Abstract

Oxidative stress is associated with pathophysiology of endothelial dysfunction and eventually leads to cardiovascular disease (CVD). A myriad of previous studies has shown benefits of fruits and vegetable consumption as a preventive strategy to reduce risks and biomarkers of developing CVD. This study investigated effects of 10 Thai fruits (12 samples) in cultured endothelial cells. Influences of fruit juice extracts on nitric oxide (NO) production and eNOS expression were evaluated by nitrite levels in culture media and western blot analysis, respectively. Cytoprotection from hydrogen peroxide (H2O2) insult was assessed by MTT Survival signaling through Akt and NF-KB were determined in association with cytoprotection as well as glutathione (GSH) levels, catalase (CAT) and superoxide dismutase (SOD) activities. Out of 13 fruit samples, four fruit juice extracts increased NO production, including Ananas comosus L., Annona squamosa L. (AS), Dimocarpus longan Sonn., and Lansium domesticum Correa. However, no alteration in eNOS expression was detected in endothelial cells cultivated with fruit extracts for 48 h. Incubation with H₂O₂ (200 µM, 2 h) markedly reduced cell survival while cells preincubated with AS and raw Carica papaya L. (CPW) 48 h prior to H₂O₂ exposure significantly increased cell survival. The level of intracellular ROS was enhanced in cells incubated with H₂O₂ but abrogated in cells pre-incubated with AS. Although no change in SOD activity was observed in all treatment groups the levels of total GSH were improved with AS and CPW treatment. CAT activity was decreased in cells treated with AS and H₂O₂ with AS or CPW. Changes in signaling through Akt phosphorylation and NF-KB nuclear accumulation were not observed in all treatment groups. In summary, different kinds of fruits show variation in beneficial effects to endothelial cells. Consumption of a wide variety of fruits are expected to reduced the risk of endothelial dysfunction and protect against endothelial damage induced by oxidative stress.

บทคัดย่อ

ภาวะเครียดออกซิเดสมีความสัมพันธ์กับพยาธิกำเนิดของการเสื่อมหน้าที่ของเซลล์เยื่อบหลอด เลือด ซึ่งอาจนำไปสู่โรคหัวใจและหลอดเลือดในที่สุด มีการศึกษามากมายแสดงให้เห็นประโยชน์ของการ บริโภคผักผลไม้ในการลดความเสี่ยงและตัวบ่งชี้ของการเกิดโรคหัวใจและหลอดเลือด การศึกษานี้ทดสอบ ผลไม้ 10 ชนิค (12 ตัวอย่าง) ในเซลล์เยื่อบุหลอคเลือดเพาะเลี้ยง ฤทธิ์ของน้ำผลไม้ต่อปริมาณในตริกออก ใชด์ และการแสดงออกของ eNOS วัดได้จากระดับในไตร์ในอาหารเลี้ยงเซลล์และการวิเคราะห์แบบ western blot ตามลำคับ ฤทธิ์ปกป้องเซลล์จากไฮโครเจนเปอร์ออกไซค์วัคโคย MTT assay และมีการวัค การส่งสัญญาณผ่าน Akt และ NF-KB รวมทั้งปริมาณของกลูตาไชโอน และการทำงานของเอนไซม์ ซปเปอร์ออกไซค์ดิสมิวเทสและแคตาแลสในตัวอย่างที่มีฤทธิ์ปกป้องเซลล์ จากตัวอย่างผลไม้ที่นำมาศึกษา 12 ตัวอย่าง พบว่า สับปะรคภเก็ต น้อยหน่า ลำไย และลองกอง มีฤทธิ์ในการเพิ่มปริมาณในตริกออกไซด์ที่ หลั่งจากเซลล์เยื่อบุหลอดเลือดแต่ไม่มีฤทธิ์เพิ่มการแสดงออกของเอนไซม์ eNOS เมื่อเซลล์บ่มร่วมกับน้ำ ผลไม้เป็นเวลา 48 ชม. ไฮโครเจนเปอร์ออกไซค์ที่ความเข้มข้น 200 ไมโครโมลา เมื่อบ่มร่วมกับเซลล์เป็น เวลา 2 ชม. ลดการอยู่รอดของเซลล์อย่างมีนัยสำคัญ แต่ในเซลล์ที่บ่มร่วมกับน้อยหน่าและ มะละกอดิบเป็น เวลา 48 ชม.ก่อนการบ่มร่วมกับ ใฮโครเจนเปอร์ออกไซด์ สามารถเพิ่มการอยู่รอดของเซลล์ ใค้ ระดับ ความเครียดในเซลล์ (ROS) เพิ่มขึ้นเมื่อบ่มร่วมกับไฮโครเจนเปอร์ออกไซค์แต่ลคลงในกลุ่มที่บ่มกับ น้อยหน่าเป็นเวลา 48 ชม.ก่อนหน้า ไม่พบการเปลี่ยนแปลงการทำงานของเอนไซม์ SOD ในทุกกลุ่มที่ ้ศึกษา แต่พบว่าระดับของกลูตาไช โอนเพิ่มขึ้นอย่างมีนัยสำคัญในกลุ่มที่ได้รับน้อยหน่าหรือมะละกอดิบ อย่างเดียว การทำงานของ CAT ลดลงในกลุ่มที่ได้รับน้อยหน่าอย่างเดียวหรือ ได้รับน้อยหน่าหรือมะละกอ ดิบก่อนหน้าการบ่มร่วมกับไฮโครเจนเปอร์ออกไซด์ ไม่พบการเปลี่ยนแปลงในการส่งสัญญาณการอยู่รอด ของเซลล์ผ่าน Akt phosphorylation และ NF-KB กล่าวโดยสรป ผลไม้แต่ละชนิดมีประโยชน์แตกต่างกัน สำหรับเซลล์เยื่อบหลอดเลือด การบริโภคผลไม้หลากหลายจึงน่าจะช่วยลดปัจจัยเสี่ยงต่อการเสื่อมหน้าที่ ของเซลล์เยื่อบหลอดเลือด และลดการทำลายเซลล์จากความเครียดออกซิเดส