สถานการณ์การบริโภคเครื่องในในปัจจุบันพบว่าจากจะมีการบริโภคเครื่องในที่ผลิตได้ภายในประเทศไทยแล้วยังมีการนำเข้าเครื่องในสัตว์จากต่างประเทศด้วย เนื่องจากต่างประเทศไม่นิยมรับประทานและมีราคาถูกกว่าเครื่องในสัตว์ที่ผลิตภายในประเทศ แต่อย่างไรก็ตาม การนำกระเพาะ ไส้มาบริโภค อาจมีการปนเปื้อนอันตรายได้ ทั้งทางกายภาพ เคมี และชีวภาพ เช่น เศษวัสดุต่างๆ สารตกค้าง สารเคมีที่ไม่ได้รับอนุญาตให้ใช้ในอาหารรวมถึงจุลินทรีย์ที่ก่อให้เกิดโรคต่างๆ ได้ ดังนั้นเพื่อความปลอดภัยของการนำไปใช้ประโยชน์ได้ของผลผลอยได้จากการฆ่าโโค งานวิจัยจึงมีวัตถุประสงค์เพื่อพัฒนากระบวนการที่ปลอดภัยสำหรับการใช้ประโยชน์จากผลผลอยได้ซึ่งจะส่งผลดีต่อผู้บริโภคและผู้ประกอบการ งานวิจัยนี้มีโครงการวิจัยย่อย 3 โครงการในชุดโครงการ “การใช้ประโยชน์จากผลผลอยได้จากการกระบวนการอาหารม่าโโค” ได้แก่ โครงการย่อยที่ 1. การพัฒนาสารล้างทำความสะอาดเครื่องในโโคให้มีความปลอดภัยต่อผู้บริโภค โครงการย่อยที่ 2. การใช้ประโยชน์และการยอมรับของผู้บริโภค โครงการย่อยที่ 3. การใช้ประโยชน์จากไส้รัวสด

โครงการย่อยที่ 1. การพัฒนาสารล้างทำความสะอาดเครื่องในโโคให้มีความปลอดภัยต่อผู้บริโภค

เก็บตัวอย่างกระเพาะโโคจากโโคพันธุ์พื้นเมือง ภายหลังจากการฆ่า เก็บตัวอย่างครั้งละ 6 กระเพาะ โดยมีการเก็บตัวอย่างช้ำทั้งหมด 3 ครั้ง (เดือนละ 1 ครั้ง) เก็บกระเพาะโโคส่วนของกระเพาะผ้าขาวรี (Rumen) กระเพาะรังผึ้ง (Reticulum) กระเพาะสามสิบกลีบ (Omasum) นำมาแบ่งกลุ่มทดลองตามวิธีการล้างทำความสะอาดที่แตกต่างกัน เป็นจำนวน 6 กลุ่ม และมีกลุ่มกระเพาะตัวอย่างจากห้องทดลองอีก 1 ตัวอย่างซึ่งอธิบายได้ดังนี้

กลุ่มที่ 1 ใช้น้ำร้อนลวก (กลุ่มควบคุม) นำกระเพาะโโคไปลวกในน้ำร้อนอุณหภูมิประมาณ 70 องศาเซลเซียส โดยใช้เวลาประมาณ 1 นาที หลังจากนั้นจึงนำมาขูดล้างลิ้งสกปรกที่ยังติดอยู่ออก

กลุ่มที่ 2 ใช้น้ำปูนใส นำกระเพาะโโคไปแช่ในน้ำปูนใส นานประมาณ 15 นาที หลังจากนั้นจึงนำมาขูดล้างลิ้งสกปรกที่ยังติดอยู่ออก

กลุ่มที่ 3 ใช้ปูนขาว นำกระเพาะโโคไปแช่ในน้ำปูนขาว นานประมาณ 15 นาที หลังจากนั้นจึงนำมายุดล้างสิ่งสกปรกที่ยังติดอยู่ออก

กลุ่มที่ 4 ใช้น้ำร้อนลวก + โซดาไฟ นำกระเพาะโโคไปลวกในน้ำร้อนอุณหภูมิประมาณ 70 องศาเซลเซียส ใช้เวลาประมาณ 1 นาที หลังจากนั้นจึงนำมายุดล้างสิ่งสกปรกที่ยังติดอยู่ออก หลังจากนั้นนำไปแช่สารละลายโซดาไฟที่เตรียมไว้ประมาณ 20 นาที แล้วล้างออกด้วยน้ำสะอาด (เพื่อช่วยในด้านความนุ่มนกรอบ และเด้งขึ้น)

กลุ่มที่ 5 ใช้น้ำปูนใส + ลวก + โซดาไฟ นำกระเพาะโโคไปแช่ในน้ำปูนใส นานประมาณ 15 นาที หลังจากนั้นจึงนำมายุดล้างสิ่งสกปรกที่ยังติดอยู่ออกหลังจากนั้นนำไปลวกในน้ำร้อนอุณหภูมิ 70 องศาเซลเซียส นานประมาณ 1 นาที แล้วนำมาราด้วยโซดาไฟที่เตรียมไว้ประมาณ 20 นาที แล้วล้างออกด้วยน้ำสะอาด

กลุ่มที่ 6 ใช้ปูนขาว + ลวก + โซดาไฟ นำกระเพาะโโคไปแช่ในน้ำปูนขาว นานประมาณ 15 นาที หลังจากนั้นจึงนำมายุดล้างสิ่งสกปรกที่ยังติดอยู่ออกหลังจากนั้นนำไปลวกในน้ำร้อนอุณหภูมิ 70 องศาเซลเซียส นานประมาณ 1 นาที แล้วนำมาราด้วยโซดาไฟที่เตรียมไว้ประมาณ 20 นาที แล้วล้างออกด้วยน้ำสะอาด

กลุ่มที่ 7 เป็นกลุ่มตัวอย่างกระเพาะโโคทางการค้าจากตลาด

หลังทำการทดสอบ นำกลุ่มตัวอย่างมาวิเคราะห์หาจุลินทรีย์ ได้แก่ จุลินทรีย์รวมทั้งหมด *E.coli*, *Coliform*, *Staphylococcus aureus*, *Salmonella* spp. และ *Clostridium perfringen* อีกทั้งตรวจสารเคมีที่ตกค้างในกระเพาะโโค ได้แก่ sodium hydroxide (โซดาไฟ) และ Sulfur dioxide (สารฟอกขาว) ค่าเนื้อสัมผัส (Texture Profile Analysis (TPA)) ทดสอบการยอมรับกระเพาะโโคที่ปรุงสุกของผู้บริโภค พบว่า กระเพาะโโคส่วนของกระเพาะผ้าปิริวและรังผึ้งในกลุ่มทดลองที่ 4 หรือกลุ่มที่ใช้น้ำร้อน และโซดาไฟในกระบวนการล้างทำความสะอาด มีปริมาณ Sodium hydroxide น้อยที่สุด (ปริมาณ 30 ml/L) ส่วนด้านจุลินทรีย์พบว่า ทั้ง 7 กลุ่มทดลองไม่แตกต่างกัน และเมื่อทดสอบทางด้านการยอมรับของผู้บริโภค พบว่าคะแนนความพอใจโดยรวมของผู้บริโภค มีคะแนนความชอบสูง ซึ่งมีลักษณะใกล้เคียงกับกลุ่มตัวอย่างกระเพาะโโคทางการค้าจากตลาด

โครงการย่อยที่ 2. การใช้ประโยชน์และการยอมรับของผลิตภัณฑ์แคนวัว

การทดลองนี้แบ่งออกเป็น 5 กลุ่มทดลอง คือ กลุ่มที่ 1 หนังหมูส่วนหลัง (กลุ่มควบคุม) กลุ่มที่ 2 หนังวัวส่วนหลัง กลุ่มที่ 3 หนังวัวส่วนพื้นท้อง กลุ่มที่ 4 หนังวัวส่วนขาหน้าและขาหลัง และกลุ่มที่ 5 หนังวัวส่วนคอและหัว นำมาวิเคราะห์คุณค่าทางโภชนาการ ความทึบ ค่าออเตอร์แอคติวิตี้ ค่าความชื้น ค่าเนื้อสัมผัส ค่าแรงตัดผ่าน เชื้อจุลินทรีย์ทั่วไป ยีสต์ และรา รวมถึงความพึงพอใจของผู้บริโภค พบว่า แคนวัวมีปริมาณจุลินทรีย์รวมทั้งหมด เชื้อยีสต์และรา น้อยกว่ามาตรฐานกำหนด (มาตรฐาน นพช.)

มีปริมาณไขมันทั้งหมด ไขมันอิมตัว และโคลเลสเทอโรล ไม่เกินตามข้อมูลโภชนาการของนพช. มีค่าอวเตอร์แอคทิวิตี้ (a_w) ต่ำ การทดสอบการยอมรับของผู้บริโภค พบว่า ผู้บริโภคส่วนใหญ่มีคะแนนความชอบแคบวัวพื้นหลังมากที่สุด เมื่อเปรียบเทียบกับคะแนนความชอบอื่นๆ และ ไม่แตกต่างกับกลุ่มควบคุม

โครงการอย่างที่ 3. การใช้ประโยชน์จากไส้สวัสด

การทดลองนี้แบ่งออกเป็น 5 กลุ่มทดลอง คือ กลุ่มที่ 1 ไส้สุกรหมักเกลือทางการค้า (กลุ่มควบคุม) กลุ่มที่ 2, 3, 4, 5 มีอัตราส่วนไส้โภสต : น้ำหนักเกลือ เท่ากับ 1:1, 1:1.5, 1:2, และ 1:2.5 ตามลำดับ โดยเก็บรักษาที่อุณหภูมิ 4 และ 37 องศาเซลเซียส วิเคราะห์ค่าเนื้อสัมผัส (Texture Profile Analysis (TBA) จำนวนจุลินทรีย์ทั่วไป *E.coli*, *Coliform*, *Staphylococcus aureus*, *Salmonella spp.* และ *Clostridium perfringens* ผลการทดลองพบว่าค่าความแข็ง (Hardness) ค่าความสามารถในการเกาะรวมตัวกัน (Cohesiveness) ค่าความเหนียว (Gumminess) ค่าความยืดหยุ่น (Springiness) และค่าการทนต่อการเคี้ยว (Chewiness) ไม่มีความแตกต่างทางสถิติของทั้ง 5 กลุ่ม รวมถึงความพึงพอใจของผู้บริโภค เมื่อนำไส้หมักเกลือมาทำเป็นไส้กรอก พบว่าผู้บริโภคส่วนใหญ่มีคะแนนความชอบไส้บรรจุไส้กรอกหมูที่อัตราส่วน 1:1.5 มากที่สุด ซึ่งให้ผลไม่แตกต่างกับกลุ่มควบคุม

Abstract

Thailand is a country that consumers eat visceral organs (tripe), animal by-products, such as swine, chicken or cattle. The tripe for consumption must be tested that is edible. Moreover, animal tripe and cooked leather were able to bring a variety of cooking, nutrition complete and contain certain minerals than meat. At present, tripe consumption in Thailand was not only consumed from domestic production but imported from overseas also. However, tripe consumption may be contaminated with physical, chemical and biological dangerous such as chemical residues, non food grade chemical including pathogenic microbes. So, for utilization of by-products safety from cattle slaughtering process, research aims was to develop a safe process for the utilization of by-product that will benefit to consumer and entrepreneurs. This research project “Utilization of By- Product from Cattle Slaughtering” has three sub-projects: 1) The cleaning process development of tripe for consumer safe. 2) The use and acceptance of cattle skin. 3) The use of fresh cattle gut.

Sub-project 1. The cleaning process development of tripe for consumer safe.

Six stomach samples from native cattle were taken after killing process. Samples were repeated three times (one time per month). Stomach samples were separated to Rumen, Reticulum and Omasum. The experimental groups were divided into six washing methods and one stomach samples from a market. The different methods of six stomach samples were described as follows:

Method 1. (Control group) the stomach was dipped in hot water (temperature around 70 degrees Celsius) with approximately one minute and then the dirt was clean out.

Method 2. the stomach cattle was dipped in cement clear water for 15 minutes and then the dirt was clean out.

Method 3. the stomach cattle was dipped in lime water for 15 minutes and then the dirt was clean out.

Method 4. the stomach was dipped in hot water (temperature around 70 degrees Celsius) with approximately one minute and then the dirt was clean out. After the sodium hydroxide soak solution provided about 20 minutes then rinse with water. (to assist in the tenderness and bounce or springiness).

Method 5. the stomach cattle was dipped in cement clear water for 15 minutes and then the dirt was clean out and the stomach was dipped in hot water (temperature around 70 degrees Celsius) with

approximately one minute . After the sodium hydroxide soak solution provided about 20 minutes then rinse with water.

Method 6. the stomach cattle was dipped in lime water for 15 minutes and then the dirt was clean out and the stomach was dipped in hot water (temperature around 70 degrees Celsius) with approximately one minute . After the sodium hydroxide soak solution (caustic soda) provided about 20 minutes then rinse with water.

Group 7 stomach samples from cattle trade market

After cleaning. The samples were analyzed for total microorganisms, including bacteria *E.coli*, *Coliform*, *Staphylococcus aureus*, *Salmonella spp.* ,and *Clostridium perfringen* also and checked chemical residues including sodium hydroxide (caustic soda) and sulfur dioxide (bleach). For texture analysis (Texture Profile Analysis (TPA)) and consumer acceptance testing, the stomachs were boiled. The result showed that method 4 had the lowest amount volume of sodium hydroxide (30 ml / L) and there were not different of the microbes among the experimental groups. The consumer acceptance testing showed the overall satisfaction with high scores in method 4. This result was similar to the stomach samples from cattle trade market.

Sub-project 2. The use and acceptance of cattle skin.

This experiment was divided into five groups; group 1. leather pig from back part (control group), group 2. leather cattle from back part, group 3. leather cattle from plate part, group 4. leather cattle from four legs and face ,and group 5. leather cattle from neck and head part. These sample groups were analyzed the nutritional value, rancid value, water activity, moisture, texture and shear force, total microorganism, yeast and mold, including the satisfaction of consumers. The result found that cattle rind had the amount of total bacteria, yeast and mold less than the legal standard of food. The total fat, saturated fat and cholesterol value were not exceeding the nutritional information of the legal standard of food. The water activity had low value. The consumer acceptance test found that overall satisfaction had high score in leather cattle from back part when compared to other experimental groups.

Sub-project 3. The use of fresh cattle gut.

This experiment was divided into five experimental groups ; group 1. commercial salted pig gut (control group), the ratio of live cattle gut: salt weight of group 2, 3, 4, and 5 at 1:1, 1:1.5, 1:2, and 1:2.5, respectively. The samples were stored at 4 and 37 degrees Celsius. The samples were analyzed the texture (Texture Profile Analysis (TBA), total plate count, *E.coli*, Coliform, *Staphylococcus aureus*, *Salmonella spp.* and *Clostridium perfringens*. The result showed hardness value, the ability of aggregation (cohesiveness), toughness values (gumminess), flexibility (springiness) and the resistance of chewing (chewiness) were not significant difference among five groups, including the satisfaction of consumers. The ratio of 1: 1.5 had high scores of overall satisfaction when filling with pork sausage and control group.