

รายงานวิจัยฉบับสมบูรณ์

โครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทย (ระยะที่ 3)

การแบ่งเขตแผ่นดินไหวอย่างละเอียดด้วยการศึกษา
คุณลักษณะของชั้นดินบริเวณที่ตั้ง

โดย รองศาสตราจารย์ ดร. นคร ภู่วรวงศ์ และคณะ

กรกฎาคม 2555

รายงานวิจัยฉบับสมบูรณ์

โครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทย (ระยะที่ 3)

การแบ่งเขตแผ่นดินไหวอย่างละเอียดด้วยการศึกษา คุณลักษณะของชั้นดินบริเวณที่ตั้ง

คณะกรรมการ

รองศาสตราจารย์ ดร. นคร ภู่ว่อง
ผู้ช่วยศาสตราจารย์ ดร. นีรพงศ์ จันทร์เพ็ง
รองศาสตราจารย์ ดร. เป็นหนึ่ง วนิชชัย

สังกัด

มหาวิทยาลัยธรรมศาสตร์
มหาวิทยาลัยเกษตรศาสตร์
สถาบันเทคโนโลยีแห่งเอเชีย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทสรุปสำหรับผู้บริหาร

โครงการวิจัยนี้ทำการศึกษาคุณสมบัติเชิงพลศาสตร์ที่เป็นปัจจัยหลักต่อระดับความรุนแรงของแผ่นดินไหวต่ออาคาร คือ คุณลักษณะของชั้นดินบริเวณที่ตั้ง ได้แก่ ความเร็วคลื่นเนื้อ (Shear Wave Velocity) และค่าบอทิพหลัก (Predominant Period) ซึ่งมีอิทธิพลอย่างสูงต่อการขยายความรุนแรง หรือการเปลี่ยนแปลงลักษณะของคลื่นแผ่นดินไหวที่ประกอบด้วยขนาด (Amplitude) องค์ประกอบความถี่ (Frequency Content) และระยะเวลา (Duration) ของการสั่นสะเทือน และคุณสมบัติของอาคารที่ประกอบด้วย ค่าธรรมชาติ (Natural Period) อัตราส่วนความหน่วง (Damping Ratio) และรูปร่างการสั่นไหว (Vibration Mode Shape) ซึ่งเป็นข้อมูลสำคัญสำหรับการคำนวณหาระดับการโยกตัวของอาคารต่าง ๆ จากผลของแผ่นดินไหวที่อาจเกิดขึ้น ทั้งนี้เนื่องจากเมื่อเกิดแผ่นดินไหวขึ้น ชั้นดินอาจสามารถขยายขนาดคลื่นทำให้เพิ่มระดับความรุนแรงของแผ่นดินไหวได้โดยเฉพาะในกรณีที่เป็นชั้นดินอ่อน และอาคารอาจเกิดการตอบสนองอย่างรุนแรงแบบการสั่นพ้อง หากค่าค่าธรรมชาติของอาคารมีค่าใกล้เคียงกับค่าค่าการสั่นหลักของคลื่นแผ่นดินไหว

จากความสำคัญของคุณสมบัติเชิงพลศาสตร์ดังกล่าว งานวิจัยนี้มีวัตถุประสงค์หลักคือ เพื่อศึกษาผลของคุณลักษณะของชั้นดินบริเวณที่ตั้งที่มีต่อลักษณะและระดับความรุนแรงของแผ่นดินไหวในบริเวณเมืองใหญ่ เพื่อประเมินความเสี่ยงภัยแผ่นดินไหวในแต่ละพื้นที่อย่าง แล้วสร้างเป็นแผนที่แบ่งเขตความรุนแรงของแผ่นดินไหวอย่างละเอียด (Seismic Microzonation Map) และเพื่อศึกษาพัฒนาระบบการตอบสนองต่อแรงของแผ่นดินไหวของอาคารที่มีรูปแบบที่เสี่ยงต่อการเกิดความเสียหายและมีการใช้งานจำนวนมาก ซึ่งผลการศึกษาที่ได้คาดว่าจะเป็นประโยชน์ต่อการวางแผนจัดการด้านความเสี่ยงภัยและการออกแบบโครงสร้างต้านทานแผ่นดินไหวให้มีความถูกต้องสอดคล้องกับสภาพความเป็นจริงในประเทศไทยมากยิ่งขึ้น

ในการศึกษาส่วนแรกด้านคุณสมบัติเชิงพลศาสตร์ของชั้นดินที่ใช้ประเมินพัฒนาระบบด้านการขยายตัวของคลื่นแผ่นดินไหวนั้นอาจทำโดยการเจาะหลุมสำรวจภาคสนาม ซึ่งสามารถได้ค่าคุณสมบัติเชิงพลศาสตร์ที่ค่อนข้างแม่นยำ อย่างไรก็ตามวิธีนี้มีค่าใช้จ่ายในการปฏิบัติสูงมากและใช้เวลานาน จึงไม่สามารถทำการเจาะสำรวจหลาย ๆ ตำแหน่งได้ ในการศึกษานี้จึงทำการประยุกต์วิธีสำรวจภาคสนามโดยการตรวจวัดการสั่นสะเทือนของผิวดินในระดับต่ำที่มีอยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration หรือ Microtremor) โดยไม่ต้องเจาะหลุม เพื่อการสำรวจที่ตำแหน่งต่าง ๆ จำนวนมากในพื้นที่เสี่ยงภัยแผ่นดินไหวที่สำคัญของประเทศไทย คือ กรุงเทพมหานครและจังหวัดใกล้เคียงที่รวมจังหวัดกาญจนบุรี และพื้นที่ในเขตเมืองจังหวัดเชียงใหม่และบริเวณใกล้เคียง โดยทำการวิเคราะห์เป็นค่าค่าบอทิพหลัก (T_p) และความเร็วคลื่นเฉือนตามความลึก (V_s) ซึ่งมีตำแหน่งสำรวจ 103 ตำแหน่งที่จังหวัดเชียงใหม่และบริเวณใกล้เคียง และ 174 ตำแหน่งในพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียง ผลการสำรวจภาคสนามที่สำคัญคือความเร็วคลื่นเฉือน ซึ่งใช้แสดงเพื่อการเปรียบเทียบของแต่ละพื้นที่ด้วยค่าเฉลี่ยถึงระดับลึก 30 เมตร (V_{s30})

ผลการศึกษาสำหรับพื้นที่จังหวัดเชียงใหม่และบริเวณใกล้เคียงพบว่า พื้นที่ที่มีค่า V_{S30} ต่ำที่สุดอยู่บริเวณตอนกลางของพื้นที่ศึกษา คือบริเวณบริเวณที่ราบลุ่มแม่น้ำปิง โดยมีค่าต่ำสุดคือ 230 เมตรต่อวินาที และมีแนวโน้มของค่า V_{S30} ที่เพิ่มสูงขึ้นในพื้นที่ห่างออกจากบริเวณแม่น้ำปิงโดยค่าสูงสุดอยู่ที่ตอนเหนือของพื้นที่ศึกษา คือบริเวณเทศบาลตำบลโดยสะเก็ด มีค่าประมาณ 560 เมตรต่อวินาที ตามลักษณะพื้นที่เปลี่ยนแปลงจากพื้นที่ราบเข้าสู่พื้นที่เชิงเขา และเมื่อพิจารณาค่า T_p พบว่าบริเวณพื้นที่ที่เป็นชั้นดินอ่อนอยู่ในบริเวณตอนกลางใกล้กับแม่น้ำปิง โดยค่า T_p สูงสุดมีค่าเท่ากับ 0.73 วินาที ส่วนบริเวณที่เป็นชั้นดินแข็งอยู่ในบริเวณทิศตะวันออกไปจนถึงทิศตะวันออกเฉียงเหนือที่อำเภอเด่นอยู่ในบริเวณเทศบาลรวมถึงบริเวณบางส่วนของจังหวัดลำพูนทางทิศใต้ โดยค่า T_p ต่ำสุดมีค่าเท่ากับ 0.12 วินาที

สำหรับพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียง ผลการศึกษาพบว่าชั้นดินบริเวณอ่าวไทย โดยเฉพาะเขตจังหวัดสมุทรปราการมีค่า V_{S30} ต่ำที่สุด ประมาณ 70 เมตรต่อวินาที และค่า T_p มีค่าประมาณ 1.1 วินาที เนื่องจากเป็นบริเวณที่มีความหนาของชั้นดินเหนียวอ่อนมากที่สุด ส่วนในเขตกรุงเทพมหานครพบว่ามีค่า V_{S30} ประมาณ 100 ถึง 170 เมตรต่อวินาที และ T_p มีค่าประมาณ 0.7 ถึง 1.1 วินาที ซึ่งพื้นที่ตอนกลางของกรุงเทพมหานครมีค่า V_{S30} ประมาณ 140 ถึง 160 เมตรต่อวินาที พื้นที่ด้านตะวันออกเช่น เขตมีนบุรี หนองจอก ลาดกระบังมีค่า V_{S30} ประมาณ 100 ถึง 140 เมตรต่อวินาที พื้นที่ด้านตะวันตกที่ติดกับจังหวัดนครปฐมมีค่า V_{S30} ประมาณ 150 ถึง 170 เมตรต่อวินาที และแนวโน้มของบริเวณในจังหวัดอื่นคือ ค่า V_{S30} เพิ่มขึ้น และ T_p สั้นลงในพื้นที่ขอบของพื้นที่ศึกษาที่ความหนาของชั้นดินเหนียวอ่อนมีค่าลดลง โดยบริเวณตะวันตกเฉียงเหนือของพื้นที่ศึกษาในจังหวัดกาญจนบุรีมีค่า V_{S30} สูงมากกว่า 600 เมตรต่อวินาที และค่า T_p มีค่าสั้นกว่า 0.2 วินาที

ผลของการศึกษา V_{S30} แสดงเป็นแผนที่สำหรับพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียงดังรูปที่ 1 และสำหรับพื้นที่จังหวัดเชียงใหม่และบริเวณใกล้เคียงแสดงดังรูปที่ 2 และภาพรวมของค่า T_p และ V_{S30} ที่สำรวจได้ในแต่ละจังหวัด แสดงดังรูปที่ 3

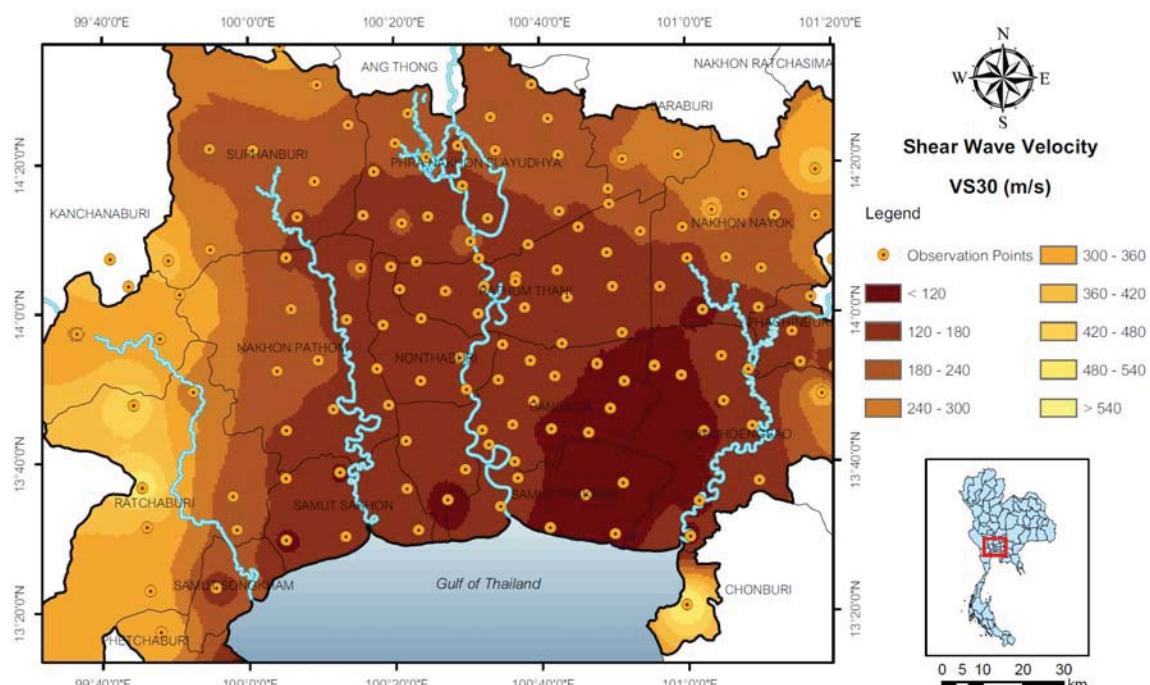
จากข้อมูลการสำรวจภาคสนาม ได้นำไปใช้จัดทำเป็นแผนที่เพื่อแบ่งเขตโดยตามลักษณะที่อาจตอบสนองต่อแผนดินให้คล้ายคลึงกันด้วยค่าความเร็วคลื่นเฉือนเฉลี่ยที่ระดับ 90 ถึง 100 เมตร และสร้างแบบจำลองของชั้นดินตามข้อมูลความเร็วคลื่นเฉือนของแต่ละกลุ่มอยู่เพื่อทำการวิเคราะห์ผลตอบสนองของพื้นดินเนื่องจากแผ่นดินไหวด้วยหลักการเชิงเส้นเทียบเท่าแบบ 1 มิติ ผลการพิจารณา Transfer function ของพื้นที่แต่ละกลุ่มพบว่า สำหรับพื้นที่ที่มีความเร็วคลื่นเฉือนเฉลี่ยต่ำ มีแนวโน้มที่มีค่ากำลังขยายคลื่นมากกว่า คาดการณ์สั่นหลักยกกว่า และช่วงคาดการณ์สั่นที่เกิดการขยายคลื่นได้กว้างขึ้น เมื่อเทียบกับพื้นที่ที่มีความเร็วคลื่นเฉือนเฉลี่ยสูง

จากนั้นได้ทำการวิเคราะห์ผลตอบสนองของพื้นดินเนื่องจากแผ่นดินไหวสำหรับพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียง เพื่อการเปรียบเทียบและเป็นแนวทางสำหรับการปรับปรุงมาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ. 1302) โดยทำการจัด

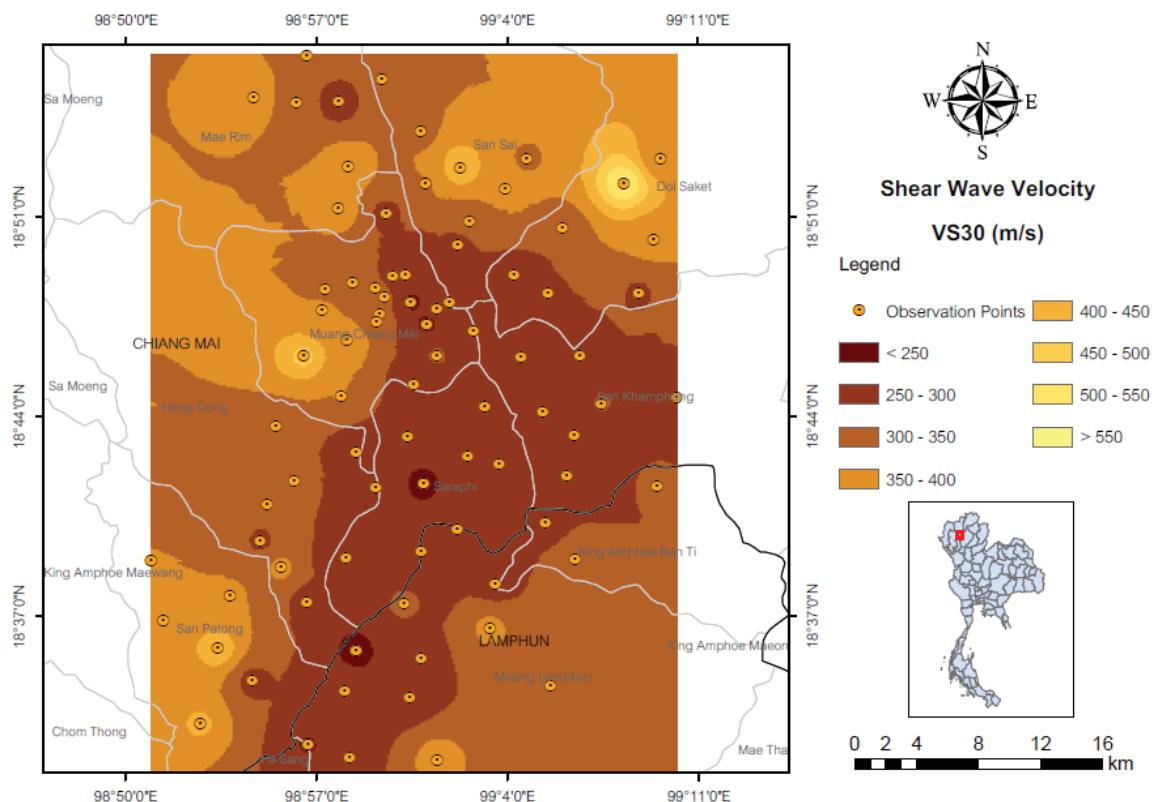
กลุ่มพื้นที่อยู่ใหม่และเปรียบเทียบผลการวิเคราะห์ค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบและวิจารณ์ผลความแตกต่างกับมาตรฐาน ยยพ. 1302 ชี้งพบว่า การแบ่งกลุ่มพื้นที่ใหม่ให้ค่าที่มากกว่า น้อยกว่า หรือใกล้เคียงกับค่าจากการแบ่งพื้นที่ตาม ยยพ. 1302 ชี้งแสดงถึงแนวทางที่ควรปรับปรุงมาตรฐานให้มีความสอดคล้องกับสภาพจริงมากยิ่งขึ้น

งานวิจัยได้ศึกษาเพิ่มเติมถึงผลของการจำลองคุณสมบัติด้านความเร็วคลื่นเฉือนความลึกของชั้นดินเพื่อประเมินลักษณะของการสั่นสะเทือนนีองจากแผ่นดินไหวที่ผ่านพื้นดิน และวิจารณ์ผลที่ทำให้เกิดความแตกต่าง โดยผลที่ได้เพื่อสร้างความเข้าใจเพิ่มเติมและบ่งชี้ถึงประเด็นที่ควรมีการศึกษาเพื่อการพัฒนาการอุกแบบด้านท่านแผ่นดินให้เหมาะสมยิ่งขึ้น ผลการวิเคราะห์แสดงในรูปของ Transfer function ของแต่ละแบบจำลอง และกำลังขยายคลื่นจากความเร่งตอบสนองเชิงสเปกตรัม รวมถึงการเปรียบเทียบผลการวิเคราะห์กับผลจากการตรวจวัดจากเหตุการณ์แผ่นดินไหวจริงชี้งพบความสอดคล้องดีของผลเมื่อใช้แบบจำลองระดับความลึกชั้นหินประมาณ 400 เมตร ที่สถานีตรวจวัด และในส่วนสุดท้ายคือ การศึกษาวิธีไฟไนต์อิลิเมนต์ ในการประยุกต์ใช้กับปัญหาแบบ 2 มิติเพื่อใช้ในการวิเคราะห์แบบจำลองชั้นดินที่บริเวณขอบแอ่งกรุงเทพฯ ภายหลังจากที่มีผลของระดับความลึกของชั้นหินที่ชัดเจนในอนาคต

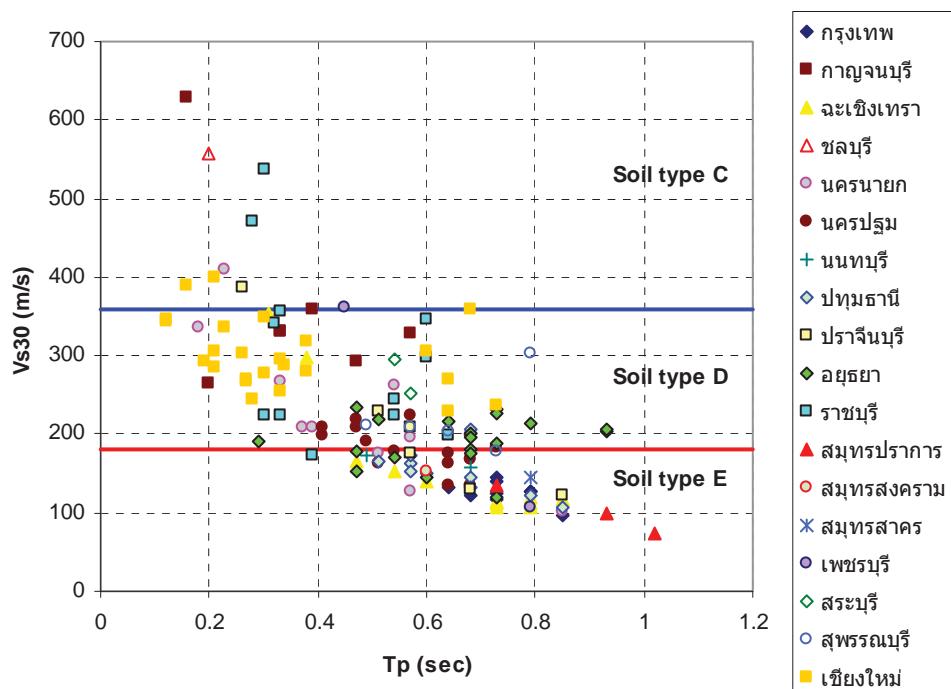
งานวิจัยในส่วนที่สองเป็นผลการศึกษาพฤติกรรมทางพลศาสตร์ของอาคารสูงประมาณ 5 ชั้น และมีความไม่สม่ำเสมอในแนวตั้งหรือแนวราบจำนวนทั้งสิ้น 11 หลัง โดยการตรวจวัดการสั่นสะเทือนของอาคารที่มีอยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration) ด้วยอุปกรณ์ที่มีความไวสูง จากนั้นจึงนำค่าที่ตรวจวัดได้มาวิเคราะห์เพื่อหาค่าคุณสมบัติทางพลศาสตร์อันได้แก่ ความถี่ธรรมชาติ รูปร่างการสั่น และอัตราส่วนความหน่วง

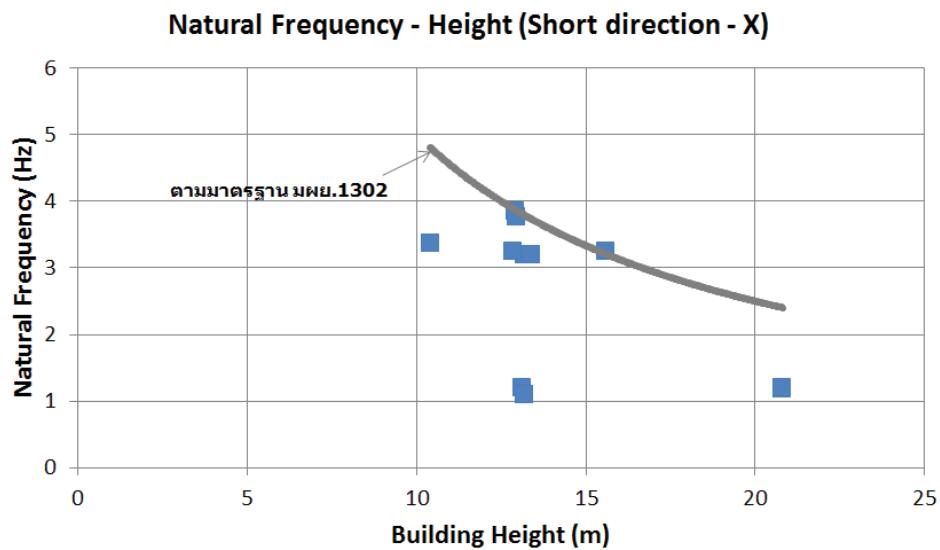

การดำเนินงานในงานวิจัยนี้ได้พับปัจจัยที่มีผลต่อความถูกต้องของการตรวจวัด เช่น ความคลาดเคลื่อนในการวางแผนอุปกรณ์ตรวจวัด ข้อจำกัดในการติดตั้งเครื่องขยายอ่าอาคาร และข้อจำกัดในการหาค่าอัตราส่วนความหน่วงที่แม่นยำ ซึ่งงานวิจัยฉบับนี้ได้นำเสนอแนวทางแก้ไขโดยการพัฒนาอัลกอริทึมขึ้นมาเพื่อแก้ปัญหาเหล่านั้น รวมถึงประยุกต์ใช้อัลกอริทึม System Realization Information Matrix ที่เหมาะสมกับการวัดอัตราส่วนความหน่วงมาใช้ในการศึกษาครั้งนี้ด้วย ถึงแม้บางปัญหายังไม่สามารถแก้ไขได้อย่างสมบูรณ์ อย่างไรก็ตามในภาพรวมทั้งหมด กระบวนการตรวจวัดสามารถบรรลุวัตถุประสงค์หลักของการศึกษา นั่นคือการได้มาร์ชีนค่าคุณสมบัติทางพลศาสตร์ของอาคารเต็มถึงสูงปานกลางประมาณ 5 ชั้น

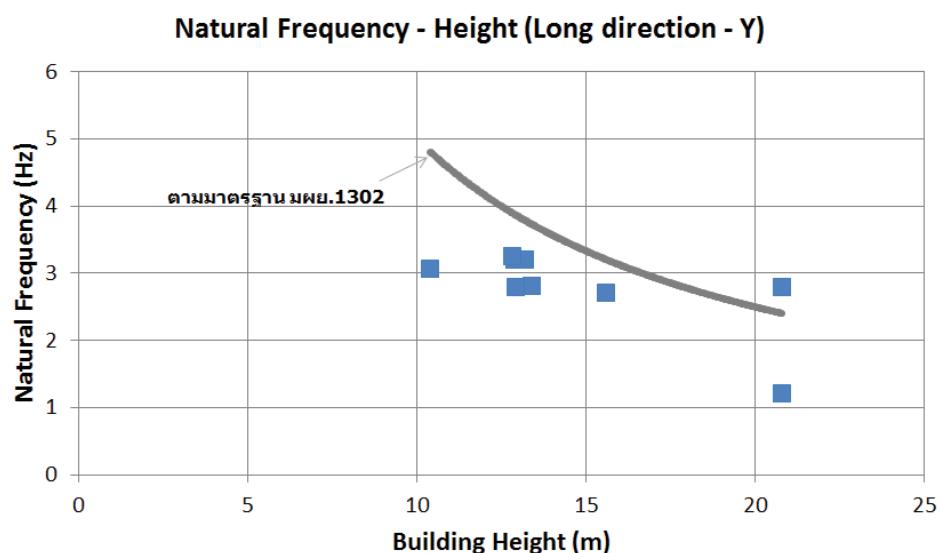
จากการศึกษาความถี่ธรรมชาติของอาคารทั้งสิ้น 11 หลัง พบว่ามีค่าใกล้เคียงหรือต่ำกว่าสูตรประมาณค่าความถี่ธรรมชาติตามมาตรฐาน ยยพ. 1302 ไม่มากนักซึ่งสูตรประมาณค่าความถี่ธรรมชาติดังกล่าวได้พัฒนามาจากงานวิจัยในอดีตที่ศึกษากลุ่มอาคารที่ค่อนข้างสูงและมีรูปทรงและกิจกรรมตอบสนองแผ่นดินไหวอย่างสม่ำเสมอ รวมทั้งค่าที่กำหนดเป็นค่าที่ประมาณให้ความถี่ธรรมชาติสูงกว่าค่าเฉลี่ย ถึงแม้การศึกษาครั้งนี้จะเป็นกลุ่มอาคารที่สูงประมาณ 5 ชั้นและมีความไม่สม่ำเสมออยู่ แต่สูตรประมาณค่าดังกล่าวก็ยังสอดคล้องกับพฤติกรรมทางพลศาสตร์ของอาคารกลุ่มนี้ในระดับที่ยอมรับได้ ดังรูปที่ 4 และ รูปที่ 5 สำหรับค่าอัตราส่วนความหน่วง จากการใช้อัลกอริทึมที่ทันสมัย


มากขึ้น ทำให้เสนอค่าประมาณค่าอัตราส่วนความหน่วงของอาคารเมื่อสั่นอิสระเท่ากับ 2% ซึ่งเป็นค่าโดยเฉลี่ยจากทุกอาคารที่ทำการตรวจวัดซึ่งมีลักษณะการก่อสร้างคล้ายคลึงกัน

นอกจากนี้แล้ว ในงานวิจัยนี้ได้สร้างแบบจำลองไฟไนต์อิลิเมนต์ ขึ้นมาเพื่อศึกษาพัฒนาระบบ 3 มิติของอาคาร เพื่อเปรียบเทียบกับผลการตรวจวัด จากการศึกษาพบว่าแบบจำลองไฟไนต์อิลิเมนต์ อาจให้ผลที่แตกต่างจากพัฒนาระบบ 3 มิติของอาคารได้ ทั้งนี้ขึ้นอยู่กับสมมติฐานในการสร้างแบบจำลองนั้นด้วย การตรวจวัดพัฒนาระบบ 3 มิติของอาคารจึงมีความสำคัญอย่างมากหากต้องการประเมินพัฒนาระบบ 3 มิติของอาคารให้ใกล้เคียงความจริงที่สุด


ข้อเสนอแนะที่ได้จากการวิจัยนี้คือ การนำข้อมูลด้านพัฒนาระบบ 3 มิติของอาคาร ติดตามการตอบสนองของชั้นดินไปใช้ปรับปรุงมาตรฐานการออกแบบสำหรับพื้นที่ศึกษา รวมทั้งวางแผนการศึกษาเพื่อการปรับปรุงสำหรับพื้นที่อื่นด้วยการสำรวจและวิเคราะห์เพิ่มเติม และทำการสำรวจระดับชั้นหินของแองดินพื้นที่กรุงเทพมหานครและปริมณฑลเพื่อข้อมูลที่ถูกต้องยิ่งขึ้นสำหรับการขยายคลื่นในช่วงการสั่นยารที่ส่งผลมากกับกลุ่มอาคารสูง และการศึกษาพัฒนาระบบ 3 มิติของอาคารรูปแบบอื่นจากการตรวจวัดและวิเคราะห์แบบจำลองควบคู่กัน


รูปที่ 1. แผนที่ค่าความเร็วคลื่นเนื้อโนเบลี่ยที่ระดับความลึก 30 เมตร สำหรับกรุงเทพมหานครและจังหวัดใกล้เคียง


รูปที่ 2. แผนที่ค่าความเร็วคลื่นเนื้อในเฉลี่ยที่ระดับความลึก 30 เมตร สำหรับจังหวัดเชียงใหม่และบริเวณใกล้เคียง

รูปที่ 3. ค่า V_{S30} และ T_p สำหรับพื้นที่สำรวจในจังหวัดต่าง ๆ

รูปที่ 4. ความสัมพันธ์ระหว่างความถี่ธรรมชาติ-ความสูงอาคาร ทิศทางด้านสั้น

รูปที่ 5. ความสัมพันธ์ระหว่างความถี่ธรรมชาติ-ความสูงอาคาร ทิศทางด้านยาว

บทคัดย่อ

คุณสมบัติเชิงพลศาสตร์ทั้งของชั้นดินและโครงสร้างมีความสำคัญอย่างยิ่งต่อการกำหนดคุณลักษณะของแผ่นดินไหวที่อาจเกิดขึ้น ณ ตำแหน่งที่ตั้ง ซึ่งส่งผลสืบเนื่องต่อผลตอบสนองของโครงสร้างต่อแผ่นดินไหว ดังนั้นการออกแบบต้านทานแรงเนื่องจากแผ่นดินไหวจึงจำเป็นอย่างยิ่งที่ต้องพิจารณาปัจจัยเหล่านี้ไว้ด้วย งานวิจัยนี้มีวัตถุประสงค์เพื่อการศึกษาผลของชั้นดินบริเวณที่ตั้งสำหรับบริเวณที่มีความเสี่ยงภัยแผ่นดินไหวและการศึกษาคุณสมบัติเชิงพลศาสตร์ของอาคาร ผลที่ได้จากการศึกษาสามารถใช้ในการประเมินความเสี่ยงภัยแผ่นดินไหวแบบแบ่งเขตย่อยสำหรับพื้นที่ศึกษา

ในงานส่วนแรกเป็นการศึกษาผลของชั้นดินบริเวณที่ตั้งจากการตรวจวัดภาคสนามแบบ Microtremor โดยดำเนินการเพื่อจำแนกคุณลักษณะของชั้นดินเพื่อการประเมินระดับความรุนแรงที่อาจเกิดขึ้นและนำไปจัดทำเป็นแผนที่แบ่งเขตย่อย โดยการตรวจวัดคลื่นขนาดเล็กที่ผิวดินด้วยเทคนิคการตรวจวัดแบบ 1 จุด เพื่อวิเคราะห์ค่าความอิทธิพลหลัก (T_p) และใช้เทคนิคการตรวจวัดแบบหลายจุดพร้อมกันเพื่อวิเคราะห์แบบ Spatial Autocorrelation (SPAC) สำหรับการสำรวจค่าความเร็วคลื่นเฉือนตามความลึกของชั้นดิน (V_s) โดยดำเนินการกับ 103 ตำแหน่งในพื้นที่จังหวัดเชียงใหม่และบริเวณใกล้เคียง และ 174 ตำแหน่งในพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียง แล้วจำแนกชั้นดินตามค่า T_p และ V_s

ลักษณะการแบ่งเปลี่ยนของคุณลักษณะของชั้นดินบริเวณที่ตั้งเป็นไปอย่างชัดเจน โดยค่า T_p และ V_s เฉลี่ยที่ระดับ 30 เมตร (V_{s30}) มีค่าแตกต่างกันอย่างมากในพื้นที่ศึกษา ในพื้นที่จังหวัดเชียงใหม่และบริเวณใกล้เคียงมีค่า V_{s30} ต่ำสุดประมาณ 230 เมตรต่อวินาทีและ T_p ยาวที่สุดประมาณ 0.7 วินาทีที่บริเวณที่รับลุ่มแม่น้ำปิง และดินมีลักษณะแข็งมากขึ้นด้วยค่า V_{s30} สูงสุดประมาณ 560 เมตรต่อวินาทีและ T_p สั้นที่สุดประมาณ 0.12 วินาทีที่บริเวณตอนเหนือและตะวันตกของพื้นที่ศึกษา สำหรับพื้นที่กรุงเทพมหานครและจังหวัดใกล้เคียง พบว่าพื้นที่เลี่ยบอ่าวไทยและบริเวณตะวันออกเฉียงใต้ของพื้นที่ศึกษามีค่า V_{s30} ต่ำสุดประมาณ 70 เมตรต่อวินาทีและ T_p ยาวที่สุดประมาณ 1.1 วินาที และ V_{s30} สูงสุดประมาณ 600 เมตรต่อวินาทีและ T_p สั้นที่สุดประมาณ 0.2 วินาทีที่บริเวณตอนเหนือและตะวันตกและตะวันออกที่เป็นขอบของแม่น้ำเจ้าพระยา

การวิเคราะห์ผลตอบสนองของพื้นดินโดยวิธีเชิงเส้นเทียบเท่าใช้ศึกษาลักษณะ Transfer function และอธิบายพฤติกรรมด้านการขยายขนาดคลื่นในแต่ละพื้นที่ที่พิจารณาเป็นโซนย่อยสำหรับโซนที่มีค่า V_s ต่ำพบว่ามีกำลังขยายสูงและค่าการสั่นหลักยาว นอกจากนี้ยังพบการขยายขนาดคลื่นในช่วงค่าการสั่นยาวตามคุณลักษณะของดินอ่อน และเมื่อ V_s เพิ่มขึ้นมีผลทำให้ค่าการสั่นหลักสั่นลง กำลังขยายลดลง และไม่ปรากฏผลการขยายคลื่นในช่วงค่าการสั่นยาว

ผลการเปรียบเทียบความเร่งตอบสนองเชิงสเปกตรัมจากการศึกษานี้กับค่าที่กำหนดในมาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ. 1302) แสดงให้เห็นถึงความแตกต่างและความสอดคล้องกันในแต่ละโซนย่อย และแนวทางที่ต้องพัฒนามาตรฐาน

แบบจำลองของชั้นดินสำหรับแบ่งกรุงเทพมหานครสร้างขึ้นเพื่อการศึกษาผลของการจำลองคุณสมบัติของชั้นดินต่อลักษณะการขยายกำลังของคลื่นแผ่นดินให้ ผลการศึกษาแสดงในรูปของความเร่งตอบสนองเชิงสเปกตรัมเนื่องจากคลื่นแผ่นดินให้ตัวอย่าง และวิจารณ์ผลในด้านการขยายคลื่นและค่าการสั่นหลัก โดยพบว่ากำลังขยายสูงสุดคือประมาณ 6 เท่าเกิดขึ้นที่ค่าการสั่นประมาณ 1.0 วินาทีในแบบจำลองของชั้นดินด้วยระดับความลึกชั้นหินประมาณ 160 ถึง 300 เมตร ส่วนแบบจำลองที่ชั้นหินมีความลึกมากประมาณ 400 ถึง 700 เมตร มีผลของกำลังขยายสูงในช่วงค่าความเร่ง 2 ถึง 3 วินาทีอยู่ด้วย และมีการเปรียบเทียบผลจากการวิเคราะห์กับข้อมูลที่ตรวจวัดได้จากเหตุการณ์แผ่นดินไหวซึ่งพบความสอดคล้องดีของผลเมื่อใช้แบบจำลองระดับความลึกชั้นหินประมาณ 400 เมตร ที่สถานีตรวจวัด และงานวิจัยนี้ได้แสดงแนวทางในการประยุกต์ใช้กระบวนการไฟฟ้าอิเล็กทรอนิกส์จากโปรแกรมทางวิศวกรรมโครงสร้างเพื่อการวิเคราะห์ผลตอบสนองของชั้นดินแบบ 2 มิติ ซึ่งได้แสดงถึงแนวทางใช้งานเพื่อการศึกษาผลกระทบของขอบแอล์โนนาคต

งานในส่วนที่สองเป็นผลการศึกษาพัฒนาระบบของอาคารสูงประมาณ 5 ชั้นและมีความไม่สม่ำเสมอในแนวตั้งหรือแนวราบจำนวนทั้งสิ้น 11 หลัง โดยการตรวจวัดการสั่นสะเทือนของอาคารที่มีอยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration) ด้วยอุปกรณ์ที่มีความไวสูง จานวนจึงนำค่าที่ตรวจวัดได้มาวิเคราะห์เพื่อหาค่าคุณสมบัติทางผลศาสตร์อันได้แก่ ความถี่ธรรมชาติ รูปร่างการสั่น และอัตราส่วนความหน่วง

กระบวนการตรวจวัดในงานวิจัยนี้ได้พับข้อจำกัดในการตรวจวัดเช่นความคลาดเคลื่อนในการวางอุปกรณ์ตรวจวัด ข้อจำกัดในการติดตั้งเครื่องขยายอาคาร และการหาค่าอัตราส่วนความหน่วงอย่างแม่นยำ ซึ่งงานวิจัยฉบับนี้ได้นำเสนอแนวทางแก้ไขโดยการพัฒนาอัลกอริทึมขึ้นมาเพื่อแก้ปัญหาเหล่านั้น รวมถึงประยุกต์ใช้อัลกอริทึม System Realization Information Matrix ที่เหมาะสมกับการวัดอัตราส่วนความหน่วงมาใช้ในการศึกษารั้งนี้ด้วย ถึงแม้ยังไม่สามารถแก้ไขทุกข้อจำกัดได้อย่างสมบูรณ์ อย่างไรก็ตามในภาพรวมทั้งหมด กระบวนการตรวจวัดสามารถบรรลุวัตถุประสงค์หลักของการศึกษา นั่นคือการได้มาซึ่งค่าคุณสมบัติทางผลศาสตร์ของอาคารเดียวกับในงานประมาณ 5 ชั้น

จากการศึกษาความถี่ธรรมชาติของอาคารทั้งสิ้น 11 หลัง พบร่วมค่าไกล์เดียงหรือต่ำกว่าสูตรประมาณค่าความถี่ธรรมชาติตามมาตรฐาน มยพ. 1302 ไม่มากนักซึ่งสูตรประมาณค่าความถี่ธรรมชาติตั้งกล่าวไว้ได้พัฒนามาจากงานวิจัยในอดีตที่ศึกษาคลื่นอาคารที่ค่อนข้างสูงและมีรูปทรงและการตอบสนองแผ่นดินให้ตัวอย่างสม่ำเสมอ ถึงแม้การศึกษารั้งนี้จะเป็นกลุ่มอาคารที่ต่ำสูงประมาณ 5 ชั้นและมีความไม่สม่ำเสมออยู่ แต่สูตรประมาณค่าดังกล่าวก็ยังสอดคล้องกับพัฒนาระบบของผลศาสตร์ของอาคารกลุ่มนี้ในระดับที่ยอมรับได้ สำหรับค่าอัตราส่วนความหน่วง จากการใช้อัลกอริทึมที่ทันสมัยมากขึ้น ทำให้ค่าคุณสมบัติที่ได้มาซึ่งค่าคุณสมบัติทางผลศาสตร์ของอาคารเมื่อสั่นอิสระได้ที่ 2% ซึ่งเป็นค่าโดยเฉลี่ยจากทุกอาคารที่ทำการตรวจวัดซึ่งมีลักษณะการก่อสร้างคล้ายคลึงกัน

นอกจากนี้แล้ว ในงานวิจัยนี้ยังได้สร้างแบบจำลองไฟไนต์อิลเมน์ทขึ้นมาเพื่อศึกษาพฤติกรรม 3 มิติของอาคารว่าสอดคล้องอย่างไรกับผลการตรวจวัด จากการศึกษาพบว่าแบบจำลองไฟไนต์อิลเมน์ทอาจให้ผลที่แตกต่างจากพฤติกรรมจริงของอาคารได้ ทั้งนี้ขึ้นอยู่กับสมมติฐานในการสร้างแบบจำลองนั้นด้วย การตรวจวัดพฤติกรรมอาคารจึงมีความสำคัญอย่างมากหากต้องการประเมินพฤติกรรมของอาคารให้ใกล้เคียงความจริงที่สุด

Abstract

Dynamic properties of both sites and structures are the key parameters which can substantially influence the characteristics of ground response caused by earthquake and subsequently govern the structural response. As a result, the local site effects and dynamic characteristics of structures are indispensable to be taken into account for seismic design. In this research, the objectives are to examine site effects of potential seismic risk area and investigate the dynamic properties of buildings. These results are valuable for seismic hazard assessment and further microzonation study in the investigated area.

In the first part of the study, site effects are examined from investigations of site characteristics of subsoil by microtremor techniques. The objective is to characterize subsoils for seismic hazard assessment and microzonation study. The technique of single point observation with Horizontal-to-Vertical spectral ratio (H/V) to estimate the predominant period (T_p) and the technique of array observation with Spatial Autocorrelation (SPAC) for exploration of shear wave velocity (V_s) were conducted for 103 sites in Chiangmai and the vicinity area, and 174 sites in Bangkok and the vicinity area. Site classifications based on T_p and the average V_s are presented.

The variation of the site characteristics can be clearly distinguished where the average of shear wave velocity from the surface to 30-m depth (V_{s30}) and the predominant periods vary significantly within the survey area. In Chiangmai area, the lowest V_{s30} of 230 m/s and longest T_p of 0.7 second were found along Ping river area, while more stiff soil with higher V_{s30} of 560 m/s and shorter T_p of 0.12 second were found in the north and west of the investigated area. In Bangkok area, it was shown that the area along the Gulf of Thailand and the south-east part exhibit very low V_{s30} of 70 m/s and long T_p of 1.1 second, while high V_{s30} of 600 m/s and short T_p of 0.2 second were found in the north, west and east parts which are boundary of the plain.

Seismic site response analyses were conducted using equivalent linear method. The transfer functions obtained from equivalent linear analysis of the soil model for microzonation zones provided amplification characteristics of each area. In the zones of low V_s , high amplification and long predominant period were identified. In addition, amplification in the long period ranges was observed due to characteristics of soft soil layers. The predominant periods became shorter, amplification ratios were decreased, and long period effects were diminished in the zone of high V_s .

Comparison of spectral acceleration obtained by this study with the existing values specified in the current standard of Thailand, DPT 1302, was examined. It was pointed out both discrepancy and agreement of the design spectral acceleration for different zones.

The models of subsoil were constructed based on shear wave velocity in Bangkok to study the effects of subsoil models on modification of ground motions induced from seismic waves. The acceleration response spectral resulted from a set of earthquake waves were presented and examined for their characteristics of amplification and dominant period. The amplification factor of about 6 was found around the period of 1.0 second for the model of 160 to 300 m depth of bedrock. For deeper bedrock model, 400 to 700 m, amplifications in long period ranges of 2 to 3 second were significantly observed. Comparison of results from the analysis and the observed record was made and their good agreement was achieved when using the model of 400 m depth bedrock at the seismometer station. In addition, this study presents an application of 2-dimensional ground response analysis by using finite element analysis software for structural engineering. The applicability of the technique was examined showing its potential for ground response analysis considering basin edge effects.

The second part of the study showed the results of dynamic behaviors of 11 buildings, low-rise and containing some degree of irregularities. The dynamic properties such as natural frequencies, damping ratios, and vibration mode shapes were extracted from their natural ambient vibrations, which were recorded by sensitive velocity sensors.

The process of measuring these dynamic properties had faced some limitations; these were placing the sensors in the right position, installation of a vibration shaker, and extracting the reliable damping ratios. This research applied algorithms to solve those difficulties, especially, the process of extracting the damping ratios by System Realization Information Matrix (SRIM) algorithm, which is a modern time-domain algorithm. Although some limitations still remain technically unsolved, the main objective of the research, i.e. the extraction of dynamic properties of mid-rise irregular buildings, has been accomplished.

Measured natural frequencies from 11 buildings shows that they are close to, or lower than in some cases, the approximated values from a formula given in the seismic design standard of Thailand. Although that formula was derived from regular high-rise buildings, it is still applicable to those mid-rise irregular buildings in this research. For the damping ratios extracted by SRIM algorithm, the damping ratio of 2%, which is the average measured value from all 11 buildings, is recommended for these mid-rise buildings.

This research also compared the measured behaviors of a real building with its three dimensional behaviors predicted by finite element analysis. It was found that the finite element model may not represent the real behaviors accurately. These differences were caused by some assumptions in the modeling process. This evidence shows that measurement of dynamic properties is really important to predict the real response of buildings.

บทคัดย่อ

รหัสโครงการ: RDG5330026

ชื่อโครงการ: การแบ่งเขตแผ่นดินไหวอย่างละเอียดด้วยการศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้ง
ชื่อหัววิจัย: นคร ภู่วรวงศ์¹ ธีรพงศ์ จันทร์เพ็ง² และ เป็นหนึ่ง วนิชชัย³

¹ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ² คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

³ สถาบันเทคโนโลยีแห่งเอเชีย

e-mail address: pnakhorn@engr.tu.ac.th

ระยะเวลาโครงการ: สิงหาคม 2553 - เมษายน 2556

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของชั้นดินบริเวณที่ตั้งและคุณสมบัติเชิงพลศาสตร์ของอาคารที่มีผลต่อลักษณะของแผ่นดินไหวและผลกระทบของอาคาร งานหลักส่วนแรกเป็นการศึกษาผลของชั้นดินบริเวณที่ตั้งจากการตรวจวัดภาคสนามแบบ Microtremor ซึ่งเป็นการตรวจวัดคลื่นขนาดเล็กที่ผิดนิ่วอิเล็กทรอนิกส์ที่ติดตั้งบนแผ่นดิน สำหรับการสำรวจความเร็วคลื่นเนื่องตามความลึกของชั้นดิน (V_s) โดยผลการศึกษา 103 ตำแหน่งในพื้นที่จังหวัดเชียงใหม่และบริเวณใกล้เคียงพบว่า V_s เฉลี่ยที่ระดับ 30 เมตร (V_{s30}) มีค่าต่ำสุดประมาณ 230 เมตรต่อวินาทีและ T_p ยาวสุดประมาณ 0.7 วินาทีที่บริเวณที่ราบลุ่มแม่น้ำปิง และค่า V_{s30} สูงสุดประมาณ 560 เมตรต่อวินาทีและ T_p สั้นสุดประมาณ 0.12 วินาทีที่บริเวณตอนเหนือและตะวันตกของพื้นที่ศึกษา ส่วนผลการศึกษาใน 174 ตำแหน่งในพื้นที่กทม. และจังหวัดใกล้เคียงพบว่า พื้นที่เลียนอ่าวไทยและบริเวณตะวันออกเฉียงใต้ของพื้นที่ศึกษามีค่า V_{s30} ต่ำสุดประมาณ 70 เมตรต่อวินาทีและ T_p ยาวสุดประมาณ 1.1 วินาที และ V_{s30} สูงสุดประมาณ 600 เมตรต่อวินาทีและ T_p สั้นสุดประมาณ 0.2 วินาทีที่บริเวณขอบแอ่งดินอ่อน จากนั้นได้ทำการวิเคราะห์ผลกระทบของพื้นดินโดยวิธีเชิงเส้นเทียบเท่าเพื่อแบ่งพื้นที่เป็นโซนย่อยตามพหุติกรรมการตอบสนองของชั้นดิน แสดงผลการเปรียบเทียบความเร่งตอบสนองเชิงสเปกตรัมกับค่าที่กำหนดในมาตรฐานการออกแบบของประเทศไทย (มยพ. 1302) รวมทั้งเริ่มศึกษาผลของชั้นดินลึกมากในแอ่งดินอ่อนกทม. ที่พบว่ามีผลกำลังขยายคลื่นแผ่นดินไหวสูงในช่วงควบคุมประมาณ 2 ถึง 3 วินาที และมีการเปรียบเทียบผลจาก การวิเคราะห์ชั้นดินกับข้อมูลที่ตรวจวัดได้จากเหตุการณ์แผ่นดินไหวจริงซึ่งพบความสอดคล้องดี งานในส่วนที่สองเป็นผลการศึกษาพหุติกรรมทางพลศาสตร์ของอาคารสูงไม่เกิน 5 ชั้นและมีความไม่สม่ำเสมอจำนวนทั้งสิ้น 11 หลังด้วยการตรวจวัดการสั่นสะเทือน และสร้างแบบจำลองไฟไนต์เอลเมเนนต์เพื่อศึกษาพหุติกรรม 3 มิติของอาคาร ซึ่งในการวิจัยได้เสนอแนวทางการแก้ไขปัญหาความคลาดเคลื่อนในการวางหัววัดและการหาค่าอัตราส่วนความหน่วงที่แม่นยำ ข้อเสนอแนะสำหรับการศึกษาต่อไปคือ การนำผลไปใช้ในการปรับปรุงมาตรฐานการออกแบบ การขยายพื้นที่การศึกษาและสำรวจชั้นดินในระดับลึกมากขึ้นกับแอ่งดินอ่อนกทม. และการปรับปรุงวิธีการวิเคราะห์อาคารให้มีความถูกต้องมากขึ้น

คำหลัก: แผ่นดินไหว คุณสมบัติบริเวณที่ตั้งของชั้นดิน คุณสมบัติเชิงพลศาสตร์ของอาคาร การสั่นขนาดเล็ก การตรวจวัดการสั่นไหว

Abstract

Project Code: RDG5330026

Project Title: Seismic Microzonation by Investigation of Local Site Characteristics

Investigators: Nakhorn Poovarodom¹ Theeraphong Chanpheng² Pennung Warnitchai³

¹Faculty of Engineering Thammasat University ²Faculty of Engineering Kasetsart University

³Asian Institute of Technology

e-mail address: pnakhorn@engr.tu.ac.th

Project Duration: August 2010 – April 2013

In this research, the objectives are to examine seismic site effects and dynamic properties of buildings which can substantially influence the characteristics of ground shaking and structural response. In the first part, site effects were studied from characteristics of subsoil using microtremor observation techniques to estimate the predominant period (T_p) by H/V spectral ratio and the shear wave velocity (V_s) by Spatial Autocorrelation (SPAC) method. The results of 103 sites in Chiangmai area show that the average of shear wave velocity from the surface to 30-m depth (V_{s30}) is lowest of 230 m/s and T_p is longest of 0.7 second along Ping river area. More stiff soil with higher V_{s30} of 560 m/s and shorter T_p of 0.12 second was found in the north and west parts of the investigated area. In 174 sites in Bangkok area, it was shown that the area along the Gulf of Thailand and the south-east part exhibit very low V_{s30} of 70 m/s and long T_p of 1.1 second, while high V_{s30} of 600 m/s and short T_p of 0.2 second were found in the boundary of the plain. Seismic site response analyses were conducted using equivalent linear method to subdivide area having similar site effects, or microzonation. Comparison of spectral acceleration obtained in this study with the current standard of Thailand, DPT 1302, was presented. Deep basin effects of Bangkok soft clay were preliminary investigated and the amplifications at long period of 2 to 3 second were indicated. The ground responses from analysis were in agreement with the observed records. The second part investigated dynamic behaviors of 11 buildings, low-rise and containing some degree of irregularities by vibration measurement, and three dimensional behaviors of a model by finite element analysis. The algorithms to correct the effect of error from sensor's directions and the process of extracting accurate damping ratios were discussed. The results from the study are appropriate for an amendment of the current design standard. Further investigations in other cities and deep basin in Bangkok, as well as improvement of model for analysis of building are recommended.

Keywords: Earthquake, Site characteristics of soil, Dynamic properties of building, Microtremor, Vibration measurement

สารบัญ

เนื้อหา	หน้า
บทสรุปสำหรับผู้บริหาร	i
บทคัดย่อ	vii
Abstract	x
สารบัญ	xiii
1 บทนำ	1-1
1.1 ความสำคัญของปัญหา	1-1
1.2 วัตถุประสงค์ของโครงการ	1-4
1.3 ระเบียบวิธีวิจัยและขอบเขตของการศึกษา	1-4
2 งานวิจัยที่เกี่ยวข้อง	2-1
2.1 ผลของคุณลักษณะของชั้นดินบริเวณที่ตั้งและการแบ่งเขตแผ่นดินไหวอย่างละเอียด	2-1
2.2 การศึกษาพฤติกรรมเชิงพลศาสตร์ของชั้นดินโดยการตรวจวัด Microtremor	2-2
2.3 การศึกษาความเสี่ยงภัยแผ่นดินไหวในประเทศไทย	2-5
2.4 การตรวจวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร	2-8
2.5 โครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทย	2-9
3 ทฤษฎีและระเบียบวิธีวิจัย	3-1
3.1 การตรวจวัดคลื่นขนาดเล็กบนผิวดิน	3-1
3.2 การวิเคราะห์ผลตอบสนองของพื้นผิวดิน	3-14
3.3 การจำแนกประเภทของดิน	3-17
3.4 ทฤษฎีที่เกี่ยวกับข้องับกับการวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร	3-19
4 ผลการศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้ง	4-1
4.1 การรวบรวมข้อมูลทางธรณีเทคโนโลยีของพื้นที่ศึกษา	4-1
4.2 การทบทวนงานวิจัยที่เกี่ยวข้อง	4-1
4.3 ผลของการรวบรวมข้อมูล	4-8
4.4 พื้นที่ศึกษาภาคสนาม	4-25
4.5 ขั้นตอนการวิจัย	4-25
4.6 อุปกรณ์ในการวิจัย	4-27
4.7 การวิเคราะห์หาค่าคาดคะเนอิทธิพลหลัก	4-31
4.8 การวิเคราะห์ค่าสัมประสิทธิ์ SPAC	4-32

4.9 การวิเคราะห์หาค่าความเร็วเฟส	4-35
4.10 การวิเคราะห์ค่าความเร็วคลื่นเฉือน	4-37
4.11 การเปรียบเทียบผลกับวิธีการสำรวจอื่น	4-38
4.12 การวิเคราะห์ผลตอบสนองเชิงเส้นเทียบเท่าด้วยแบบจำลองชั้นดิน 1 มิติ	4-45
4.13 ผลการสำรวจภาคสนามสำหรับคุณลักษณะของชั้นดินบริเวณที่ตั้ง	4-46
4.14 ผลการวิเคราะห์ผลตอบสนองของพื้นผิวดิน (Ground Response Analysis)	4-76
4.15 การพัฒนาค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบอาคาร	4-84
4.16 การศึกษาอิทธิพลของแบบจำลองความเร็วคลื่นเฉือนของชั้นดินต่อผล วิเคราะห์การตอบสนองของพื้นดิน	4-96
4.17 การวิเคราะห์ผลตอบสนองของชั้นดินแบบ 2 มิติด้วยวิธีไฟน์ต์อิลิเมนต์	4-105
4.18 แนวทางการพัฒนาแบบจำลอง 2 มิติ สำหรับแอ่งกรุงเทพฯ	4-107
5 ผลการตรวจวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร	5-1
5.1 คุณสมบัติเชิงพลศาสตร์ของอาคารจากการตรวจวัด	5-1
5.2 แบบจำลองและคุณสมบัติเชิงพลศาสตร์ของอาคารจากการวิเคราะห์ ไฟน์ต์อิลิเมนต์	5-66
5.3 การปรับปรุงเทคนิคการตรวจวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร	5-71
5.4 บทสรุปสาระสำคัญจากข้อมูลเชิงพลศาสตร์	5-79
6 สรุปผลการศึกษา	6-1
6.1 ผลการศึกษาคุณลักษณะบริเวณที่ตั้งและการวิเคราะห์ผลตอบสนอง ของชั้นดิน	6-1
6.2 การตรวจวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร	6-3
6.3 ข้อเสนอแนะสำหรับงานวิจัยต่อไป	6-4

เอกสารอ้างอิง

ภาคผนวก

บทที่ 1

บทนำ

1.1 ความสำคัญของปัญหา

แผ่นดินที่หวือการสั่นสะเทือนที่พื้นดินเนื่องจากการเคลื่อนตัวอย่างจับพลันของเปลือกโลก และสามารถก่อให้เกิดความเสียหายอย่างรุนแรงที่สุดต่อมวลมนุษย์ เหตุการณ์แผ่นดินไหวที่เคยเกิดในต่างประเทศหลายครั้งทั่วโลกได้สร้างความเสียหายต่อชีวิตและทรัพย์สินจำนวนมาก สำหรับประเทศไทยถึงแม่ไม่เคยเกิดภัยพิบัติร้ายแรงเนื่องจากแผ่นดินไหวในอดีตมาก่อน อย่างไรก็ตาม มีผลการศึกษาที่เกี่ยวข้องกับแผ่นดินไหวในด้านต่าง ๆ เช่น การตรวจสอบหลักฐานทางประวัติศาสตร์ การตรวจวัดด้วยเครื่องข่ายสถานีวัดแผ่นดินไหว รายงานการสำรวจอยเลื่อนในเบื้องต้น งานวิจัยใหม่ ๆ ที่เกี่ยวกับแผ่นดินไหวในประเทศไทย รวมทั้งผลกระทบจากแผ่นดินไหวที่เกิดขึ้นที่ส่งผลกระทบต่อประเทศจนสร้างความตื่นตระหนกเป็นระยะ ๆ ข้อมูลเหล่านี้ได้แสดงให้เห็นถึงความเสี่ยงภัยเนื่องจากแผ่นดินไหวของประเทศไทย กล่าวคือภัยพิบัติแผ่นดินไหวที่รุนแรงนั้นมีโอกาสเกิดขึ้นได้จริงในพื้นที่บางส่วนของประเทศไทย เช่น บริเวณภาคเหนือและตะวันตกเฉียงเหนือของประเทศไทย เนื่องจากเป็นพื้นที่ที่มีแนวรอยเลื่อนที่อาจทำให้เกิดแผ่นดินไหวขนาดกลาง ประมาณ 5-6 ริกเตอร์ อันเป็นแผ่นดินไหวที่มีศักยภาพในการทำลายสูงในบริเวณใกล้เคียง ซึ่งในความเป็นจริงแล้ว แผ่นดินไหวขนาดปานกลางดังกล่าวได้เกิดขึ้นแล้วหลายครั้งในประเทศไทย แต่ทว่าในการเกิดที่ผ่านมาศูนย์กลางของแผ่นดินไหวมิได้อยู่ใกล้กับชุมชน จึงไม่มีรายงานความเสียหายที่เกิดขึ้น นอกจากนั้นกรุงเทพมหานครและปริมณฑลก็อาจได้รับผลกระทบจากแผ่นดินไหวระยะไกลได้ เนื่องด้วยสภาพดินได้กรุงเทพมหานครเป็นดินอ่อน และได้ลังไปเป็นชั้นของดินแข็ง ซึ่งมีงานวิจัยที่แสดงให้เห็นถึงสภาพดินในลักษณะนี้สามารถขยายขนาดคลื่นแผ่นดินไหวได้หลายเท่าตัว ดังนั้น จึงอาจเกิดผลกระทบจากแผ่นดินไหวที่เกิดขึ้นในระยะไกลได้

ผลกระทบจากแผ่นดินไหวทำให้เกิดความเสียหายต่ออาคารและสิ่งปลูกสร้างที่บริเวณหนึ่ง ด้วยระดับความรุนแรงที่ขึ้นอยู่กับปัจจัยหลัก 2 ประการคือ (1) ระดับความรุนแรงของการสั่นสะเทือนของพื้นดิน ณ บริเวณที่ตั้ง โดยในส่วนนี้เป็นผลมาจากการศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้งอาคาร (Local site characteristics หรือ Local site effects) ซึ่งค่าที่สำคัญที่จำเป็นต่อการศึกษาได้แก่ ค่าความ共振ชั้น (Natural Period or Predominant Period) และ ค่าความเร็วคลื่นเฉือน (Shear wave velocity) ของชั้นดิน รวมทั้งลักษณะทางภูมิประเทศและธรณีเทคนิคคื่น ๆ ของบริเวณนั้น ๆ ทั้งนี้เนื่องจากเมื่อเกิดแผ่นดินไหวขึ้น ชั้นดินอาจสามารถขยายขนาดคลื่นและเพิ่มระดับความรุนแรงของแผ่นดินไหวได้โดยเฉพาะในกรณีที่เป็นชั้นดินอ่อน และ (2) คุณลักษณะของอาคารด้านการตอบสนองต่อแรงแผ่นดินไหว หรือคุณสมบัติเชิงพลศาสตร์ของอาคาร ตามหลักของพลศาสตร์โครงสร้างที่อาคารอาจตอบสนองรุนแรงหากอาคารนั้นมีจังหวะการสั่นตามธรรมชาติของตัวเอง (หรือความ共振ชั้น) ใกล้กับค่าการสั่นหลักของคลื่นแผ่นดินไหว รวมทั้งอาคารอาจเกิดรูปแบบการ

ตอบสนองด้วยลักษณะเฉพาะ เช่นการบิดตัว หรือการที่เกิดแรงในบางชั้นส่วนขึ้นสูงมาก หากมีลักษณะการกระจายของมวลและความแข็งแกร่งของอาคารที่ไม่สม่ำเสมอตลอดโครงสร้างอาคาร ด้วยปัจจัยหลัก 2 ประการดังกล่าวนี้ แผ่นดินไหวสามารถทำให้เกิดผลกระทบที่รุนแรงที่บริเวณหนึ่ง ๆ และกับกลุ่มอาคารหนึ่ง ๆ ได้ ซึ่งมีตัวอย่างสำคัญคือเหตุการณ์แผ่นดินไหวที่ประเทศเม็กซิโกเมื่อวันที่ 19 กันยายน ค.ศ. 1985 โดยมีศูนย์กลางแผ่นดินไหวอยู่ห่างจากเมืองเม็กซิโกซิตีประมาณ 350 กิโลเมตร ซึ่งบริเวณของเมืองเม็กซิโกซิตีตั้งอยู่บนชั้นดินที่เคยเป็นทะเลสาบในอดีต โดยมีชั้นดินอ่อนหนาวางตัวเหนือชั้นดินแข็งทำให้มีการเกิดแผ่นดินไหว ส่งผลให้เกิดความเสียหายรุนแรงอย่างมาก ซึ่งต่างจากผังตะวันตกเฉียงใต้ที่ตั้งอยู่บนชั้นดินแข็งเชิงเขาและมีความเสียหายน้อยกว่าเนื่องจากมีลักษณะทางธรณีวิทยาที่ต่างกันแม้จะอยู่ในบริเวณเมืองเดียวกันก็ตาม และอาคารที่ได้รับความเสียหายเป็นกลุ่มอาคารที่มีค่าความชราดีกว่าเดิมกับค่าค่าบริการสั่นหลักของคลื่นแผ่นดินไหวที่ถูกขยายตัว จากเหตุการณ์ดังกล่าวแสดงให้เห็นว่าคุณสมบัติเชิงพลศาสตร์ของอาคาร และคุณสมบัติของชั้นดินบริเวณที่ตั้งของชั้นดิน เป็นตัวแปรที่มีความสำคัญมากต่อการประเมินผลกระทบเนื่องจากแผ่นดินไหวต่อโครงสร้าง

ในด้านการป้องกันภัยพิบัติเนื่องจากแผ่นดินไหวจึงเกี่ยวข้องกับการพิจารณา 2 ประเด็นหลัก คือ ความปลอดภัยของโครงสร้างที่ต้องต้านทานแรงเนื่องจากแผ่นดินไหว และระดับการสั่นสะเทือนของบริเวณที่ตั้ง ในการปฏิบัติคือการกำหนดเป็นมาตรฐานการออกแบบต้านทานแผ่นดินไหว โดยที่ผลการตอบสนองของอาคารได้ถูกกำหนดให้มีทางประเมินไว้โดยใช้คุณสมบัติเชิงพลศาสตร์ของอาคาร และระดับความรุนแรงของการสั่นสะเทือนที่พื้น ถูกกำหนดด้วยขนาดของแผ่นดินไหวที่มีโอกาสเกิดขึ้นและคุณลักษณะของชั้นดินบริเวณที่ตั้งอาคารนั้น และสำหรับบริเวณสำคัญที่มีความเสี่ยงภัยแผ่นดินไหว เช่น ในเขตเมืองใหญ่ มีความจำเป็นอย่างยิ่งที่ต้องทำการพิจารณาจำแนกความเสี่ยงภัยออกเป็นเขตย่อยอย่างละเอียด เพื่อประเมินระดับความรุนแรงของแผ่นดินไหวที่อาจเกิดขึ้นและพัฒนาระบบของอาคารภายนอกให้แรงแผ่นดินไหวอย่างถูกต้องที่สุด ซึ่งการดำเนินการดังกล่าว คือ การแบ่งเขตแผ่นดินไหวอย่างละเอียด (Seismic Microzonation)

ในปัจจุบัน การศึกษาวิจัยด้านแผ่นดินไหวในประเทศไทยได้ดำเนินการต่อเนื่องจนได้ผลการวิจัยที่สามารถสรุปความเสี่ยงภัยแผ่นดินไหวในระดับโดยรวมของประเทศไทยได้ ดังนั้นจึงได้มีการออกแบบการเพื่อการป้องกันภัยพิบัติที่อาจเกิดขึ้นเนื่องจากแผ่นดินไหว โดยมาตรการที่เป็นรูปธรรมชัดเจนคือการออกแบบภาระท่วงเพื่อการออกแบบอาคารต้านทานแรงเนื่องจากแผ่นดินไหวที่เริ่มบังคับใช้ตั้งแต่ พ.ศ. 2540 และมีการปรับปรุงใน พ.ศ. 2550 รวมทั้งการพัฒนาเป็นมาตรฐานสำหรับการออกแบบอาคารในปี พ.ศ. 2552 โดยในการพัฒนาเหล่านี้จำเป็นต้องมีการศึกษาข้อมูลเฉพาะของประเทศไทยในหลายองค์ประกอบ ที่รวมถึงคุณสมบัติเชิงพลศาสตร์ของอาคารและคุณลักษณะบริเวณที่ตั้งของชั้นดิน ที่จำเป็นต่อการประเมินระดับความรุนแรงของคลื่นแผ่นดินไหว โดยงานวิจัยในโครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทยในระยะที่ 1 “การตรวจวัดและศึกษาคุณสมบัติเชิงพลศาสตร์ (Dynamic Properties) ของอาคารสูงในกรุงเทพมหานคร” และระยะที่ 2 “คุณสมบัติเชิงพลศาสตร์ของอาคารและคุณลักษณะบริเวณที่ตั้งของชั้นดินเพื่อการแบ่งเขต

ความรุนแรงของแผ่นดินไหวอย่างละเอียดในจังหวัดเชียงใหม่ ภายใต้การสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย ที่ได้ศึกษาพัฒนาด้านคุณสมบัติเชิงพลศาสตร์ของอาคารและชั้นดินที่มีผลต่อระดับแรงและการตอบสนองของอาคารต่อแรงแผ่นดินไหว ข้อมูลที่ได้ส่วนหนึ่งได้นำไปใช้ในการปรับปรุงมาตรฐานการออกแบบโครงสร้างต้านทานแผ่นดินไหวให้มีความถูกต้องและสอดคล้องกับสภาพความเป็นจริงในประเทศไทยแล้ว อย่างไรก็ตาม ปัญหาวิจัยที่สำคัญต่อการพัฒนาในด้านนี้ยังคงเหลืออยู่อีกในหลายประเด็น โดยมีประเด็นหลัก ดังนี้

ก. การศึกษาด้านคุณลักษณะบุรุษที่ตั้งของชั้นดิน โครงการวิจัยระยะที่ 2 ได้พัฒนาเทคโนโลยีที่สามารถดำเนินการศึกษาได้อย่างรวดเร็ว และได้เริ่มต้นสำรวจกับพื้นที่ศึกษาที่สำคัญด้านความเสี่ยงภัยแผ่นดินไหวของประเทศไทย อย่างไรก็ตาม ยังมีพื้นที่ที่ยังไม่ได้ศึกษาอีกจำนวนมาก จึงควรมีการขยายพื้นที่ศึกษาให้มากขึ้น และได้จำนวนข้อมูลหลายบริเวณให้มากพอ เพื่อนำผลไปวิเคราะห์ประเมินกำลังขยายคลื่นแผ่นดินไหวของแต่ละพื้นที่อย่าง แม่นยำ จัดทำเป็น แผนที่เขตความรุนแรงของแผ่นดินไหวอย่างละเอียด ที่มีความสำคัญอย่างยิ่ง โดยเฉพาะเมืองใหญ่ เช่น กรุงเทพมหานครและปริมณฑล จังหวัดเชียงใหม่ จังหวัดกาญจนบุรี และพื้นที่อีกหลายส่วนของประเทศไทย รวมทั้งเพื่อศึกษาปัจจัยอื่นด้านคุณลักษณะบุรุษที่ตั้งของชั้นดินอื่นที่อาจมีผล ได้แก่ ผลจากสภาพภูมิประเทศ (Topographic effect) และผลเนื่องจากขอบของแม่น้ำที่ตั้งชั้นดิน (Basin edge effect)

๗. การศึกษาด้านคุณสมบัติเชิงพลศาสตร์ของอาคาร เนื่องจากการศึกษาที่ดำเนินการมา มุ่งเน้นเพื่อพัฒนาสูตรการประมาณค่าสำหรับอาคารและกำหนดในมาตรฐานการออกแบบต้านทาน แผ่นดินไหว ซึ่งใช้กับอาคารที่มีรูปทรง และคุณสมบัติการตอบสนองต่อแรงแผ่นดินไหวอย่าง สม่ำเสมอตลอดความสูง จึงได้ดำเนินการศึกษา กับอาคารที่เป็นตัวแทนอาคารทั่วไปจำนวนมาก โดย ยังไม่ได้ดำเนินถึงผลกระทบเนื่องจากรูปทรงหรือลักษณะความไม่สม่ำเสมอแห่ง จึงควรมีการศึกษา พฤติกรรมเชิงพลศาสตร์ของอาคารที่เป็นผลจากรูปทรงและลักษณะความไม่สม่ำเสมอของอาคาร เพื่อความเข้าใจและปรับปรุงวิธีการวิเคราะห์ให้เหมาะสมกับพฤษติกรรมจริงได้อย่างเหมาะสม

ดังนั้นงานวิจัยนี้ จึงมีวัตถุประสงค์หลักเพื่อศึกษาผลของคุณลักษณะของชั้นดินบริเวณที่ตั้งที่มีต่อลักษณะและระดับความรุนแรงของแผ่นดินไหวในบริเวณเมืองใหญ่ เพื่อประเมินความเสี่ยงภัยแผ่นดินไหวในแต่ละพื้นที่อย่าง แล้วสร้างเป็นแผนที่แบ่งเขตความรุนแรงของแผ่นดินไหวอย่างละเอียด (Seismic Microzonation Map) โดยพื้นที่ที่สนใจศึกษาคือบริเวณกรุงเทพมหานครและปริมณฑล ที่เป็นศูนย์กลางของประเทศไทย มีประชากรและสิ่งปลูกสร้างหนาแน่นที่สุด มีลักษณะเป็นแอ่งดินตะกอนที่รับขนาดใหญ่ที่มีการเปลี่ยนแปลงของลักษณะทางธรณีเทคนิคบริเวณขอบแอ่งและบริเวณเมืองจังหวัดเชียงใหม่ และกาญจนบุรี ที่มีสภาพทางธรณีเทคนิคเป็นเนินเขาสลับกับที่ราบ และเป็นเมืองใหญ่ที่อยู่ใกล้ร้อยเลื่อนที่มีพลัง เพื่อเป็นตัวแทนของพื้นที่เสี่ยงภัยที่สำคัญของประเทศไทย และเนื่องจากคณะผู้วิจัย เครื่องมือที่ใช้ และพื้นฐานทฤษฎี มีความเหมาะสมและสามารถที่จะประยุกต์เพื่อใช้ศึกษาด้านการตรวจคุณสมบัติของอาคารได้ รวมทั้งเพื่อประกอบการประเมินความเสี่ยงภัยแผ่นดินไหวให้สมบูรณ์ด้วยการศึกษาพุทธิกรรมเชิงพลศาสตร์ของอาคาร งานวิจัยนี้

จึงกำหนดวัตถุประสงค์เพิ่มเติมคือเพื่อศึกษาพฤติกรรมการตอบสนองต่อแรงของแผ่นดินไหวของอาคารที่มีรูปแบบที่เสียงต่อการเกิดความเสียหายรุนแรงและมีการใช้งานจำนวนมาก ซึ่งจาก การศึกษาทั้งสองข้างต้นจะช่วยในการจัดกลุ่มความเสี่ยงภัยแผ่นดินไหวได้ทั้งปัจจัยจากลักษณะของ คลื่นแผ่นดินไหวและผลตอบสนองของอาคารที่เป็นกลุ่มตัวอย่างศึกษา ผลการศึกษาที่ได้คาดว่าจะ เป็นประโยชน์ต่อการวางแผนจัดการด้านความเสี่ยงภัยและการออกแบบโครงสร้างต้านทาน แผ่นดินไหวให้มีความถูกต้องสอดคล้องกับสภาพความเป็นจริงในประเทศไทยมากยิ่งขึ้น

1.2 วัตถุประสงค์ของการศึกษา

- (1) ศึกษาหาความเร็วคลื่นเสือนของชั้นดินบริเวณต่าง ๆ จำนวนมาก ในเขตพื้นที่ กรุงเทพมหานครและปริมณฑล จังหวัดเชียงใหม่ และจังหวัดกาญจนบุรี ด้วยเทคนิค การตรวจวัดคลื่นผิวดิน
- (2) ศึกษาข้อมูลด้านธารน้ำที่มีความถี่สูงปานกลาง ที่มีรูปทรงไม่สม่ำเสมอ ด้วยการประเมิน โอกาสที่จะเกิดผลกระทบต่อการขยายคลื่นแผ่นดินไหว
- (3) วิเคราะห์ผลการตอบสนองของชั้นดินที่ผิวดินเพื่อประเมินกำลังการขยายคลื่นจาก แผ่นดินไหว
- (4) จัดทำแผนที่ความเสี่ยงภัยแผ่นดินไหวอย่างละเอียดสำหรับพื้นที่ศึกษา จากข้อมูลการ ตอบสนองของชั้นดินเนื่องจากแผ่นดินไหว
- (5) ศึกษาคุณสมบัติเชิงพลศาสตร์ของอาคารเตี้ยถึงสูงปานกลาง ที่มีรูปทรงไม่สม่ำเสมอ ด้วยการตรวจวัดที่มีการกระตุ้น เพื่อศึกษาพฤติกรรมในการโยกตัวในรูปแบบ 3 มิติ

1.3 ระเบียบวิธีวิจัยและขอบเขตของการศึกษา

1.3.1 ระเบียบวิธีวิจัย

งานวิจัยประกอบด้วยการศึกษา 2 เรื่องหลัก คือการศึกษาคุณลักษณะบริเวณที่ตั้งของชั้นดิน และ การตรวจวัดอาคาร โดยมีรายละเอียดของวิธีวิจัยดังนี้

- (1) ศึกษาทฤษฎีที่เกี่ยวข้อง คือ ทฤษฎีที่ต้องใช้ในงานวิจัย และทำการเตรียมโปรแกรมคอมพิวเตอร์ เพื่อการวิเคราะห์ตามทฤษฎี รวมทั้งศึกษาและรวบรวมข้อมูลพื้นฐานด้านธารน้ำที่มีความถี่สูงปานกลาง ด้วยเทคนิค และสภาพภูมิ ประเทศ ของบริเวณที่ทำการศึกษา โดยรวมจากฐานข้อมูลที่มีอยู่แล้วจากแหล่งต่าง ๆ
- (2) ศึกษาและทดลองใช้เครื่องมือตรวจวัด เครื่องมือที่ใช้ในภาคสนาม เตรียมเครื่องมือที่ใช้ในการ เก็บข้อมูล Microtremor สร้างและทดสอบเครื่องมือที่จะใช้เขย่าอาคาร และฝึกอบรมบุคลากร
- (3) วางแผนเพื่อกำหนดตำแหน่งที่จะทำการสำรวจ โดยทำการกำหนดตำแหน่งจากการพิจารณา บริเวณที่ครอบคลุมพื้นที่ศึกษาทั้งหมด บริเวณที่มีลักษณะทางธรณีวิทยาต่าง ๆ บริเวณที่มี ชุมชนหนาแน่น เป็นต้น และเดินทางไปสำรวจพื้นที่ล่วงหน้าเพื่อการเตรียมการอย่างเหมาะสม
- (4) ทำการเก็บข้อมูลภาคสนามกลุ่มแรก สำหรับบริเวณต่าง ๆ เพื่อทดสอบความเหมาะสมของวิธีที่ จะใช้ศึกษา

(5) วิเคราะห์ข้อมูลผลการตรวจวัด โดยที่ในแต่ละครั้งที่ได้ทำการเก็บข้อมูลมาได้ จะนำมาวิเคราะห์เพื่อตรวจหาปัญหา ข้อจำกัด ที่อาจเกิดขึ้น และปรับปรุงเทคนิคการตรวจวัด ก่อนออกไปตรวจวัดภาคสนามอีก จนกระทั่งได้เทคนิคที่สมบูรณ์

(6) ทำการตรวจวัด และวิเคราะห์ข้อมูล สำหรับพื้นที่สำรวจที่เหลือ ด้วยวิธีที่ได้พัฒนาขึ้น

(7) วิเคราะห์ผลการศึกษา ทำการวิเคราะห์ค่าคุณลักษณะบริเวณที่ตั้งของชั้นดิน ของบริเวณที่ทำการสำรวจ โดยค่าความเร็วคลื่นเนื่องจากการสำรวจ และข้อมูลด้านธรณีเทคนิคและสภาพภูมิประเทศที่รวมในขั้นตอนที่ (1)

(8) ประเมินผลตอบสนองของพื้นดินโดยการวิเคราะห์ จากข้อมูลที่ได้ในขั้นตอน (7) นำมาจัดเป็นกลุ่มพื้นที่เพื่อประเมินกำลังขยาย ค่าการสั่นหลัก รวมทั้งการประเมินผลจากข้อมูลด้านธรณีเทคนิคและสภาพภูมิประเทศ ของแต่ละพื้นที่ศึกษา โดยประมาณข้อมูลและแสดงผลด้วยเทคนิค Geographical Information System

(9) แสดงผลการศึกษาในรูปของแผนที่แสดงระดับความรุนแรงและลักษณะของแผ่นดินที่หวที่แตกต่างกันในแต่ละบริเวณ หรือ Microzonation map สำหรับพื้นที่ที่ศึกษา โดยแสดงเป็นแผนที่แสดงค่าคابอธิพลหลัก แผนที่แสดงค่าความเร็วคลื่นเนื่อง และ แผนที่แสดงกำลังขยายคลื่น แผ่นดินที่หวของชั้นดิน

(10) ทำการคัดเลือกอาคารเพื่อการศึกษา เพื่อให้อยู่ในกลุ่มที่เป็นตัวแทนของอาคารจำนวนมาก และมีลักษณะของความไม่สม่ำเสมอแบบใดแบบหนึ่งหรือหลายแบบรวมกันอยู่ ได้แก่ ชั้นที่อ่อนแอ ความไม่สม่ำเสมอในระนาบ และ เสาสัน

(11) ตรวจวัดเพื่อหาคุณสมบัติเชิงพลศาสตร์ของอาคาร โดยใช้หลักพื้นฐานคือการตรวจวัดการสั่นสะเทือนของอาคารที่อยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration) ด้วยอุปกรณ์วัดที่มีความไวสูง อย่างไรก็ได้ การตรวจวัดแบบนี้มักมีข้อจำกัดกับอาคารที่ไม่ชั่ว倏ดเนื่องจากผลตอบสนองมีค่าในระดับต่ำมาก ผลการตรวจวัดจึงไม่ชัดเจน จึงต้องตรวจวัดแบบมีการกระตุ้นด้วยเครื่องเขย่า (Vibration shaker) เพื่อให้สามารถตรวจพบคุณสมบัติเชิงพลศาสตร์อย่างชัดเจนได้

(12) วิเคราะห์หาค่าคابการสั่น และรูปแบบการสั่นที่หว ที่มีลักษณะเฉพาะเนื่องจากความไม่สม่ำเสมอของอาคาร

(13) ทำการวิเคราะห์ด้วยแบบจำลองเชิงคณิตศาสตร์ โดยใช้ผลการตรวจวัดเป็นค่าอ้างอิง และปรับแก้แบบจำลองให้เหมาะสม เพื่อใช้ทำนายพฤติกรรมของอาคารภายใต้แรงแผ่นดินที่หว

(14) สรุปผลการวิจัย

1.3.2 ขอบเขตการวิจัย

(1) พื้นที่ศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้งคือ

- พื้นที่ในเขตกรุงเทพมหานครและปริมณฑล (ตามการพิจารณาของกรุงเทพฯ ใน มยพ. 1302) ซึ่งครอบคลุมจังหวัด กรุงเทพมหานคร นนทบุรี ปทุมธานี สมุทรปราการ สมุทรสาคร และพื้นที่รอบนอกคือบางส่วนของจังหวัด สมุทรสงคราม พระนครศรีอยุธยา นครปฐม และฉะเชิงเทรา

- จังหวัดเชียงใหม่ พื้นที่อำเภอเมือง และบางส่วนของอำเภอรอบนอก
- จังหวัดกาญจนบุรี พื้นที่อำเภอเมือง และบางส่วนของอำเภอรอบนอก

(2) ทำการตรวจวัดคลื่นขนาดเล็กที่ผิวดิน วิเคราะห์เพื่อหาค่าคابอิทิพลหลักโดยวิธี H/V spectral ratio และหาค่าความเร็วคลื่นเฉือนด้วยวิธี Spatial Autocorrelation (SPAC) จำนวนบริเวณที่ศึกษารวมไม่น้อยกว่า 250 แห่ง โดยเลือกตำแหน่งที่ศึกษาให้กระจายตามความแปรปรวนของสภาพธรรมนิวทิยา สำหรับบริเวณที่มีสภาพธรณีวิทยาที่ซับซ้อนจะศึกษาละเอียดกว่า

(3) ทำการวิเคราะห์เชิงเส้นเทียบเท่า (Equivalent linear analysis) เพื่อประเมินผลการตอบสนองของพื้น ด้วยแบบจำลอง 1 มิติ สำหรับพื้นที่ที่มีลักษณะของชั้นดินหนาสม่ำเสมอ และด้วยแบบจำลอง 2 มิติ สำหรับพื้นที่ที่มีความไม่สม่ำเสมอของชั้นดิน เช่นบริเวณขอบแอ่งเพื่อการศึกษาผลของขอบของแอ่งชั้นดิน (Basin edge effect) และพิจารณาสภาพภูมิประเทศถึงความเสี่ยงต่อการเกิดผลกระทบภูมิประเทศ (Topographic effect) จากทฤษฎีและงานวิจัยที่เกี่ยวข้อง

(4) ทำการตรวจวัดและวิเคราะห์อาคารที่สูงไม่เกิน 5 ชั้น และมีลักษณะของความไม่สม่ำเสมอ ได้แก่ ชั้นที่อ่อนแอ ความไม่สม่ำเสมอในระนาบ หรือ เสาสัน จำนวนไม่น้อยกว่า 10 หลัง

บทที่ 2

งานวิจัยที่เกี่ยวข้อง

2.1 ผลของคุณลักษณะของชั้นดินบริเวณที่ตั้งและการแบ่งเขตแผ่นดินไหวอย่างละเอียด

คลื่นแผ่นดินไหวจากแหล่งกำเนิดเคลื่อนตัวผ่านสภาพธารน้ำต่าง ๆ จนกระทั่งถึงผู้ดินที่ตั้งของอาคาร เส้นทางที่คลื่นเคลื่อนที่ผ่านจะมีผลอย่างมากในการปรับเปลี่ยนคุณลักษณะของคลื่น โดยเป็นที่เข้าใจกันว่าไปร์ชั้นดินหนามักจะขยายขนาดความรุนแรงของคลื่นได้ แผ่นดินไหวที่ Mexico city เมื่อ 19 กันยายน ค.ศ. 1985 เป็นตัวอย่างสำคัญของความเสียหายรุนแรงจากแผ่นดินไหวระยะไกลที่เกิดจากการขยายตัวเนื่องจากชั้นดินอ่อน Seed และคณะ (1987) อธิบายว่า เมืองเม็กซิโกซิตี้ตั้งอยู่บนชั้นดินตะกอนหนาเหนือชั้นหิน ผ่านทางด้านทิศตะวันตกของเมืองตั้งอยู่บนแนวขอบทะเลสาบเก่า ส่วนทางฝั่งตะวันออกตั้งอยู่บริเวณกลางของทะเลสาบเก่า พบว่าความเร็วคลื่นเนื่องบริเวณกลางทะเลสาบเก่ามีค่าเพียงประมาณ 40 ถึง 90 เมตร/วินาที ส่วนบริเวณที่อยู่เหนือชั้นหินแข็งมีความเร็วคลื่นเนื่องอยู่ในช่วง 500 เมตร/วินาที หรือมากกว่า จากการศึกษาพบว่า ระหว่างการเกิดแผ่นดินไหวเกิดปรากฏการณ์การสะท้อนกลับของคลื่นแผ่นดินไหว (Multi Reflection Phenomenon) ซึ่งในชั้นดินอ่อนคลื่นสามารถเคลื่อนที่ผ่านไปด้านบนได้ง่าย ในขณะที่ชั้นดินแข็งจะมีการสะท้อนกลับของคลื่น คล้ายกับว่าเกิดการดักคลื่นแผ่นดินไหวไว้และสามารถทำให้เกิดการสั่นพ้อง (Resonance) ขยายขนาดคลื่นสูงขึ้น และมีระยะเวลาการสั่นนานขึ้น ลักษณะคลื่นแผ่นดินไหวที่ตรวจพบบนชั้นดินอ่อนมีความสั่นยาวประมาณ 2 วินาที และมีขนาดสูงสุดมากกว่าค่าที่ตรวจพบบนชั้นดินแข็งประมาณ 5 เท่า ผลการขยายคลื่นแบบนี้พบอีกในเหตุการณ์แผ่นดินไหวเมื่อ 19 ตุลาคม ค.ศ. 1989 ที่ Loma Prieta, California โดยความเสียหายหลักเกิดบริเวณอ่าว San Francisco ที่เป็นดินตะกอนหนาเช่นกัน

นอกจากปัจจัยด้านการขยายคลื่นเนื่องจากชั้นดินอ่อนที่เกิดจากคุณลักษณะของชั้นดินบริเวณที่ตั้ง ปัจจัยที่สำคัญที่อาจทำให้คลื่นแผ่นดินไหวมีระดับรุนแรงเพิ่มขึ้นได้แก่ ผลกระทบสภาพภูมิประเทศ (Topographic effect) และผลเนื่องจากขอบของแอ่งชั้นดิน (Basin edge effect) Geli และคณะ (1988) ได้รวบรวมผลจากเหตุการณ์แผ่นดินไหวที่มีผลกระทบเนื่องจากสภาพภูมิประเทศ และการคำนวณเบรี่ยบโดยสรุปชัดเจนว่าการสั่นสะเทือนจะถูกขยายตัวได้ที่บริเวณยอดของเนินสูง ซึ่ง capability ในการสั่นสามารถทำนายได้จากการคำนวณแต่ขนาดการขยายคลื่นไม่สามารถคำนวณได้ถูกต้อง Chavez-Garcia และคณะ (1996 และ 1997) ทำการเบรี่ยบโดยผลกระทบจากการวัดและการคำนวณ ซึ่งจากข้อมูลแผ่นดินไหวเมื่อมาวิเคราะห์ด้วยหลักของ H/V spectral ratio ให้ระดับการขยายคลื่นใกล้เคียงกับการคำนวณ และโดยแบ่งข้อสรุปของ Geli และคณะ (1988) เนื่องจากงานของ Geli อาจได้รับผลกระทบจากจุดอ้างอิงที่ไม่ถูกต้อง จึงเสนอว่า วิธี H/V spectral ratio อาจใช้เป็นแนวทางในการประเมินผลจากสภาพภูมิประเทศได้

Kramer (1996) อธิบายผลเนื่องจากขอบของแอ่งชั้นดินไว้ว่า รูปทรงของแอ่งมีผลมากในการสะท้อนและกักคลื่นไว้ภายในชั้นดินในขอบแอ่ง และคลื่นที่เคลื่อนสู่ผิวดินอาจมีความรุนแรง

และระยะเวลาการสั่นสะเทือนนานกว่าวิเคราะห์ที่คิดเพียงผลของชั้นดิน เช่นการวิเคราะห์แบบ 1 มิติ (One dimensional analysis) Bard และ Gariel (1986) แสดงผลการวิเคราะห์เปรียบเทียบระหว่างการวิเคราะห์แบบ 1 มิติ กับการวิเคราะห์แบบ 2 มิติ ที่จำลองรูปร่างของขอบแองโกลด้วย ซึ่งผลของการวิเคราะห์ช่วงกลางแองโกลจากทั้งสองวิธีใกล้เคียงกัน ส่วนบริเวณขอบแองมีความแตกต่างอย่างชัดเจน

ข้อมูลการกระจายตัวของความเสียหายที่แตกต่างกันของบริเวณต่าง ๆ เนื่องจากแผ่นดินไหวในอดีตหลายครั้งแสดงยืนยันว่าระดับความรุนแรงของแผ่นดินไหวขึ้นกับคุณลักษณะของชั้นดินอย่างสำคัญ และนำมาสู่แนวคิดในการแบ่งเขตความเสี่ยงภัยแผ่นดินไหวอย่างละเอียด (Seismic Microzonation) และพัฒนาไปสู่มีอีกการจัดทำแผนที่เสี่ยงภัยแผ่นดินไหวอย่างละเอียด (AFPS 1995, ISSMGE 1999, DRM 2004)

2.2 การศึกษาพฤติกรรมเชิงพลศาสตร์ของชั้นดินโดยการตรวจวัด **Microtremor**

2.2.1 การตรวจวัดแบบ 1 จุด และวิธี H/V spectral ratio

ในการศึกษาพฤติกรรมเชิงพลศาสตร์ของชั้นดิน อาจทำโดยการเจาะสำรวจภาคสนาม (Borehole method) ซึ่งสามารถได้ค่าคุณสมบัติเชิงพลศาสตร์ที่ค่อนข้างแม่นยำสูง อย่างไรก็ตามวิธีนี้มีค่าใช้จ่ายในการปฏิบัติสูงมากและใช้เวลานาน จึงไม่สามารถทำการเจาะสำรวจหลาย ๆ ตำแหน่งได้ การศึกษาอีกวิธีที่สามารถทำได้คือ ใช้การตรวจวัดการสั่นสะเทือนของผิวดินในระดับต่ำที่มีอยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration) ซึ่งเกิดจากการกระตุ้นจากแรงที่เกิดตามธรรมชาติของสิ่งแวดล้อมต่าง ๆ เช่น การเคลื่อนตัวของชั้นดินเอง หรือจากแรงต่างๆ บนผิวดิน เป็นต้น การตรวจวัดนี้ต้องใช้เครื่องมือวัดที่มีความละเอียดในระดับ Micron และสามารถใช้ศึกษาได้ดีเมื่อในบริเวณที่มีการเคลื่อนตัวของชั้นดินด้วยค่าต่ำ ๆ วิธีนี้เรียกว่า Microtremor ซึ่งเสนอโดย Kannai และ Tanaka (อ้างอิงใน Tokimatsu, 1997) โดยมีแนวคิดว่า แรงต่าง ๆ ที่กระทำต่อชั้นดินมีลักษณะแบบสุ่ม และ ชั้นดินมีคุณสมบัติทางพลศาสตร์เฉพาะตัว ดังนั้นเมื่อตรวจวัดผลการสั่นสะเทือนโดยแรงดังกล่าวแล้วนำไปวิเคราะห์ด้วยวิธี Fast Fourier Transform (FFT) เพื่อแปลงสัญญาณวัดให้อยู่ในรูปของการสมกันของความถี่หลาย ๆ ค่า เรียกว่า Fourier Amplitude Spectrum และกราฟความสัมพันธ์ของ Fourier Amplitude กับความถี่ จะพบเป็นยอดแหลมที่ตำแหน่งต่าง ๆ ซึ่งแสดงถึง ความถี่หลักในการสั่นหรือ Predominant Frequency ของชั้นดินนั้นเอง เนื่องจากความสะอาดในการปฏิบัติงานเพื่อใช้ศึกษาคุณสมบัติทางพลศาสตร์ของดิน จึงได้มีการศึกษาวิจัยด้านต่าง ๆ ของวิธี Microtremor อย่างต่อเนื่อง Nakamura (1989) ได้แก่ไขข้อขัดแย้งของวิธีนี้ที่ว่า การตรวจวัดการสั่นสะเทือนในแนวราบนั้นจะแทนคุณลักษณะของดินบริเวณแหล่งกำเนิดแผ่นดินไหวไม่ใช่คุณลักษณะของดินที่บริเวณตรวจวัด เข้าจึงได้เสนอวิธีชื่อ H/V Spectrum Ratio โดยทำการลดผลของคุณลักษณะของดินบริเวณแหล่งกำเนิดด้วยการหารค่า Spectra ของการสั่นสะเทือนในแนวราบด้วย Spectra ของการสั่นสะเทือนในแนวตั้ง และมีสมมติฐาน คือ

1. Microtremor ประกอบด้วยคลื่นหลักคือ Shear Wave
2. การสั่นสะเทือนในแนวตั้ง (Vertical Component) จะไม่มีการขยายในชั้นดินอ่อน โดยจะมีเพียง การสั่นสะเทือนในแนวราบ (Horizontal component) เท่านั้นที่มีการขยาย
3. ไม่มีการขยายคลื่นในทุก ทิศทางในชั้นหิน
4. Rayleigh Wave ถูกสมมุติฐานเป็นคลื่นรบกวน

Nakamura แสดงให้เห็นว่าวิธี H/V Spectrum Ratio เกือบจะเท่ากับ S-Wave Transfer Function ระหว่างพื้นดินและชั้นหินด้านล่าง ซึ่งกล่าวคือ H/V Peak Period คือค่าบ�ธรรมชาติของที่ตั้งและค่าตอบสนองสูงสุดคือ ค่าการขยายคลื่น (Amplification Factor) ซึ่งวิธีนี้ไม่จำเป็นต้องใช้การเจาะสำรวจดิน วิธีนี้จึงสะดวกและประหยัดในการใช้งาน วิธีนี้มีการใช้อย่างกว้างขวางแม้จะขาดทฤษฎีสนับสนุนก็ตาม

หลังจากปี ค.ศ.1989 ที่ Nakamura เสนอวิธี H/V Spectrum Ratio ก็ยังมีข้อโต้แย้งกันอยู่ เกี่ยวกับธรรมชาติของ Microtremor นักวิจัยบางคน ยืนยันว่า Microtremor ประกอบด้วยคลื่นพื้นฐานคือ Rayleigh Wave ซึ่งขัดแย้งกับสมมุติฐานของ Nakamura แต่อย่างไรก็ตามเทคนิคของ Nakamura ได้นำไปใช้และเป็นที่ยอมรับกันอย่างกว้างขวางจนถึงปัจจุบัน ตัวอย่างเช่น

Ohmachi (1991) ได้แปลผลที่ได้จากการตรวจวัด Microtremor ในพื้นที่ของชานฟรานซิสโก รวมทั้งในปี ค.ศ.1992 Lermo (1992) ได้ใช้วิธี H/V Spectrum Ratio ทำการวิเคราะห์บันทึกข้อมูลของ Microtremor ใน 4 เมืองที่ต่าง ๆ ของเม็กซิโกและผลที่ได้ก็สอดคล้องกับ Spectrum Ratio โดยวิธีการวัดความเร็วแผ่นดินไหวที่มีการบันทึกไว้

Lermo และ Chavez-Garcia (1994) แสดงให้เห็นว่า H/V Spectrum Ratio ของ Nakamura เป็นวิธีการท่านายผลของคุณสมบัติของชั้นดินบริเวณที่ตั้ง (Site Effect) แต่อย่างไรก็ตาม สามารถทำนายได้เพียง Fundamental Resonance Peak ของ Transfer Function จากเหตุผลนี้เป็นการสนับสนุนแนวคิดที่ว่าเทคนิคของ Nakamura ว่ามีประสิทธิภาพในการหาผลของคุณสมบัติของชั้นดินบริเวณที่ตั้ง

Konno และ Ohmachi (1998) เสนอว่า Microtremor ประกอบด้วยคลื่นหลัก คือ Surface Wave อย่างไรก็ตามพวกเขาก็ยืนยันว่า H/V Spectrum Ratio ที่เสนอโดย Nakamura ยังเป็นตัวแทนของลักษณะของสถานที่ได้ โดยการเปรียบเทียบสเปกตรัมของ Microtremor กับสเปกตรัมของคลื่นหลัก Rayleigh Wave และวิธีเจาะสำรวจดิน (Downhole Method) ซึ่งผลของทั้ง 3 วิธีสามารถเทียบเคียงกันได้

จากการวิจัยดังกล่าวแสดงให้เห็นว่าวิธี H/V Spectrum Ratio ของ Nakamura มีความสามารถในการหาค่าค่าบ�ธรรมชาติพหลักษณ์ (Predominant period) ของสถานที่ได้รวมทั้งวิธีดังกล่าวยังเป็นที่ยอมรับกันอย่างกว้างขวางในปัจจุบัน

2.2.2 การหาค่าความเร็วคลื่นเฉือนด้วยการตรวจวัด Microtremor แบบหลายจุดพร้อมกัน (Array Microtremor Observation)

การหาค่าความเร็วคลื่นเฉือนด้วยการตรวจวัด Microtremor แบบหลายจุดพร้อมกัน (Array Microtremor Observation) มีเทคนิคที่ได้พัฒนาและใช้อยู่ 2 วิธีหลัก คือ Frequency-wavenumber spectral method (F-K method) และ Spatial autocorrelation method (SPAC) โดยทั้งสองวิธีมีพื้นฐานของสมมติฐานที่ว่า คลื่นผิวดินมีลักษณะคงตัว ทั้งด้านตำแหน่งและเวลา

วิธี F-K มีรูปแบบการวัด (Array) ที่ไม่แน่นอนจึงต้องใช้จุดที่ทำการตรวจวัดอย่างน้อย 7 จุดพร้อมกัน ซึ่งใช้สำหรับการตรวจวัดการเคลื่อนที่ในแนวตั้งที่เกิด Rayleigh Wave โดยผู้ที่เสนอวิธีนี้คือ Capon (1969) ในปี 1969 และ Lacos (1969) ในปี 1969 เช่นกัน Tokimatsu (1997) อธิบายวิธีการวัด Microtremor ที่ใช้อุปกรณ์ตรวจวัดมากกว่าสองตัววัดพร้อม ๆ กัน เพื่อศึกษาคุณสมบัติการกระจายตัว (Dispersion Characteristic) ของคลื่นแผ่นดินไหวตัวหนึ่ง ที่ซึ่ง Rayleigh Wave โดยเป็นคลื่นที่บริเวณผิวดิน จากคุณสมบัติการกระจายตัวนี้ ทำให้สามารถได้การเปลี่ยนแปลงค่าความเร็วในแนวตั้งของ Shear Wave ซึ่งเป็นองค์ประกอบของคลื่นแผ่นดินไหวที่สำคัญที่ทำให้เกิดความเสียหายต่อโครงสร้างบนดิน การตรวจวัดโดยใช้อุปกรณ์วัดมากกว่าหนึ่งสถานีเรียกว่า Array Measurement โดย Ansary et.al (1996) ได้ศึกษาวิธีนี้และพบว่า การขยายตัวของความเร็วคลื่นที่ได้จากการวิเคราะห์ Frequency-Wave Number Spectrum ของการเคลื่อนตัวในแนวตั้งที่ได้จากการ Microtremor นั้นสอดคล้องกับ Phase Velocity ของ Rayleigh Wave

วิธี SPAC ผู้ที่เสนอวิธีนี้คือ Aki (1957) ในปี 1957 โดยวิธีนี้ต้องทำการวัดพร้อมกัน 4 ถึง 7 จุดถึงจะมีได้ค่าที่ถูกต้องโดยมีรูปแบบการวัดเป็นรูปสามเหลี่ยมด้านเท่า ซึ่งต้องใช้เครื่องมือและจำนวนคนมากในการทำการตรวจวัดแต่ละครั้ง วิธี SPAC คือการหาความเร็วเฟส (Phase Velocity) ของคลื่นที่ผิวดินโดยการตรวจวัดการสั่นในแนวตั้งของคลื่นขนาดเล็กที่ผิวดินในสภาพธรรมชาติ (ไม่มีการกระตุ้น) โดยพิจารณาว่าคลื่นผิวดินมีองค์ประกอบหลักคือ荷模พื้นฐานของคลื่น Rayleigh การตรวจวัดต้องเป็นแบบหลายตำแหน่งพร้อมกัน (Array) และนำข้อมูลที่วัดพร้อมกันมาหาความสัมพันธ์ (Coherency) ในด้าน ระยะทางและความถี่ของคลื่น แล้วนิยามสัมประสิทธิ์ Spatial Autocorrelation ในรูปของค่าเฉลี่ยของ Coherency จากคลื่นในทิศทางต่าง ๆ และด้วยคุณสมบัติที่ความเร็วเฟสมีค่าต่างกันตามความถี่ของคลื่น (Dispersion) จะได้ว่า สัมประสิทธิ์ Spatial Autocorrelation เป็นพังค์ชันกับความถี่และความเร็วเฟสของคลื่นด้วยรัศมีของการตรวจวัดที่ Array นั้น ซึ่งทำให้ได้ความสัมพันธ์ที่เรียกว่า Dispersion Curve ของชั้นดินขึ้นมา และค่าความเร็วคลื่นเฉือนสามารถถวิเคราะห์ได้ต่อไปด้วยการคำนวณย้อนกลับ (Inversion Analysis) สำหรับแบบจำลองของชั้นดินที่บริเวณศึกษา

Morikawa (2004) ได้ทำการเสนอวิธี 2sSPAC ซึ่งมีพื้นฐานมาจากวิธี SPAC โดยใช้วิธีการตรวจวัดพร้อมกันครั้งละ 2 จุดพร้อมกันโดยกำหนดจุดคงที่ไว้จุดหนึ่งแล้วทำการเปลี่ยนจุดวัดจนครบทุกตำแหน่งซึ่งจะประยัดทั้งเครื่องมือและจำนวนคนที่ทำการตรวจวัดและการตรวจวัดใช้ความยาวอยู่ระหว่าง 1-10 วินาที ผลการศึกษาของ Morikawa แสดงเป็นกราฟความสัมพันธ์ระหว่าง

Phase Velocity กับ ความถี่ (Dispersion Curve) ของวิธี 2sSPAC เปรียบเทียบกับวิธี SPAC และ วิธี F-K พบร่วมค่าที่สอดคล้องกัน ซึ่งแสดงให้เห็นถึงประสิทธิภาพของวิธี 2sSPAC ที่ใช้วัด Phase Velocity ที่เกิดจาก Rayleigh Wave ต่อมากับ Abdullah M. Alsamani M. (2004) ได้ใช้วิธี SPAC และ 2sSPAC ทำการประมาณค่าความเร็วคลื่นเฉือนที่เมืองซีกุบะ ประเทศไทยซึ่งปัจจุบัน โดย ความเร็วคลื่นเฉือนที่ได้จากการวัด Microtremor มีค่าสอดคล้องกับวิธีเจาะสำรวจดิน (PS Logging) และเมื่อเปรียบเทียบค่าที่ได้จากวิธี SPAC และวิธี 2sSPAC มีค่าสอดคล้องกัน

2.3 การศึกษาความเสี่ยงภัยแผ่นดินไหวในประเทศไทย

2.3.1 การกำหนดแผนที่เสี่ยงภัยแผ่นดินไหวและมาตรฐานการออกแบบต้านทานแผ่นดินไหว

งานวิจัยที่สำคัญด้านแผ่นดินไหวในประเทศไทยในระยะต้นคือจากการศึกษาถึงโครงสร้าง ธรณีวิทยาและข้อมูลที่เกี่ยวกับแผ่นดินไหวโดย Nutalaya และคณะ ในปี ค.ศ. 1985 ได้ศึกษา ลักษณะ Seismio-tectonic ของพื้นที่ของประเทศไทยและประเทศเพื่อนบ้าน โดยได้รวบรวม แผ่นดินไหวในอดีตจากแหล่งกำเนิดต่าง ๆ และแบ่งโซนออกเป็น 12 ส่วน จากนั้น ได้มีงานวิจัยเพื่อ ประเมินความเสี่ยงภัยของประเทศไทย ได้แก่ เป็นหนึ่ง และ สาม (2537) ทำการวิเคราะห์ความเสี่ยง ภัยจากแผ่นดินไหวสำหรับประเทศไทย แสดงเป็นเขตแผ่นดินไหวและค่าสัมประสิทธิ์ความเข้ม แผ่นดินไหวสำหรับประเทศไทย ที่สอดคล้องกับรูปแบบของ Uniform Building Code ปี ค.ศ. 1991 โดยใช้ค่าความเร่งสูงสุด (PGA) ที่มีโอกาสเพียง 10% ที่จะมีค่าที่รุนแรงกว่าภายในเวลา 50 ปี

เพื่อการศึกษาผลกระทบจากแผ่นดินไหวเนื่องจากลักษณะของชั้นดินเฉพาะบริเวณ Tuladhar R. (2003) ทำการจำแนกคุณลักษณะของชั้นดินบริเวณกรุงเทพมหานครและปริมณฑล โดยใช้ค่าความเร็วคลื่นเฉือนในแต่ละชั้นดิน (shear wave velocity profile) ซึ่งประเมินจากการ ประมาณจาก ค่า N-SPT และ Su (Undrained Shear Strength) ที่ได้จากการเจาะสำรวจดิน จาก การศึกษาจำแนกประเภทของดินออกเป็น 10 ประเภท และทำการวิเคราะห์ผลตอบสนองของพื้นดิน ด้วยการวิเคราะห์เชิงเส้นเทียบเท่าแบบ 1 มิติ (One dimensional equivalent linear analysis) เพื่อ ประเมินกำลังขยายคลื่นในแต่ละพื้นที่ ผลการศึกษาพบว่าชั้นดินเหนี่ยวหนาบริเวณใกล้กรุงเทพฯ มี กำลังขยายถึงประมาณ 4-5 เท่าด้วยค่าตอบรับ 1-1.5 วินาที ส่วนบริเวณอื่น ที่มีความหนาชั้น ดินเหนี่ยวลดลงมีกำลังขยายน้อยกว่าและค่ามากขึ้น

อำนาจ และ สุทธิศักดิ์ (2553) ได้ทำการศึกษาถึงปัจจัยที่มีผลกระทบต่อการตอบสนองของ ชั้นดินเนื่องจากคลื่นแผ่นดินไหว โดยพิจารณาปัจจัย ได้แก่ ความหนาของชั้นดินเหนี่ยวอ่อน ระดับ ความลึกของชั้นเสื่อมอ่อนชั้นทิน ที่เหมาะสมกับแบบจำลอง อิทธิพลของชั้นดินเหนี่ยวแข็งระดับลึก และคุณสมบัติทางพลศาสตร์ของชั้นดิน โดยใช้ความเร็วคลื่นเฉือนสำหรับพื้นที่ต่าง ๆ จากสมการ การประมาณ แล้วทำการวิเคราะห์เชิงเส้นเทียบเท่าแบบ 1 มิติ เพื่อประเมินการขยายอัตราเร่งสูงสุด ที่ผิวดิน และ ค่าอิทธิพลหลัก พบว่าการขยายคลื่นมีค่าสูงสุดในบริเวณที่ชั้นดินเหนี่ยวอ่อนหนา 6- 10 เมตร และค่าลดลงหากความหนาชั้นดินเหนี่ยวอ่อนเพิ่มขึ้น

การศึกษาของกรมป้องกันและบรรเทาสาธารณภัย (2552) ที่รายงานความเสี่ยงจากแผ่นดินไหว และอาคารถล่ม โดยพิจารณาข้อมูลแหล่งกำเนิดแผ่นดินไหว สภาพดิน ข้อมูลอาคารโครงสร้าง พื้นฐานและสาธารณูปโภคในเขตเมืองของ กรุงเทพมหานคร เชียงใหม่ และกาญจนบุรี ข้อมูลลักษณะอาคารโดยทั่วไปพบว่า อาคารส่วนใหญ่ (มากกว่าร้อยละ 50) มีลักษณะเสี่ยงต่อแผ่นดินไหว ลักษณะหนึ่ง หรือหลายลักษณะร่วมกัน โดยที่พบมากคือลักษณะชั้นที่อ่อนแอ (Soft story) ความไม่สม่ำเสมอในระนาบ (Plan irregularity) และ เสาสั้น (Short column) งานวิจัยได้จัดทำแผนที่เสี่ยงต่อการเกิดแผ่นดินไหวของทั้งประเทศไทย โดยจำแนกเป็นพื้นที่ย่อยระดับอำเภอ โดยการสร้างแบบจำลองจากข้อมูลของแหล่งกำเนิดแผ่นดินไหว การลดทอนคลื่นแผ่นดินไหว และข้อมูลด้านอัตราการขยายคลื่นของแต่ละบริเวณ (Site amplification) ซึ่งข้อมูลสุดท้ายนี้ได้จากการประเมินความเร็วคลื่นเนื่องจากแผนที่ความสูงของพื้นดินเชิงตัวเลข ซึ่งเป็นวิธีการประมาณและมีข้อจำกัดด้านความละเอียดและความถูกต้อง ข้อมูลจากการวิจัยที่ได้ดำเนินการต่อเนื่องเหล่านี้ได้ใช้ช่วยในการพัฒนาเป็นมาตรฐานสำหรับประเทศไทย โดยในปัจจุบันคือ มาตรฐานการออกแบบอาคาร ด้านท่านการสั่นสะเทือนของแผ่นดินไหว (มยพ. 1302) กรมโยธาธิการและผังเมือง กระทรวงมหาดไทย พ.ศ. 2552 ในมาตรฐานดังกล่าวนี้ มีการกำหนดค่าความรุนแรงของแผ่นดินไหวในรูปแบบสากลสำหรับพื้นที่ระดับอำเภอ

2.3.2 การศึกษาจำลังขยายคลื่นแผ่นดินไหวในประเทศไทย

หลังเกิดแผ่นดินไหวใหญ่ที่ Mexico city นักวิจัยจำนวนมากได้ให้ความสนใจกับโอกาสการเกิดภัยพิบัติในลักษณะดังกล่าวในบริเวณอื่น ๆ ทั่วโลก Thenhaus P.C. (1986) ได้เสนอที่ความเกี่ยวกับความเสี่ยงภัยของกรุงเทพมหานครเนื่องจากแผ่นดินไหวขนาดใหญ่ที่มีศูนย์กลางระยะใกล้ไปหลายร้อยกิโลเมตร และเสนอข้อสังเกตว่า ความเสี่ยงภัยแผ่นดินไหวที่สำคัญที่สุดสำหรับกรุงเทพมหานครมาจากการแผ่นดินไหวระยะไกล สภาพชั้นดินของกรุงเทพมหานครเป็นชั้นดินอ่อนหนา ดังนั้น แผ่นดินไหวที่เกิดขึ้นจะมีลักษณะที่มีความสำคัญในการสั่นไหวค่อนข้างยาวที่จะส่งผลกระทบมากต่ออาคารสูง

Ashford และคณะ (1997) ทำการศึกษาคุณสมบัติของดินกรุงเทพมหานครจากตัวอย่างจาก 9 แหล่งในพื้นที่ เพื่อศึกษาความสามารถในการขยายคลื่นแผ่นดินไหวของชั้นดินนี้ โดยได้ทำการสร้างแบบจำลองสภาพชั้นดินโดยทั่วไปของกรุงเทพมหานคร และแบบจำลองสำหรับความเร็วเฉือน (Shear Wave Velocity) ของชั้นดินนั้น โดยเริ่มจากคำนวณความเร็วเฉือนจากค่าคุณสมบัติของชั้นดิน 9 แหล่ง ด้วยความสัมพันธ์เชิง Empirical ที่เกี่ยวข้องแบบต่าง ๆ และเปรียบเทียบกับผลการทดสอบด้วยวิธี Downhole จากแหล่งสำรวจ 4 แห่ง ซึ่งพบว่ามีความสอดคล้องเป็นอย่างต่อ向往 คำนวณกับการทดสอบ และค่าความเร็วเฉือนที่ได้จากการศึกษามีค่าต่ำกว่าสำหรับชั้นดินอ่อนกรุงเทพ โดยมีค่าประมาณ 60-100 เมตรต่อวินาที ซึ่งเมื่อเปรียบเทียบแล้วมีค่าใกล้เคียงกับค่าของชั้นดินที่กรุงเม็กซิโกซิตี้ ผลการศึกษาด้านการขยายคลื่นแผ่นดินไหวพบว่ามีความสามารถในการขยายขนาดคลื่นได้ประมาณ 3-6 เท่า ผลการศึกษาที่แสดงในรูปของสเปกตรัมของอัตราเร่งของ

พื้นดินแสดงให้เห็นถึงการขยายคลื่นที่มีผลชัดเจนในช่วงการสั่นของชั้นหินตันกำเนิดแผ่นดินไหว และที่สำคัญคือการขยายที่เด่นชัดที่สุดบริเวณค่าความธรรมชาติของดินอ่อนในกรุงเทพมหานครที่มีค่าประมาณ 1 วินาที

งานวิจัยเพื่อสำรวจคุณสมบัติของชั้นดินต่อพฤติกรรมจากแผ่นดินไหวเกิดขึ้นต่อมาในหลายวิธี ได้แก่ Shibuya และ Tamrakar (1999) ทำการทดสอบคุณสมบัติทางวิศวกรรมของดินเหนียวอ่อนกรุงเทพ รวมทั้งคุณสมบัติทางพลศาสตร์ โดยการวัดค่าความเร็วคลื่นเนื้อใน โดยวิธี Seismic Penetration Test (SCPT) ของดินบริเวณกรุงเทพ พบร่วมกับดินเหนียวอ่อนด้านบนมีความเร็วคลื่นเฉือนต่ำกว่า 100 ม./วินาที และความเร็วคลื่นเฉือนจะเพิ่มขึ้นจนถึงชั้นดินเหนียวมีค่าอยู่ระหว่าง 180 ม./วินาที ถึง 210 ม./วินาที สำหรับชั้นทรายแรกวัดค่าความเร็วคลื่นเฉือนอยู่ในช่วง 250 ม./วินาที

เทคนิคการวัดคลื่นตามธรรมชาติขนาดเล็กที่ผิวดิน (Microtremor) ได้เริ่มมีการศึกษาในประเทศไทย โดย Tuladhar R. (2002) ได้สร้าง Seismic Microzonation Map ของกรุงเทพโดยใช้การตรวจวัด Microtremor วัดแบบ 1 จุด ซึ่งทำการวัด 150 ตำแหน่งในกรุงเทพ และใช้วิธี H/V Spectrum Ratio สำหรับการหาค่าอิทธิพลหลัก (Dominant Period) ของการสั่นที่พื้นดินในแต่ละตำแหน่งที่ได้และมีการเปรียบเทียบ Transfer Function จากวิธี H/V Spectrum Ratio และการวิเคราะห์เชิงเส้นเทียบแบบ 1 มิติด้วยโปรแกรม SHAKE 91 ซึ่งผลที่ได้มีความสอดคล้องกัน และ Srisoros W. (2003) ได้ประยุกต์เทคนิคเดียวกันสำหรับการศึกษาในเขตจังหวัดเชียงใหม่ Arai และ Yamazaki (2002) ได้หาค่าความเร็วคลื่นเฉือนโดยวิธี F-K Method และ H/V Spectrum Ratio ของกรุงเทพและปริมณฑลจำนวน 4 จุด ผลที่ได้เมื่อเปรียบเทียบผลทดสอบโดยการเจาะสำรวจดินให้ค่าที่สอดคล้องกัน

ประภาพร จันทะมาศ (2007) ทำการเปรียบเทียบความเร็วคลื่นเฉือนของชั้นดินกรุงเทพที่ได้จากการวิเคราะห์คลื่นผิวดินแบบหลายช่องทางรับสัญญาณ (Multi-channel analysis of surface wave –MASW) กับวิธีวัดจากหลุมเจาะ ของพื้นที่กรุงเทพและปริมณฑล จำนวน 4 แห่งคือสถาบันเทคโนโลยีแห่งเอเชีย จุฬาลงกรณ์มหาวิทยาลัย สถาบันเทคโนโลยีสิรินธรและสนามบิน สุวรรณภูมิ

จิตติ ปาลศรีและอาณัติ เรืองรัศมี (2009) ใช้วิธีวัดโดยตรงแบบดาวน์โฮล (Downhole method) ของดินในกรุงเทพมหานคร, เชียงใหม่และเชียงราย และ ทำการหาค่าความสัมพันธ์ระหว่างความเร็วคลื่นเฉือน ค่า N สำหรับการตอกกระบอกผ่าทดสอบ และกำลังรับแรงเฉือนแบบไม่คายน้ำของดินในกรุงเทพมหานคร, เชียงใหม่และเชียงราย สามารถนำมาหาค่าความสัมพันธ์กับกำลังรับแรงเฉือนแบบอัตตัวไม่คายน้ำ (S_u) และจำนวนครั้งในการตอกกระบอกผ่าให้คงลงไปในดิน 1 ฟุต (N) ของดินในกรุงเทพมหานครและบริเวณภาคเหนือของประเทศไทย

เดชฤทธิ์ และคณะ (2553) ได้ทำการศึกษาการวิเคราะห์คลื่นผิวแบบหลายช่องสัญญาณ (MASW) เพื่อประเมินค่าความเร็วคลื่นเฉือนด้วยวิธีเอกทีฟและแพสซีฟ ซึ่งเสนอให้ใช้ทั้งสองวิธีร่วมกันเพื่อให้สามารถสำรวจในระดับที่ลึกมากขึ้นได้

ข้อมูลทางธรณีเทคนิคของชั้นดินในบริเวณกรุงเทพมหานครและปริมณฑล ได้สรุปไว้โดย วิศวกรรมสถานแห่งประเทศไทย (2549) โดยอธิบายว่า ชั้นดินเหนียวอ่อนบริเวณนี้เป็นดินตะกอน สามเหลี่ยมปากแม่น้ำที่เกิดใน Holocene epoch ที่ได้รับอิทธิพลจากแม่น้ำเจ้าพระยาและแม่น้ำท่าจีนเป็นส่วนใหญ่ มีแม่น้ำแม่กลองและแม่น้ำบางปะกงเสริมอุ่นทางทิศตะวันตกและตะวันออก ตามลำดับ รูปลักษณะของชั้นดินเป็นรูปคล้ายแอ่งกระหงค์ค่อนซึ่งก ห้องของแอ่งค่อนมาทางปากอ่าวไทย ความหนาของชั้นดินส่วนใหญ่ประมาณ 10-18 เมตร ยกเว้นพื้นที่ทางตอนเหนือตั้งแต่จังหวัดปทุมธานีขึ้นไปจนสุดที่บริเวณจังหวัดพระนครศรีอยุธยา ที่ความหนาค่อยๆลดลงจาก 10 เมตร ไปเป็น 0 เมตร ที่ปลายด้านบนสุด สำหรับขอบของแอ่งด้านตะวันออกและตะวันตกมีความชันและ ความหนาลดลงรวดเร็วมากกว่าด้านทิศเหนือ

2.4 การตรวจวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร

การหาคุณสมบัติเชิงพลศาสตร์ของอาคารด้วยวิธีตรวจวัดสภาพการสั่นไหวของอาคารนั้น สามารถทำได้หลายวิธี แต่วิธีที่นิยมปฏิบัติ คือ การตรวจวัดการสั่นไหวโดยตัวของอาคารในระดับ ต่ำที่มีอยู่ตลอดเวลาในธรรมชาติ (Ambient Vibration) ซึ่งเกิดจากแรงกระทำหรือการกระตุ้นจาก สิ่งแวดล้อมที่มีอยู่รอบๆอาคารและภายในอาคาร เช่น แรงลม การสั่นสะเทือนของพื้นดินเนื่องจาก การจราจร กิจกรรมของผู้คนในอาคาร ฯลฯ โดยทั่วไปแล้ว การสั่นไหวในลักษณะนี้จะมีระดับที่ต่ำ จนผู้คนทั่วไปในอาคารไม่สามารถรู้สึกได้แต่สามารถตรวจวัดได้ด้วยอุปกรณ์วัดการสั่นสะเทือนที่มี ความไวสูง

การตรวจหาคุณสมบัติเชิงพลศาสตร์ของอาคารจาก Ambient Vibration ได้เริ่มขึ้นเป็นครั้งแรกในปี ค.ศ. 1964 โดย Crawford และ Ward (1964) ได้นำอุปกรณ์วัดคลื่นแผ่นดินไหว (Seismometer) ซึ่งเป็นอุปกรณ์ที่สามารถวัดความเร็วของการสั่นสะเทือน (Velocity Transducer) ในระดับต่ำได้มาใช้ การบันทึกสัญญาณวัดและวิเคราะห์ผลทำในระบบอนาล็อก ซึ่งค่อนข้างยุ่งยาก ไม่สะดวกในการปฏิบัติ ต่อมาในปี ค.ศ. 1970 Trifunac (1970) ได้ปรับปรุงระบบการบันทึก สัญญาณวัดและวิเคราะห์ผลให้เป็นระบบดิจิตอล และได้นำเทคนิคที่เรียกว่า Fast Fourier Transform (FFT) มาใช้แปลงสัญญาณวัดให้เป็น Fourier Amplitude Spectrum ซึ่งแสดงให้เห็น ส่วนผสมของคลื่นความถี่ต่างๆในสัญญาณวัดได้อย่างชัดเจน เส้นกราฟ Spectrum นี้จะปรากฏมียอดแหลมที่ทุกๆตำแหน่งที่ตรงกับความถี่ธรรมชาติของอาคาร (อาคารแต่ละหลังมีการสั่นไหว helyrpy แบบ โดยแต่ละรูปแบบจะมีความถี่ธรรมชาติ 1 ค่า และอัตราความหน่วง 1 ค่า) ทำให้สามารถตรวจหาค่าความถี่ธรรมชาติได้โดยง่าย ค่าอัตราส่วนความหน่วงหาได้จากการวัดการสั่นสะเทือนของอาคารในหลายตำแหน่งพร้อมกัน (Fourier Spectral Ratio)

วิธีของ Trifunac เป็นที่นิยมใช้กันอย่างแพร่หลาย และเป็นที่ยอมรับกันว่า วิธีนี้สามารถนำไปใช้หาคุณสมบัติเชิงพลศาสตร์ของโครงสร้างต่างๆได้เป็นอย่างดีในกรณีที่ความถี่ธรรมชาติของ

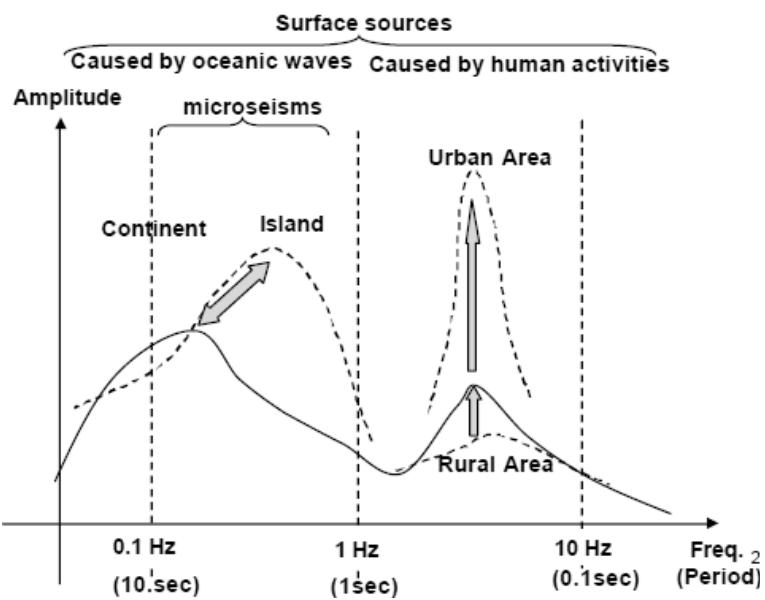
การสั่นไหวรูปแบบต่างๆ มีค่าที่กระจายตัวแยกห่างออกจากกัน ซึ่งอาคารส่วนใหญ่มักจะเป็นเช่นนี้ แต่ในบางกรณีที่อาคารมีค่าความถี่ธรรมชาติบางค่าใกล้เคียงกันมาก วิธีของ Trifunac อาจให้ผลที่คลาดเคลื่อนได้ ดังนั้น จึงได้มีการพัฒนาวิธีใหม่ ชื่อมาอิกหลายวิธีเพื่อแก้ปัญหาในกรณีเช่นนี้ ตัวอย่างเช่น วิธี Random Decrement โดย Cole (1973) วิธี Ibrahim Time Domain โดย Ibrahim และ Pappa (1981) วิธี Natural Excitation Technique/ Eigensystem Realization Algorithm (NExT/ERA) โดย Juang (1994) วิธี Hilbert-Houng Transform (HHT) โดย Houng (1998) เป็นต้น วิธีต่างๆเหล่านี้มีจุดเด่นและข้อจำกัดที่แตกต่างกัน การนำมาประยุกต์ใช้จึงจำเป็นต้องพิจารณาเลือกวิธีที่เหมาะสมกับสภาพปัญหา

การตรวจวัดโดยเทคนิค Ambient Vibration สามารถใช้ได้กับอาคารสูงที่มีผลการตอบสนองชัดเจน แต่สำหรับอาคารเตี้ยจำเป็นต้องมีการกระตุ้นให้มีผลตอบสนองที่ชัดเจนขึ้น งานวิจัยด้านนี้ได้แก่ De Sortis และคณะ (2005) ได้วัดผลการตอบสนองของอาคารที่ก่อสร้างด้วยอิฐเพื่อหาคุณสมบัติทางพลศาสตร์โดยใช้อุปกรณ์ให้แรงกระทำกับโครงสร้าง แรงกระทำกับมีทั้งแบบ sinusoidal และแบบ sweep จากผลการทดสอบพบว่าการให้แรงกระทำแบบ sinusoidal ทำให้ตรวจวัดพฤติกรรมของอาคารได้ดีกว่าแบบ sweep ที่สำคัญยังพบด้วยว่าปรากฏการณ์ไม่เชิงเส้นของอาคารที่ก่อสร้างด้วยอิฐเกิดขึ้นได้แม้ระดับของแรงกระทำไม่สูงมากนัก ส่วนการหาคุณสมบัติทางพลศาสตร์ ได้ใช้ฟังก์ชันตอบสนองเชิงความถี่ (frequency response function) มาวิเคราะห์เพื่อแยกความถี่ธรรมชาติและรูปร่างการสั่นอุปกรณ์ที่ได้ไปปรับปรุงแบบจำลองไฟฟ้าในต่ออิลิเมนต์ เพื่อประโยชน์ในการวิเคราะห์ด้านแผ่นดินไหวต่อไป Sarkar และคณะ (2010) ได้ศึกษาผลของความไม่ต่อเนื่องของอาคารในแนวตั้งหรืออาคารที่มีลักษณะเป็นชั้นๆที่มีต่อความถี่ธรรมชาติ ในงานวิจัยได้นำเสนอดัชนีความปกติ (regularity index) ซึ่งเป็นตัวบ่งชี้ความไม่ปกติของอาคารว่ามีมากน้อยขนาดใด ดัชนีดังกล่าวคำนวณได้จากการเปลี่ยนแปลงคุณสมบัติของมวลและสติฟเนสตลอดความสูงของอาคาร นอกจากนี้ยังได้เสนอสูตรประมาณค่าธรรมชาติของอาคารที่เป็นชั้นๆ โดยดัดแปลงจากสูตรของอาคารแบบปกติที่ขึ้นอยู่กับความสูงเพียงอย่างเดียว

สำหรับในประเทศไทย การตรวจวัดคุณสมบัติเชิงพลศาสตร์ของโครงสร้างโดยวิธี Ambient Vibration เริ่มจาก สมจิต (2000) ได้เริ่มนำวิธีของ Trifunac มาตรวจหาคุณสมบัติเชิงพลศาสตร์ของโครงสร้างต่างๆในประเทศไทย และได้มีการพัฒนาเทคนิคการศึกษาและดำเนินการต่อเนื่องกับอาคารจำนวนมากในประเทศไทย (ธีรพล, 2001; ชาคร, 2002; ประยุทธ์, 2545; มนัส, 2546; ครองสิน, 2550) จนสามารถได้ฐานข้อมูลด้านคุณสมบัติเชิงพลศาสตร์ของอาคารจำนวนมาก และมีการศึกษาด้านเทคนิคในการหาค่าคุณสมบัติเชิงพลศาสตร์จากผลการตรวจวัดที่ให้ผลที่ถูกต้องและเหมาะสมในการใช้งานมากขึ้น (วีระศักดิ์, 2546 และ เยาวพรรณ, 2552)

2.5 โครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทย

การดำเนินการวิจัยก่อนหน้าในโครงการหลัก โครงการลดภัยพิบัติจากแผ่นดินไหวในประเทศไทย โดยการสนับสนุนของสำนักงานกองทุนสนับสนุนการวิจัย ประกอบด้วย โครงการวิจัยระยะที่ 1 เรื่อง


การตรวจวัดและศึกษาคุณสมบัติเชิงพลศาสตร์ของอาคารสูงในกรุงเทพมหานคร (นคร และ เป็น หนึ่ง 2547) และ โครงการวิจัยระยะที่ 2 เรื่อง คุณสมบัติเชิงพลศาสตร์ของอาคารและคุณลักษณะ บริเวณที่ตั้งของชั้นดินเพื่อการแบ่งเขตความรุนแรงของแผ่นดินให้อย่างละเอียดในจังหวัดเชียงใหม่ (นคร และ คณ 2553) สำหรับโครงการในระยะที่ 1 เป็นการตรวจวัดและสร้างแบบจำลองการ วิเคราะห์ค่าคุณสมบัติเชิงพลศาสตร์ของโครงสร้างอาคารในกรุงเทพมหานครที่ตั้งอยู่บนชั้นดินอ่อน งานวิจัยนั้นได้พัฒนาสูตรประมาณค่าความชรร์มชาติจากข้อมูลการตรวจวัดด้วยวิธีการวิเคราะห์การ ถดถอย ผลการศึกษาพบว่าค่าความชรร์มชาติของรูปแบบการสั้นให้ที่ 1 ของอาคารสูงปานกลาง ประมาณ 10-20 ชั้น และค่าความชรร์มชาติของรูปแบบการสั้นให้ที่ 2 ของอาคารสูงประมาณ 30 ชั้นขึ้นไป มีค่าใกล้กับค่าความชรร์มชาติของชั้นดินในกรุงเทพมหานครขยายขนาดคลื่นได้รุนแรง หรือประมาณ 1 วินาที ซึ่งสามารถทำให้ก่อภัยอาคารเหล่านี้เกิดการโยกตัวอย่างรุนแรงด้วยการสั้นพ้องจาก แผ่นดินให้ที่มีการขยายตัวของคลื่นได้ และเป็นการอธิบายผลกระทบของแผ่นดินให้ระยะไกลที่มี ผลเด่นชัดต่ออาคารเหล่านี้ได้ จากนั้นงานวิจัยในระยะที่ 2 ได้ดำเนินการต่อเนื่องใน 2 เรื่องหลัก คือ การตรวจวัดอาคารเพิ่มเติมและพัฒนาสูตรการประมาณค่าความชรร์มชาติเพื่อการออกแบบอาคาร ต้านทานแผ่นดินให้สำหรับประเทศไทย และเริ่มทำการศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้ง เพื่อประเมินระดับความรุนแรงของแผ่นดินให้ ผลของการตรวจวัดอาคารได้ข้อมูลเพื่อพัฒนาเป็น สมการประมาณค่าความชรร์มชาติสำหรับการออกแบบอาคารที่มีรูปทรงสมมาตร และนำไปใช้ใน การคำนวณค่าความชรร์มชาติสำหรับอาคาร ใน มาตรฐานการออกแบบอาคารต้านทานการ สั้นสะเทือนของแผ่นดินให้ (กรมโยธาธิการและผังเมือง 2552) ส่วนการวิจัยด้านคุณลักษณะเฉพาะ ของชั้นดินบริเวณที่ตั้ง ได้พัฒนาเทคนิคที่สามารถสำรวจภาคสนามได้อย่างรวดเร็ว ค่าใช้จ่ายต่ำ ให้ผลที่ใช้จำแนกประเภทของดินเพื่อการออกแบบอาคารต้านทานแผ่นดินให้บริเวณนั้นได้อย่าง เห็นภาพสมสำหรับพื้นที่ศึกษา และมีประโยชน์เพื่อการศึกษาสำหรับพื้นที่อื่น ๆ

บทที่ 3

ทฤษฎีและระเบียบวิธีวิจัย

3.1 การตรวจวัดคลื่นขนาดเล็กบนผิวดิน (Microtremor Observations)

พื้นผิวดินของโลกมีการสั่นสะเทือนอยู่ตลอดเวลาเนื่องจากกลไกการขยายตัวภายในของโลก ด้วยความถี่ที่มีลักษณะเฉพาะตัว แม้ว่าจะไม่เกิดแผ่นดินไหวก็ตาม การสั่นสะเทือนที่คงตัวของพื้นผิวโลกนี้เป็นต้นกำเนิดของคลื่นขนาดเล็กบนผิวดิน (Microtremors) ซึ่งเป็นประโยชน์อย่างมากสำหรับงานทางด้านวิศวกรรมแผ่นดินไหว โดยปกติแล้วขนาดของ Microtremors อยู่ในระดับที่ต่ำมาก โดยมีการจัดอยู่ที่ระดับ 10^{-4} ถึง 10^{-6} มิลลิเมตร ซึ่งมนุษย์ไม่สามารถรับรู้ได้ Microtremors เกิดจากแหล่งกำเนิด 2 ส่วนหลัก คือ จากกิจกรรมของมนุษย์ เช่น การสั่นสะเทือนของเครื่องจักรในโรงงานอุตสาหกรรม การจราจรบนท้องถนน และการกระทำรูปแบบต่าง ๆ ของมนุษย์ เป็นต้น และจากปรากฏการณ์ทางธรรมชาติ เช่น การไฟลุกของแม่น้ำ ฝนตก กระแสน้ำ ความแปรปรวนของชั้นบรรยากาศ และคลื่นมหาสมุทร เป็นต้น Microtremors ที่เกิดจากกิจกรรมของมนุษย์ประกอบไปด้วยคลื่นที่มีความสั้นกว่า 1 วินาทีหรือความถี่สูงกว่า 1 เฮิรต เป็นหลัก ในขณะที่ Microtremors ที่เกิดจากปรากฏการณ์ทางธรรมชาติประกอบไปด้วยคลื่นที่มีค่าความยาวกว่า 1 วินาทีหรือความถี่ต่ำกว่า 1 เฮิรตเป็นหลัก ดังรูปที่ 3.1 Microtremors มีคุณสมบัติคงตัวทั้งเชิงระยะและเวลาตามสมมุติฐานพื้นฐานตามธรรมชาติ (Okada, 2003)

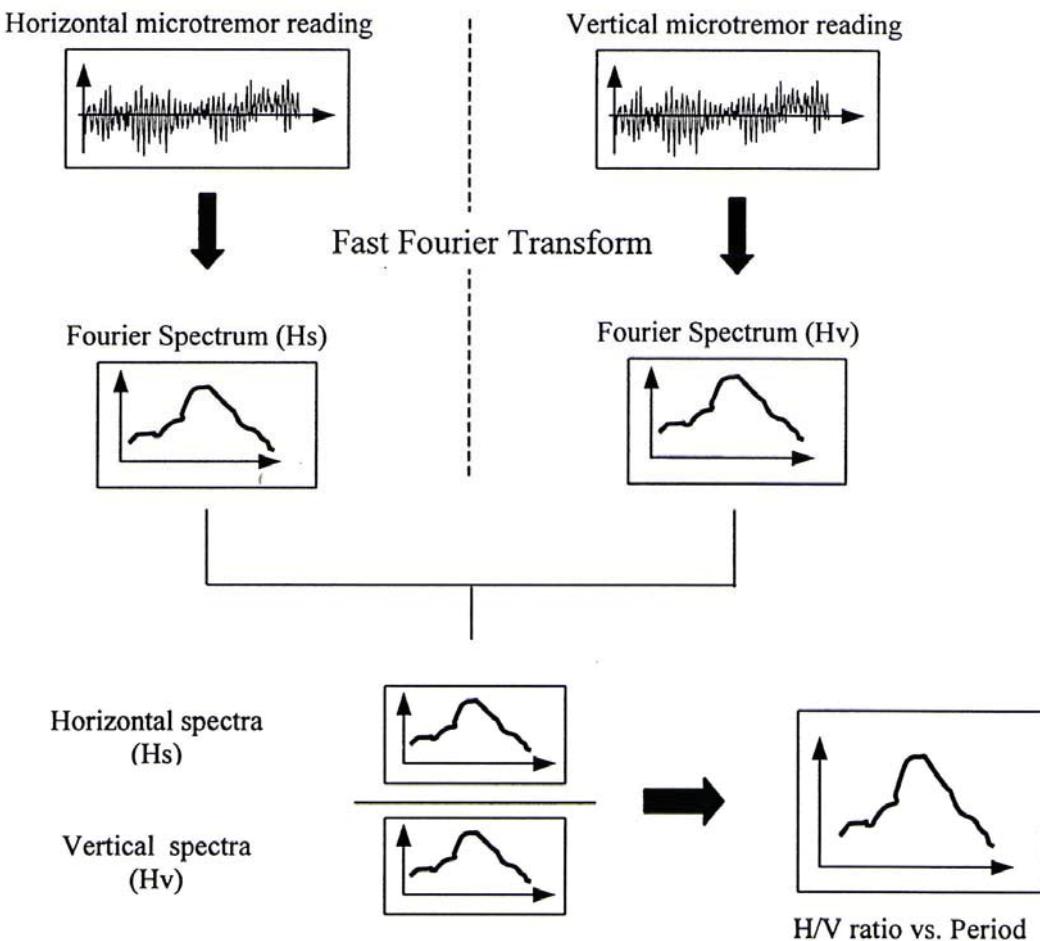
รูปที่ 3.1 องค์ประกอบของ Microtremors ในแต่ละช่วงความถี่ (Yokoi T., 2008)

การศึกษาทางธรณีแผ่นดินไหวของพื้นผิวโลกมีด้วยกันหลายวิธี เช่น วิธีทางธรณีฟิสิกส์ วิธีทางแม่เหล็กไฟฟ้า เป็นต้น แต่วิธีการเหล่านั้นมีข้อจำกัดในเรื่องค่าใช้จ่ายค่อนข้างสูง และกระบวนการ

ทางเทคนิคค่อนข้างยุ่งยาก ทางเลือกที่มีประสิทธิภาพวิธีหนึ่งคือการตรวจวัดคลื่นขนาดเล็กบนผิวดิน ข้อดีของเทคนิคนี้คือ ประหยัดค่าใช้จ่าย ไม่รบกวนพื้นผิวโดยเฉพาะหากทำการสำรวจในเขตชุมชนเมือง ให้ประสิทธิภาพสูงเมื่อสำรวจในเขตพื้นที่แผ่นดินไหวขนาดเล็กถึงกลาง การศึกษานี้ดำเนินการสำรวจคลื่นขนาดเล็กบนผิวด้วยการตรวจวัดแบบ 1 จุด ด้วยเทคนิค Horizontal-to-Vertical spectral ratio (H/V) เพื่อประเมินหาค่าความสั่นหลัก และตรวจวัดด้วยรูปแบบ Array ด้วยเทคนิค Spatial Autocorrelation Method (SPAC) เพื่อประเมินหาค่าความเร็วตามความถี่ (Dispersion curve) และประเมินหาค่าความเร็วคลื่นเมื่อนำจากการคำนวณย้อนกลับ (Inversion analysis) ซึ่งมีทฤษฎีที่เกี่ยวข้องดังนี้

3.1.1 ทฤษฎีสำหรับวิธี H/V Spectrum Ratio

วิธี H/V Spectrum ratio เสนอโดย Nakamura (1989) เป็นการตรวจวัดองค์ประกอบในแนวราบ และแนวตั้งของคลื่นขนาดเล็กบนผิวดิน โดยการตรวจวัดเพียงสถานีเดียว แล้วคำนวณอัตราส่วนระหว่างสเปกตรัมของคลื่นในแนวราบต่อสเปกตรัมของคลื่นในแนวตั้ง ด้วยสมมุติฐานเพื่อลดทอนอิทธิพลของแหล่งกำเนิดที่ส่งผลต่อองค์ประกอบคลื่นในแนวราบและแนวตั้ง กล่าวคือเมื่อพิจารณาเฉพาะสเปกตรัมของคลื่นในแนวราบหรือแนวตั้งเพียงอย่างเดียว พบว่ามีค่าไม่คงที่ คือมีการเปลี่ยนแปลงตามการกระตุ้นของแหล่งกำเนิด ดังนั้นผลจากการวิเคราะห์ดังกล่าวไม่สามารถเป็นตัวแทนของสภาพดินในบริเวณนั้นๆ ได้ อย่างไรก็ตามเมื่อพิจารณาอัตราส่วนระหว่างสเปกตรัมของคลื่นในแนวราบต่อสเปกตรัมของคลื่นในแนวตั้ง พบว่ามีค่าคงที่เนื่องจากสามารถลดทอนอิทธิพลจากแหล่งกำเนิดรวมถึงเส้นทางการเคลื่อนที่ของคลื่นได้ ข้อดีของเทคนิคนี้คือองค์ประกอบคลื่นในแนวราบและแนวตั้งสามารถเก็บข้อมูลได้พร้อมกัน โดยการเก็บข้อมูลเพียงสถานีเดียวเท่านั้น ทำให้ประหยัดเวลาและผลที่ได้มีความน่าเชื่อถือ กราฟ H/V Spectrum สร้างจากอัตราส่วนระหว่างฟูเรียร์สเปกตรัมขององค์ประกอบคลื่นแนวราบและแนวตั้ง ดังแสดงในสมการ (3.1)


$$\text{H/V spectrum} = \frac{\sqrt{F_{NS} \times F_{EW}}}{F_{UD}} \quad (3.1)$$

F_{NS} = Fourier Amplitude Spectrum ในทิศเหนือ-ใต้ ของแนวราบ

F_{EW} = Fourier Amplitude Spectrum ในทิศตะวันออก-ตะวันตก ของแนวราบ

F_{UD} = Fourier Amplitude Spectrum ในแนวตั้ง

ผลที่ได้จากการหารฟูเรียร์สเปกตรัมแนวราบด้วยฟูเรียร์สเปกตรัมแนวตั้ง ส่งผลให้คำตอบมีค่าเสถียรสูง ซึ่งเป็นตัวแทนของคุณลักษณะของชั้นดินบริเวณนั้นๆ ได้เป็นอย่างดี และเป็นที่ยอมรับกันว่าค่าควบคุมที่ตำแหน่งยอดของ H/V spectrum ratio แสดงถึงค่าควบคุมอิทธิพลหลัก (Predominant period) ของดินบริเวณนั้นๆ ขั้นตอนในการวิเคราะห์โดยวิธี H/V Spectrum Ratio แสดงในรูปที่ 3.2

รูปที่ 3.2 ขั้นตอนการวิเคราะห์ผลโดยวิธี H/V Spectrum Ratio (Tuladhar, 2002)

สมมุติฐานของวิธี H/V Spectrum Ratio ที่เสนอโดย Nakamura ประกอบไปด้วย

1. Microtremors ที่ค่าสั้น ประกอบด้วยคลื่นเนื้อ (Shear wave) เป็นหลัก
2. ค่าสูงสุดของอัตราส่วนระหว่างค่าประกอบคลื่นในแนวราบและแนวตั้ง (A_H/ A_V) ขึ้นอยู่กับประเภทของดิน และมีค่าเท่ากับ 1 สำหรับชั้นหิน กล่าวคือ ค่าการสั่นสะเทือนมีค่าเท่ากับในทุกทิศทาง
3. องค์ประกอบในแนวราบของคลื่นเนื้อ (Shear wave) ถูกขยายโดยชั้นดินอ่อนเนื่องจากปรากฏการณ์การสะท้อนกลับของคลื่น (Multiple-Reflection Phenomena) ในขณะที่องค์ประกอบคลื่นในแนวตั้งจะไม่ถูกขยาย เช่น P-Wave
4. คลื่นเรย์เลห์ (Rayleigh wave) พิจารณาเป็นสัญญาณรบกวน

Transfer Function (S_T) ที่ชั้นผิวดินนิยามโดยอัตราส่วนระหว่าง Horizontal Tremor Spectrum ของพื้นดินชั้นบน (S_{HS}) และ Horizontal Tremor Spectrum ของชั้นหินด้านล่าง (S_{HB})

$$S_T = \frac{S_{HS}}{S_{HB}} \quad (3.2)$$

จากสมการข้างต้น สมมุติให้สเปกตรัมขององค์ประกอบคลื่นแนวราบ (Horizontal Tremor Spectrum) ของพื้นดินชั้นบนได้รับผลกระทบจากคลื่นเรย์เลห์ (Rayleigh wave) ซึ่งพิจารณาให้เป็นคลื่นรบกวน ดังนั้นจากสมมุติฐานข้างต้นคลื่นเรย์เลห์จะมีผลกระทบกับสเปกตรัมขององค์ประกอบคลื่นแนวตั้ง (Vertical Tremor Spectrum) ที่ผิดนิ่งเท่านั้น แต่ไม่มีผลกระทบกับตัวแห่งชั้นหินด้านล่าง ประกอบกับสมมุติฐานที่ว่าไม่มีการขยายองค์ประกอบคลื่นแนวตั้งในชั้นดินอ่อน ดังนั้น เมื่อพิจารณาผลกระทบจากคลื่นเรย์เลห์สามารถประเมินได้จากอัตราส่วนระหว่างองค์ประกอบคลื่นในแนวตั้งที่พื้นผิวดิน (S_{VS}) และองค์ประกอบคลื่นในแนวตั้งที่พื้นชั้นหินด้านล่าง (S_{VB}) ดังแสดงในสมการ (3.3)

$$E_s = \frac{S_{VS}}{S_{VB}} \quad (3.3)$$

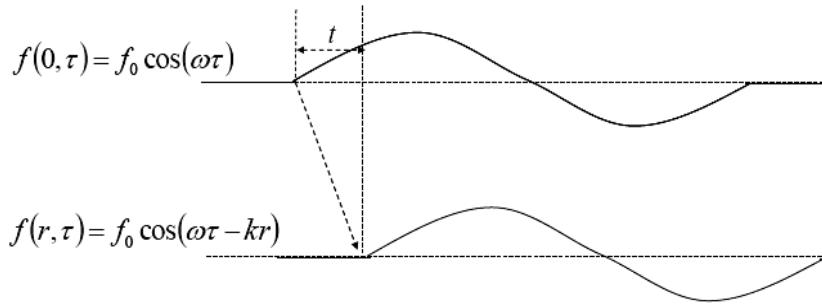
ดังนั้น เมื่อพิจารณาร่วมผลกระทบของคลื่นเรย์เลห์ (Rayleigh wave) สามารถเขียน Transfer Function (S_{TT}) ใหม่ได้ดังนี้

$$\begin{aligned} S_{TT} &= \frac{S_T}{E_s} \\ &= \frac{\left(\frac{S_{HS}}{S_{HB}} \right)}{\left(\frac{S_{VS}}{S_{VB}} \right)} \\ &= \left(\frac{S_{HS}}{S_{VS}} \right) \times \left(\frac{S_{VB}}{S_{HB}} \right) \\ &= \left(\frac{R_s}{R_b} \right) \\ R_s &= \left(\frac{S_{HS}}{S_{VS}} \right) \quad : \quad R_b = \left(\frac{S_{HB}}{S_{VB}} \right) \end{aligned} \quad (3.4)$$

จากสมมุติฐานที่ว่าการแบ่งกระจายคลื่นในชั้นดินแข็งหรือชั้นหินมีค่าสมำเสมอเท่ากันในทุกทิศทาง ดังนั้นอัตราส่วนระหว่าง Horizontal Spectrum และ Vertical Spectrum สำหรับชั้นหินมีค่าเท่ากับ 1 ดังนั้นสรุปได้ว่า Transfer Function ของคลื่นเฉือน (Shear Wave) ที่ไม่คิดผลกระทบของคลื่นเรย์เลห์จะเท่ากับอัตราส่วนระหว่าง Horizontal Spectrum และ Vertical Spectrum ของพื้นดินชั้น

บน ดังแสดงในสมการที่ (3.5)

$$\begin{array}{ll}
 \text{เมื่อ} & R_B = 1 \\
 \text{ดังนั้น} & R_S = S_{TT} = \left(\frac{S_{HS}}{S_{VS}} \right) \quad (3.5)
 \end{array}$$


จึงสรุปได้ว่าอัตรากำลังขยายคลื่น (Amplification factor) ขององค์ประกอบคลื่นในแนวราบสามารถประเมินได้จากค่าสูงสุดของอัตราส่วนระหว่าง Horizontal spectrum และ Vertical spectrum ที่ได้จากการตรวจวัดที่พื้นผิวดินเท่านั้น และค่าความ ณ ตำแหน่งที่อัตราส่วนสเปกตรัมมีค่าสูงที่สุด เปรียบเสมือนค่าความธรรมชาติของสถานที่นั้นๆ อย่างไรก็ได้ยังมีข้อขัดแย้งในสมมุติฐานสำหรับทฤษฎีนี้ โดยสมมุติฐานของ Nakamura (1989) ได้สมมุติให้องค์ประกอบคลื่นหลัก คือ body wave ซึ่งแบ่งกับพื้นฐานของคลื่นขนาดเล็กที่ผิวดิน อันมีองค์ประกอบหลักเป็นคลื่นพื้นผิว (surface wave) อย่างไรก็ได้ เนื่องจากความแตกต่างในการเก็บข้อมูลและวิเคราะห์ผล จึงมีการประยุกต์ใช้อย่างกันแพร่หลาย และในงานวิจัยนี้ได้ใช้ผลเป็นข้อมูลในการพิจารณาร่วมกับผลหลักคือความเร็วคลื่นเฉือนในหัวข้อต่อไป

3.1.2 ทฤษฎีของวิธี Spatial Auto-Correlation Coefficient (SPAC)

วิธี SPAC ถูกเสนอโดย Aki, K. (1957) เพื่อเป็นวิธีที่ใช้สำหรับการหาค่าความเร็วเฟส (Phase Velocity) ของคลื่นพื้นผิวที่มีค่าแตกต่างกันสำหรับความถี่คลื่นต่างๆ เนื่องจากคุณสมบัติกระจายตัวของคลื่น (Dispersive) ของดินที่มีคุณสมบัติแตกต่างกันในแต่ละชั้นที่เรียงกันอยู่ บนพื้นฐานความสัมพันธ์ระหว่างสเปกตรัมเชิงระยะทางและเวลา โดยการตรวจดองค์ประกอบของคลื่นในแนวตั้งหลายจุดพร้อมกันในรูปแบบของโครงข่าย (Array) และคลื่นพื้นผิวที่บันทึกได้จะมีองค์ประกอบหลักคือโหมดพื้นฐานของคลื่นเรย์เลห์ (Rayleigh Wave) พื้นฐานของการวิเคราะห์หาค่าสัมประสิทธิ์ SPAC เริ่มจากนิยามของ Cross-Correlation (C_{xy}) สำหรับสัญญาณที่ตำแหน่ง x และ y ซึ่งแสดงดังนี้

$$C_{xy}(t) \equiv \int x(\tau) y(t + \tau) d\tau \quad (3.6)$$

โดยที่ Cross-Correlation คือการนำข้อมูลคู่หนึ่งๆ มาคูณและทำการรวมข้อมูลทั้งหมดเข้าด้วยกันเพื่อหาค่าเฉลี่ย จากนั้นการคำนวณความเร็วเฟสด้วยวิธี Cross-Correlation แสดงด้วยฟังก์ชันโคไซน์ (Cosine) กับความถี่เชิงมุม (ω) จำนวน 1 รอบ ดังรูปที่ 3.3

รูปที่ 3.3 ตัวอย่างคลื่น Cosine จำนวน 1 รอบ (Yokoi T., 2008)

จากรูปที่ 3.3 หากมีการเหลื่อมของเวลา (Time Lag) เท่ากับ t และระยะทางเท่ากับ r สามารถคำนวณความเร็วเฟสได้ดังสมการที่ 3.7

$$c = \frac{r}{t} \quad (3.7a)$$

$$\text{หรือ} \quad c = \frac{\omega}{k} \quad (3.7b)$$

ความสัมพันธ์ของคลื่น 2 ตำแหน่ง ในรูปของ Cross-correlation แสดงดังสมการที่ 3.8

$$\begin{aligned} Cc(0, r, t) &= f_0^2 \int \cos(\omega\tau) \cos(\omega\tau + \omega t - kr) d\tau \\ &= f_0^2 \left[\int \cos^2(\omega\tau) d\tau \cos(\omega t - kr) - \int \cos(\omega\tau) \sin(\omega\tau) d\tau \sin(\omega t - kr) \right] \\ &\propto f_0^2 \cos(\omega t - kr) \end{aligned} \quad (3.8)$$

จากสมการที่ 3.8 พบร่วมกับ ค่าของ Cross-correlation มีค่ามากหรือน้อยขึ้นอยู่กับการเหลื่อมของเวลา (Time Lag, t) สำหรับข้อมูลที่แปลงให้อยู่ในรูปของความถี่ (Frequency Domain) การคำนวณหาค่า Cross-Correlation สามารถคำนวณได้ดังสมการที่ 3.9

$$Cc(0, r, \omega) = F(0, \omega) \cdot \overline{F(r, \omega)} = |F(0, \omega)| \cdot |F(r, \omega)| \cdot \exp(i\Delta\phi(\omega)) \quad (3.9)$$

ความต่างเฟสเนื่องจากการกระจายตัวของคลื่น คือ $\Delta\phi = \omega r/c$ เนื่องมาจากสมการที่ 3.10

$$\exp\left\{i\omega\left(t + \frac{r}{c}\right)\right\} = \exp\left\{i\left(\omega t + \frac{\omega r}{c}\right)\right\} \quad (3.10)$$

ดังนั้นสมการที่ 3.9 สามารถเปลี่ยนให้อยู่ในรูปใหม่ดังสมการที่ 3.11

$$Cc(0, r, \omega) = |F(0, \omega)| \cdot |F(r, \omega)| \cdot \exp\left(i \frac{\omega r}{c}\right) \quad (3.11)$$

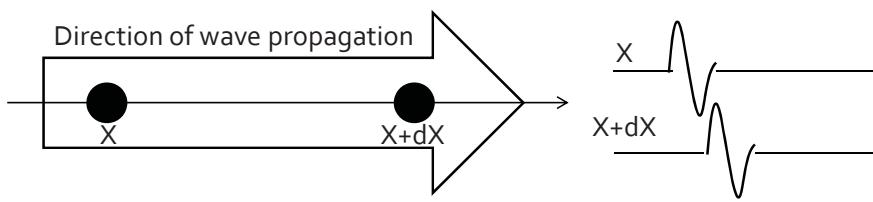
ความสอดคล้อง (Coherence) ของคลื่น สามารถคำนวณได้จากสมการที่ 3.12

$$Coh(0, r, \omega) = \operatorname{Re}\left[\frac{Cc(0, r, \omega)}{|F(0, \omega)| \cdot |F(r, \omega)|}\right] = \operatorname{Re}\left[\exp\left(i \frac{\omega r}{c}\right)\right] = \cos\left(\frac{\omega r}{c}\right) \quad (3.12)$$

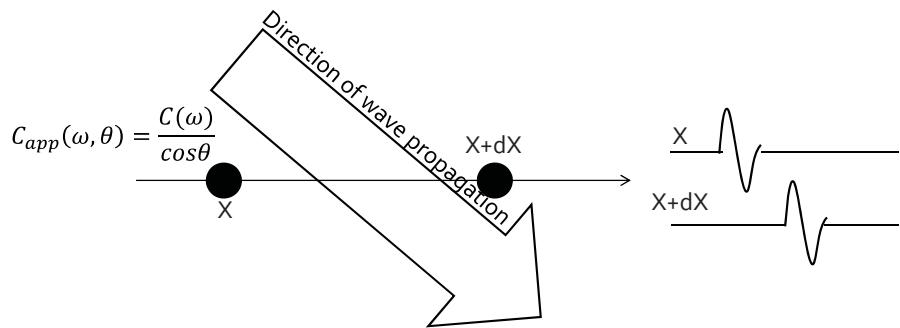
โดยที่ c คือ ความเร็วเฟสที่วัดตามแนวเส้นที่ทำการตรวจวัด สำหรับ Auto-Correlation มีวิธีการคำนวณที่คล้ายกับ Cross-Correlation แต่ Auto-Correlation ใช้ข้อมูลที่จุดเดียวกันในการวิเคราะห์ ดังสมการที่ 3.13

$$Ac(0, \omega) = Cc(0, 0, \omega) = |F(0, \omega)|^2, Ac(r, \omega) = Cc(r, r, \omega) = |F(r, \omega)|^2 \quad (3.13)$$

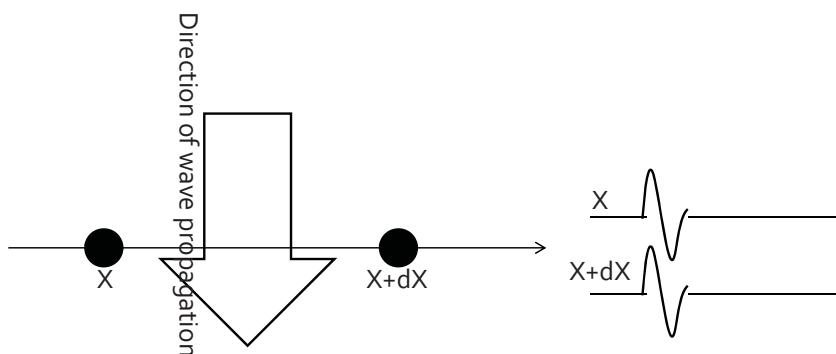
จากนิยามที่กล่าวมาแล้วข้างต้น สามารถวิเคราะห์ข้อมูลได้ 2 แนวทาง คือ ในพิสัยเวลา (Time Domain) และพิสัยความถี่ (Frequency Domain) ดังสมการที่ 3.14 และ 3.15 ตามลำดับ


$$Cc(\Delta x, t) = f(x, t) * \overline{f(x + \Delta x, t)} \quad (3.14)$$

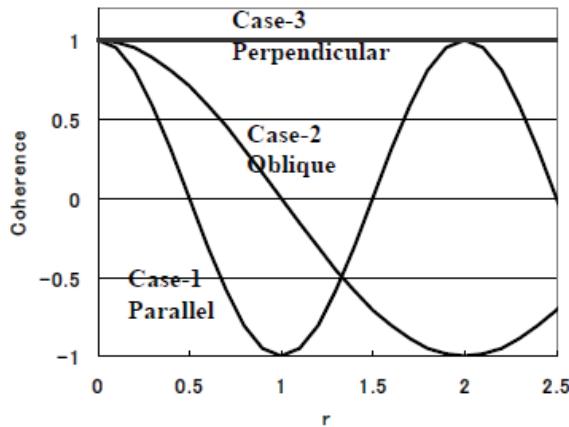
$$Cc(\Delta x, \omega) = f(x, \omega) \cdot \overline{f(x + \Delta x, \omega)} = |F(x, \omega)| |F(x + \Delta x, \omega)| \exp\left(i \frac{\omega \Delta x}{c(\omega)}\right) \quad (3.15)$$


ดังนั้นการวิเคราะห์หาค่าสัมประสิทธิ์ SPAC สำหรับการเคลื่อนที่ของคลื่นจากตำแหน่ง x ไปยังตำแหน่ง $x + dX$ ซึ่งมีระยะห่างเท่ากับ Δx สามารถแสดงได้ดังสมการที่ 3.16

$$\rho(\Delta x, \omega) \equiv \operatorname{Re}\left[\frac{Cc(\Delta x, \omega)}{Cc(0, \omega)}\right] = \frac{|F(x + \Delta x, \omega)|}{|F(x, \omega)|} \operatorname{Re}\left[\exp\left(i \frac{\omega \Delta x}{c(\omega)}\right)\right] \approx \cos\left(\frac{\omega \Delta x}{c(\omega)}\right) \quad (3.16)$$


รูปแบบการแพร่ของคลื่นแบบทิศทางเดียวกัน 3 รูปแบบ ได้แก่ รูปแบบที่ 1 คลื่นเคลื่อนที่ขานกับแนวเส้นทางการตรวจวัดจากตำแหน่ง X ไปยังตำแหน่ง $X + dX$ แสดงดังรูปที่ 3.4 รูปแบบที่ 2 คลื่นเคลื่อนที่เป็นมุม θ กับเส้นทางการตรวจวัดจากตำแหน่ง X ไปยังตำแหน่ง $X + dX$ ความเร็วเฟสที่คำนวณได้จากการเคลื่อนที่ลักษณะนี้เรียกว่าเป็นความเร็วเฟสปรากฏ (Apparent Phase Velocity) ซึ่งมีค่าสูงกว่าความเร็วเฟสที่แท้จริง ตั้งรูปที่ 3.5 และรูปแบบที่ 3 คลื่นเคลื่อนที่ตั้งฉากกับเส้นทางการตรวจวัด ซึ่งความสอดคล้องกันของคลื่นที่เคลื่อนที่ลักษณะนี้จะมีค่าเหมือนกันทุกประการ ทั้งตำแหน่ง X และ $X + dX$ นั้นคือความเร็วเฟสปรากฏเป็นอนันต์ดังรูปที่ 3.6

รูปที่ 3.4 การเคลื่อนที่ของคลื่นแนวขวางกับเส้นทางตรวจวัด (Yokoi T., 2008)



รูปที่ 3.5 การเคลื่อนที่ของคลื่นที่มีมุม θ กับเส้นทางตรวจวัด (Yokoi T., 2008)

รูปที่ 3.6 การเคลื่อนที่ของคลื่นตั้งฉากกับเส้นทางตรวจวัด (Yokoi T., 2008)

จากรูปแบบการเคลื่อนที่ของคลื่นทั้ง 3 รูปแบบ เมื่อพิจารณาถึงความสอดคล้อง (Coherence) ของคลื่นสามารถแสดงได้ดังรูปที่ 3.7 โดยรูปแบบที่ 1 เป็นไปตามลักษณะที่ถูกต้องของการแพร่ของคลื่นในทิศทางเดียว แต่รูปแบบอื่น ๆ จำเป็นต้องมีการปรับแก้ด้วยการหารด้วยค่า $\cos \theta$

รูปที่ 3.7 ความสอดคล้องของคลื่นทั้ง 3 รูปแบบ (Yokoi T., 2008)

สำหรับข้อมูลที่นำมาใช้ในการคำนวณค่า Cross-Correlation ของการเคลื่อนที่ของคลื่นที่มีมากกว่า 1 ทิศทาง แบ่งออกเป็น 2 รูปแบบ ได้แก่ รูปแบบของเวลา และ รูปแบบของความถี่ ดังสมการที่ 3.17-3.18 ตามลำดับ

$$Cc(\xi, \eta, t) = f(x, y, t) * f(x + \xi, y + \eta, t) \quad (3.17)$$

$$Cc(\xi, \eta, \omega) = F(x, y, \omega) \cdot \overline{F(x + \xi, y + \eta, \omega)} \quad (3.18)$$

โดยที่ $\xi = r \cos \psi, \eta = r \sin \psi$

จากนั้นการคำนวณหาค่าสัมประสิทธิ์ SPAC, ρ , สำหรับการเคลื่อนที่ของคลื่นที่ในระบบ ซึ่งสามารถทำได้โดยการหาค่าเฉลี่ยของพังก์ชันความสอดคล้อง (Coherency) ของคลื่นที่มุ่งต่างๆ ที่ผ่านเข้ามาในตำแหน่งของการตรวจวัด ดังสมการที่ 3.19-3.21

$$\rho(r, \omega) = \frac{1}{2\pi} \int_0^{2\pi} Coh(\xi, \eta, \omega) d\psi \quad (3.19)$$

$$= \frac{1}{2\pi} \text{Re} \left[\int_0^{2\pi} \exp \left(\frac{i\omega r}{c_{\text{apparent}}} \right) d\psi \right] \quad (3.20)$$

$$= \frac{1}{2\pi} \text{Re} \left[\int_0^{2\pi} \exp \left(\frac{i\omega r \cos \psi}{c(\omega)} \right) d\psi \right] \quad (3.21)$$

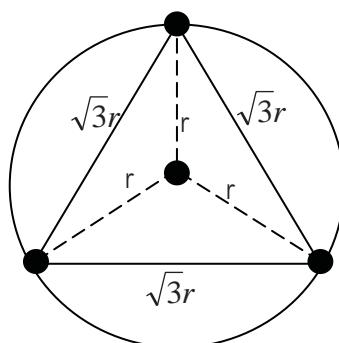
เนื่องจากเทอมของ $\left[\int_0^{2\pi} \exp\left(\frac{i\omega r \cos\psi}{c(\omega)}\right) d\psi \right]$ เท่ากับค่าของ $2\pi J_0\left(\frac{\omega r}{c(\omega)}\right)$ ดังนั้นสมประสิทธิ์ SPAC จึงสามารถเขียนใหม่ดังสมการที่ 3.22

$$\rho(r, \omega) = J_0\left(\frac{\omega r}{c(\omega)}\right) \quad (3.22)$$

โดยที่ค่า $J_0(\cdot)$ คือ Bessel Function ชนิดที่ 1 ลำดับที่ 0

นอกจากนี้ในการหาค่าสัมประสิทธิ์ SPAC สามารถนำข้อมูลที่อยู่ในรูปแบบ Frequency domain ที่ได้มาจากการแปลงข้อมูลที่อยู่ในรูปแบบ Time domain จากนั้นใช้نيยามคณิตศาสตร์เพื่อเขียนอยู่ในรูปแบบเพื่อการคำนวณ ดังสมการที่ 3.23

$$\rho(\omega, r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\text{real}[S_{CX}(\omega, r, \theta)]}{\sqrt{S_C(\omega, 0, 0) \cdot S_X(\omega, r, \theta)}} d\theta \quad (3.23)$$


โดยที่ $\text{real}[\cdot] =$ ส่วนของจำนวนจริงของจำนวนเชิงซ้อน

$S_{CX}(\omega, r, \theta) =$ Cross spectrum ระหว่าง $u(t; \omega, 0, 0)$ และ $u(t; \omega, r, \theta)$

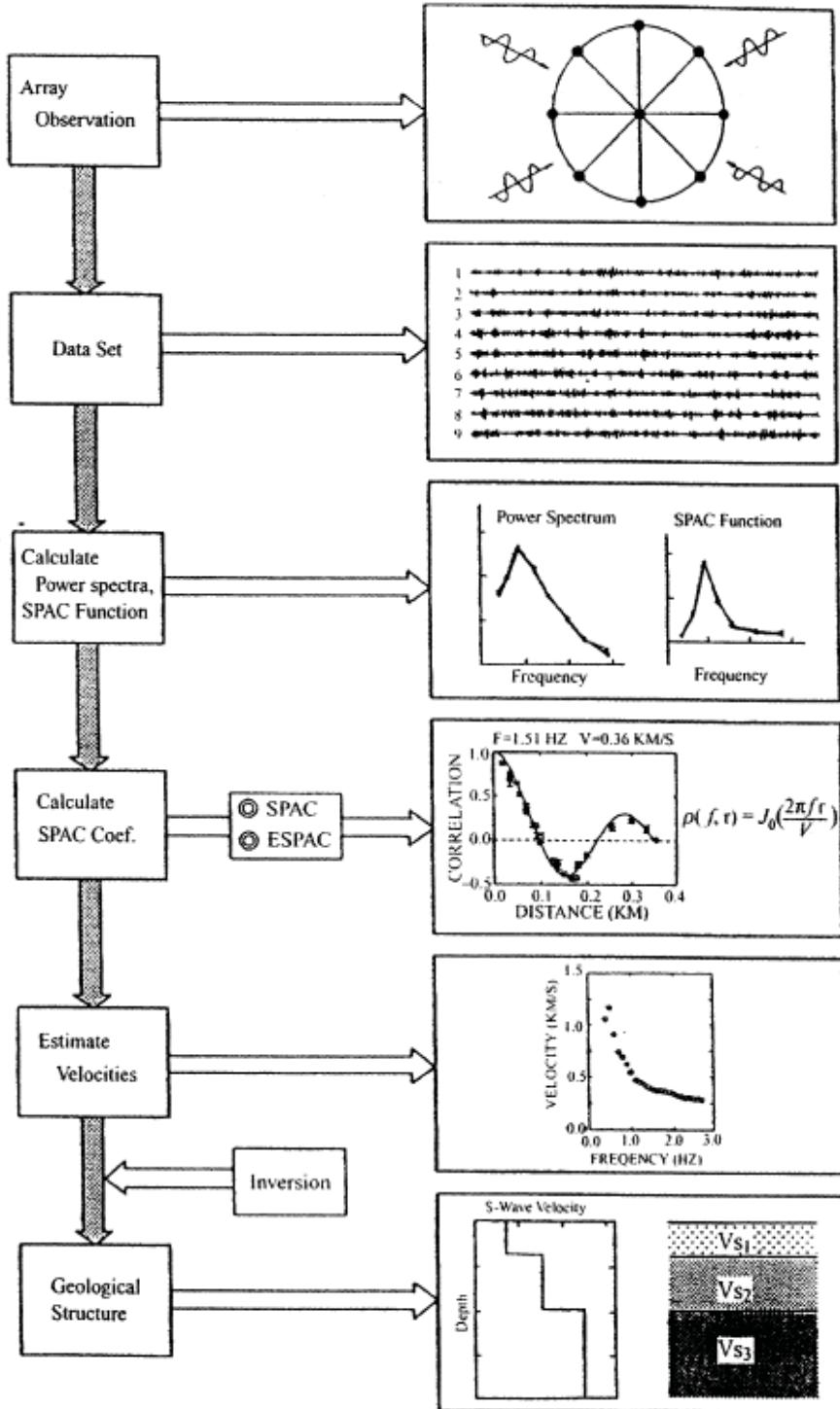
$S_C(\omega, 0, 0) =$ Power spectrum ที่ตำแหน่งกึ่งกลาง $C(0, 0)$

$S_X(\omega, r, \theta) =$ Power spectrum ที่ตำแหน่ง r ของวงกลม $X(r, \theta)$

รูปแบบของการตรวจวัดด้วยวิธี SPAC ประกอบด้วยเครื่องรับสัญญาณจำนวน 4 ชุดโดยจัดวางเครื่องรับสัญญาณดังรูปที่ 3.8

รูปที่ 3.8 รูปแบบการตรวจวัดแบบ Array ด้วยวิธี SPAC

จากหลักการข้างต้นสามารถสรุปขั้นตอนการตรวจวัดและการวิเคราะห์โดยวิธี SPAC ได้ดังนี้ และแสดงแผนผังได้ดังรูปที่ 3.9


1. เก็บข้อมูลภาคสนาม โดยวางแผนหัววัดเป็นรูปโครงข่ายวงกลม
2. เก็บข้อมูลองค์ประกอบของคลื่นในแนวตั้งบนตำแหน่งที่กำหนดบนเส้นรอบรูปวงกลม

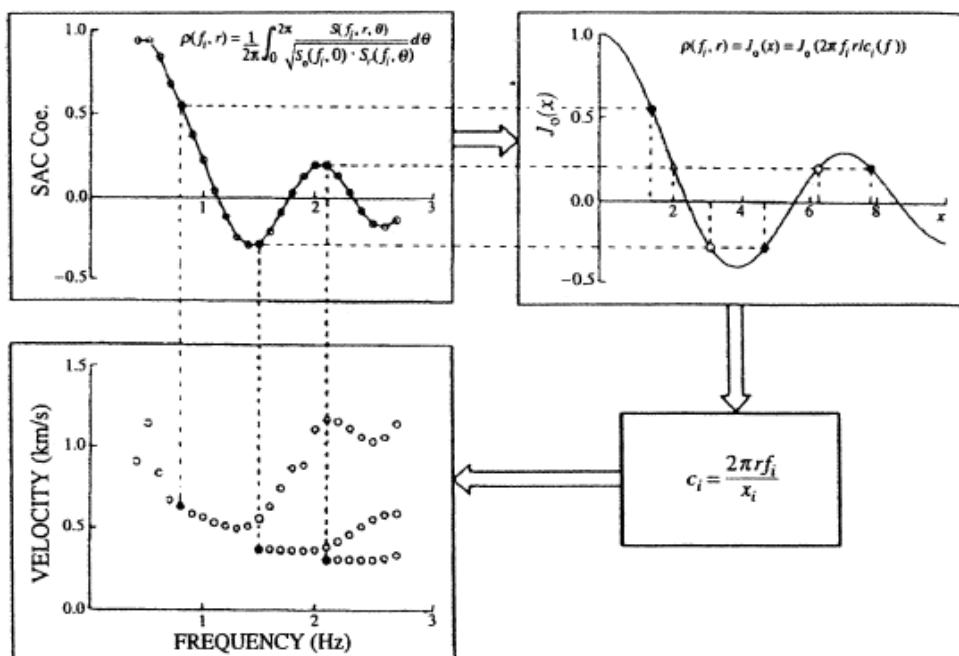
3. คำนวณ Power spectrum ของแต่ละตำแหน่งแล้วนำไปคำนวณ SPAC Function

4. คำนวณ สมประสิทธิ์ SPAC ของแต่ละคู่ จักรบทุกคู่ที่วางอยู่บนเส้นรอบรูปวงกลม

5. ประเมินค่าความเร็วเฟส (Phase Velocity) โดยกระบวนการทำ Dispersion Curve

6. นำ Dispersion Curve ที่ได้ไปคำนวณย้อนกลับ (Inversion Analysis) เพื่อประเมินโครงสร้างของความเร็วคลื่นเนื่องตามความลึก

รูปที่ 3.9 ขั้นตอนการเก็บข้อมูลและวิเคราะห์ผลโดยวิธี SPAC (Okada H., 2003)


ขั้นตอนการคำนวณความเร็วเฟส

วิธีการคำนวณความเร็วเฟส (Phase Velocity) จากวิธี SPAC นั้นมีขั้นตอนการคำนวณดังนี้ ซึ่งสามารถแสดงได้ดังรูปที่ 3.10

1. จากราฟของ สัมประสิทธิ์ SPAC (บนช้าย) และกราฟของ Bessel Function of the First Kind with Zero Order (บนขวา) กำหนดให้คู่ลำดับบนแกนราบและแกนดิ่งสำหรับ (S_i, f_i) คือคู่ลำดับของสัมประสิทธิ์ SPAC ที่ทำແහນງความถี่ได ๆ f_i และ (J_{0i}, x_i) คือคู่ลำดับของ Bessel Function of the First Kind with Zero Order ที่ทำແහນงที่ S_i เท่ากับ J_{0i} นั้นสามารถประเมินค่าของ x_i ได้จากคู่ลำดับของ (J_{0i}, x_i)
2. เมื่อได้ค่า x_i แล้ว สามารถประเมินค่าความเร็วเฟส (Phase Velocity) ได้จากสมการที่ 3.24

$$\text{Phase velocity} = C_i = \left(\frac{2\pi r f_i}{x_i} \right) \quad (3.24)$$

3. นำค่าความเร็วเฟส ไปสร้างเป็นคู่ลำดับ (C_i, f_i) และกระทำซ้ำที่ความถี่ต่างๆ ด้วยวิธีการเดิมจนได้เส้นกราฟของความเร็วเฟส (Phase Velocity) เป็น Dispersion curve (ล่างช้าย)

รูปที่ 3.10

แผนผังแสดงวิธีการคำนวณความเร็วเฟส (Okada H., 2003)

3.2 การวิเคราะห์ผลตอบสนองของพื้นผิวดิน (Ground Response Analysis)

3.2.1 การวิเคราะห์ผลตอบสนองของพื้นผิวดินแบบ 1 มิติ (One-Dimensional Ground Response Analysis)

ผลตอบสนองของพื้นผิวดิน (Ground response) มีความสำคัญสำหรับงานทางด้านวิศวกรรมแผ่นดินไหว ซึ่งใช้ในการประเมินความเสี่ยงภัยเนื่องจากการเกิดแผ่นดินไหว เช่น การประเมินการขยายขนาดและการเปลี่ยนแปลงขององค์ประกอบความถี่ของคลื่นแผ่นดินไหว ปัญหา liquefaction ปัญหาดินถล่ม และการวิบัติของโครงสร้างที่รับแรงด้านข้าง เป็นต้น นอกจากนี้ยังใช้เป็นวิธีหลักในการสร้างสเปกตรัมตอบสนองสำหรับการออกแบบ การวิเคราะห์ผลตอบสนองของพื้นผิวดินสามารถจำแนกเป็นแบบ 1 มิติ 2 มิติ และ 3 มิติ ตามความซับซ้อนของสภาพธรณีวิทยาของที่ตั้ง โดยที่การวิเคราะห์แบบ 1 มิติได้รับความนิยมสูง เนื่องจากมีความเหมาะสมในด้านสมมติฐานที่ใช้วิเคราะห์ที่ใช้ข้อมูลจากสภาพของที่ตั้งจริงใน 1 มิติ ที่สามารถประเมินได้ดีกว่าวิเคราะห์แบบ 2 หรือ 3 มิติ อย่างไรก็ตาม หากมีข้อมูลที่แม่นยำสำหรับการวิเคราะห์แบบ 2 หรือ 3 มิติ การวิเคราะห์เหล่านี้อาจให้คำตอบที่ใกล้เคียงกับสภาพความเป็นจริงขึ้น ในการศึกษานี้ได้กำหนดขอบเขตไว้คือการใช้การวิเคราะห์แบบ 1 มิติ โดยที่มีสมมติฐานหลักอยู่ 3 ประการ คือ (1) การสั่นสะเทือนเกิดขึ้นที่บริเวณใกล้กับพื้นผิวดินซึ่งมีลักษณะเรียงตัวเป็นชั้นๆ โดยเกิดจากการแพร่กระจายขององค์ประกอบในแนวตั้งของคลื่นนีโอน (shear wave) (2) ลักษณะของชั้นดินเรียงตัวกันเป็นชั้นๆ ในแนวอนุจันท์ชั้นหินด้านล่าง (3) คุณสมบัติของดินแต่ละชั้นมีความเป็น homogeneous viscoelastic แต่มีพฤติกรรมแบบ non-linear จากสมมติฐานข้างต้น ได้มีการพัฒนาเป็นโปรแกรมคอมพิวเตอร์เพื่อประเมินผลตอบสนองของพื้นผิวดินแบบ 1 มิติ หลายโปรแกรมด้วยกัน เช่น SHAKE, DEEPSOIL เป็นต้น โดยอาศัยหลักการวิเคราะห์แบบ Equivalent linear method ซึ่งจะกล่าวในหัวข้อต่อไป

3.2.2 การวิเคราะห์แบบเชิงเส้นเทียบเท่า (Equivalent Linear Method)

พฤษิตกรรมทางด้านพลศาสตร์ของดินไม่สามารถวิเคราะห์ได้ด้วยวิธีอิเล็กทริกสำหรับพฤติกรรมในช่วงที่ค่าโมดูลัสและอัตราส่วนความหน่วงมีค่าคงที่ เนื่องจากค่าพารามิเตอร์ทั้งสองมีค่าขึ้นอยู่กับระดับความเครียด และภายในตัวการตอบสนองจากแผ่นดินไหวที่ระดับความเครียดสูงจึงทำให้มีการเปลี่ยนแปลงค่าโมดูลัสและอัตราส่วนความหน่วงแบบพฤติกรรมไว้เชิงเส้น อย่างไรก็ตามสามารถแก้ปัญหาที่ซับซ้อนนี้ได้ด้วยวิธีการวิเคราะห์แบบเชิงเส้นเทียบเท่า (Equivalent linear method) ซึ่งพิจารณาพฤติกรรมไว้เชิงเส้นของดินเข้าไปด้วย โดยอาศัยหลักการประเมินหาค่าโมดูลัสเฉือนและค่าอัตราส่วนความหน่วงที่สอดคล้องกับระดับค่าความเครียด ประกอบกับการวิเคราะห์แบบเชิงเส้นซึ่งจำแนกหลายรอบ

การวิเคราะห์การตอบสนองของชั้นดินด้วยวิธีเชิงเส้นเทียบเท่า (Equivalent linear method) เริ่มต้นด้วยการวิเคราะห์แบบเชิงเส้น โดยใช้คุณสมบัติจากค่าโมดูลัสเฉือน (G) และอัตราส่วนความหน่วง (β) ของดินในแต่ละชั้น ประกอบกับหลักความสอดคล้องของความเครียด

บริเวณรอยต่อของชั้นดิน ประเมินหาค่าความเครียดเนื่องในรูปแบบประวัติเวลา (Time histories of shear strain) สำหรับดินแต่ละชั้น และวิเคราะห์หาค่าความเครียดประสิทธิผล (Effective shear strain) จากค่าดังกล่าว ค่าความเครียดประสิทธิผล เป็นพังค์ชั่นของขนาดแผ่นดินไหว โดยปกติมีค่าประมาณ 65% ของค่าความเครียดเนื่องสูงสุด จากค่าความเครียดประสิทธิผล นำไปวิเคราะห์หาค่าโมดูลัสเฉือน (G) และอัตราส่วนความหน่วง (β) ในการคำนวณรอบถัดไป และดำเนินการตามกระบวนการขั้นต้นจนกว่าผลต่างระหว่างค่าโมดูลัสเฉือน (G) และอัตราส่วนความหน่วง (β) ในสองรอบการคำนวณหลังสุดอยู่ในเกณฑ์ที่กำหนดคือประมาณ 5% โดยปกติรอบการทำซ้ำจะอยู่ที่ประมาณ 5 รอบ (Schnabel et al., 1972) จากกระบวนการดังกล่าวแสดงให้เห็นว่าวิเคราะห์แบบเชิงเส้นเทียบเท่า (Equivalent linear) คือ การวิเคราะห์แบบเชิงเส้นด้วยหลักความสอดคล้อง และต่อเนื่องของความเครียดบริเวณรอยต่อของชั้นดิน โดยอาศัยพัฒนารูปแบบ non-linear ของดินประกอบกับการทำซ้ำจนกว่าจะได้ค่าตอบที่เหมาะสม แผนผังการวิเคราะห์ด้วยวิธีเชิงเส้นเทียบเท่า แสดงดังรูปที่ 3.11

รูปที่ 3.11 แผนผังการวิเคราะห์แบบเชิงเส้นเทียบเท่า

3.2.3 โปรแกรมคอมพิวเตอร์ SHAKE91

โปรแกรม SHAKE91 พัฒนาขึ้นจากการวิจัยเริ่มต้นของ Schnabel และคณะในปี ค.ศ. 1972 ใช้สำหรับวิเคราะห์การตอบสนองของชั้นดินแบบ 1 มิติ สำหรับแบบจำลองที่มีลักษณะเรียงตัวเป็นชั้นๆ ตามแนวอน แล้วมีคุณสมบัติแบบ homogeneous viscoelastic ภายใต้แรงกระทำขององค์ประกอบแนวตั้งของคลื่นเนื้อ แล้วอาศัยหลักการวิเคราะห์ความต่อเนื่อง (continuous solution) จากสมการคลื่นของ Kanai, 1951 และสามารถประยุกต์ใช้กับการวิเคราะห์แบบ transient motion ผ่านกระบวนการ Fast Fourier Transform Algorithm (Cooley and Tukey, 1965) คุณสมบัติที่แสดงถึงพัฒนาระบบเรียงเส้นของดินถูกพิจารณาเข้าไปในกระบวนการ การวิเคราะห์ผ่านตัวแปรหลัก 2 ค่า คือ ค่าโมดูลัสเนื้อและค่าอัตราส่วนความหน่วง ซึ่งขึ้นอยู่กับระดับความเครียด สมมุติฐานหลักสำหรับการวิเคราะห์ด้วยโปรแกรม SHAKE91 ประกอบไปด้วย

- แบบจำลองมีลักษณะเรียงตัวเป็นชั้นๆ ขอบเขตเป็นอนันต์ในทิศทางตามแนวราบ
- แบบจำลองในแต่ละชั้นถูกกำหนดด้วยค่าคุณสมบัติของดิน ซึ่งประกอบไปด้วย ค่าโมดูลัสเนื้อ อัตราส่วนความหน่วง ความหนาแน่น ความหนาของชั้นดิน ซึ่งค่าตัวแปรเหล่านี้ไม่ขึ้นกับความถี่
- การวิเคราะห์ผลตอบสนองของแบบจำลองเกิดจากแรงกระทำขององค์ประกอบแนวตั้งของคลื่นเนื้อจากชั้นหินด้านล่างผ่านชั้นดินขึ้นสู่ด้านบน
- คลื่นเนื้อแสดงอยู่ในรูปของค่าความเร่งกับเวลา (สำหรับการเก็บข้อมูลในช่วงเวลาที่เท่ากัน) ซึ่งถูกกำหนดให้เป็นค่าเริ่มต้นในการวิเคราะห์
- ค่าโมดูลัสเนื้อและค่าอัตราส่วนความหน่วงซึ่งขึ้นกับระดับความเครียด เป็นค่าตัวแปรหลักในการวิเคราะห์แบบเชิงเส้นเทียบเท่า (Equivalent linear) ประเมินหาค่าเฉลี่ยของค่าตอบจากค่าความเครียดประสิทธิผลในแต่ละชั้น

โปรแกรม SHAKE91 ประกอบด้วย 10 ตัวเลือก สำหรับกระบวนการวิเคราะห์ ดังแสดงในตารางที่ 3.1 ข้อมูลที่ป้อนให้กับโปรแกรมอยู่ในรูปแบบ ASCII file (*.dat) อ้างอิงจากภาษา FORTAN จากตารางที่ 3.1 สามารถแบ่งตัวเลือกเป็น 2 กลุ่มหลักได้ดังนี้ คือ (1) Input Options ประกอบไปด้วย ตัวเลือก 1,2,3,4 และ 5 (2) Analysis Options ประกอบไปด้วย ตัวเลือก 6, 7, 9, 10 และ 11

ตารางที่ 3.1 รายการตัวเลือก สำหรับโปรแกรม SHAKE91

Option	Description
1	Dynamic soil properties
2	Data for soil profile
3	Input(object) motion

4	Assignment of object motion to the top of a specified sublayer or to the corresponding outcrop
5	Number of iterations specified & ratio of uniform strain to maximum strain
6	Sublayers at top of which peak accelerations & time histories are computed and saved
7	Sublayers at top of which time history of shear stress or strain is computed and saved
8	Save time history of object motion
9	Response spectrum
10	Amplification spectrum
11	Fourier amplitudes

ค. การเตรียมข้อมูลสำหรับการวิเคราะห์แบบ 1 มิติด้วยโปรแกรม SHAKE91

ข้อมูลคุณสมบัติตามความลึกของชั้นดินสำหรับการวิเคราะห์ผลตอบสนองของชั้นดินแบบ 1 มิติ ประกอบไปด้วย ค่าความเร็วคลื่นเฉือน หน่วยน้ำหนัก ชนิดของดิน และ ความหนาของชั้นดิน ประกอบกับความสัมพันธ์ระหว่างโมดูลัสเฉือนกับค่าความเครียด ($G/G_{\max}(\gamma)$) และ ความสัมพันธ์ระหว่างอัตราส่วนความหน่วงกับค่าความเครียด ($\delta(\gamma)$) ความหนาของชั้นดินแต่ละชั้นแนะนำให้ใช้ไม่เกิน 1/5 เท่าของความยาวคลื่นเฉือน (wave length) (Idriss and Sun, 1992) ($t < 1/5\lambda$ or $t < (1/5)(V_s/f)$) และค่าอัตราส่วนค่าความเครียดเทียบเท่า (uniform equivalent strain) ต่อค่าความเครียดสูงสุด ควรมีค่าอยู่ระหว่าง 0.4-0.75 ซึ่งเป็นค่าที่ขึ้นอยู่กับขนาดของแผ่นดินไหว ($ratio = \frac{M-1}{10}$)

3.3 การจำแนกประเภทของดิน

การจำแนกประเภทของดินแต่ละบริเวณ จะสามารถทำได้โดยเฉลี่ยค่าความเร็วคลื่นเฉือน (V_s) ค่ากำลังเฉือนแบบไม่คายน้ำ (S_u) และจำนวนครั้งในการตอกกระบอกผ่าให้จมลงไปในดิน 1 ฟุต (ค่า N) และนำค่าเฉลี่ยดังกล่าวไปเปรียบเทียบตาม National Earthquake Hazards Reduction Program (NEHRP 2003) และ มาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ.1302, 2552) ซึ่งแสดงดังตารางที่ 3.2

ตารางที่ 3.2 การจำแนกประเภทของดินตาม NEHRP (2003) และ myth.1302

Soil Class	Soil Type	\bar{V}_s (m/s)	\bar{S}_u (kPa)	\bar{N} (blow/ft)
A	Hard Rock	$\bar{V}_s > 1500$	--	--
B	Rock	$760 < \bar{V}_s \leq 1500$	--	--
C	Very dense soil and soft rock	$360 < \bar{V}_s \leq 760$	$\bar{S}_u < 50$	$\bar{N} < 15$
D	Dense/Stiff soil	$180 < \bar{V}_s \leq 360$	$50 \leq \bar{S}_u \leq 100$	$15 \leq \bar{N} \leq 50$
E	Loose/Soft soil	$180 < \bar{V}_s$	$\bar{S}_u > 100$	$\bar{N} > 50$

วิธีการเฉลี่ยค่าความเร็วคลื่นเนื้อ (V_S) ค่ากำลังเฉือนแบบไม่คายนำ (S_u) และจำนวนครั้งในการตอกกระบอกผ่าให้จมลงไปในดิน 1 ฟุต (ค่า N) ตามมาตรฐานดังกล่าวสามารถหาได้จากสมการ

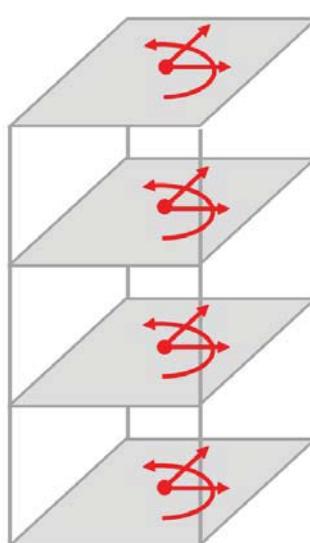
$$\bar{V}_s = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{V_{si}}} \quad (3.25)$$

$$\bar{S}_u = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{S_{ui}}} \quad (3.26)$$

$$\bar{N} = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{N_i}} \quad (3.27)$$

โดยที่ \bar{S}_u คือค่ากำลังเฉือนแบบไม่คายนำเฉลี่ยสำหรับชั้นดิน 30 เมตรแรก
 \bar{V}_s คือค่าความเร็วคลื่นเนื้อเฉลี่ยสำหรับชั้นดิน 30 เมตรแรก
 \bar{N} คือจำนวนครั้งในการตอกกระบอกผ่าให้จมลงไปในดิน 1 ฟุตเฉลี่ยสำหรับ 30 เมตรแรก
n คือจำนวนชั้นดินใน 30 เมตรแรก
d_i คือความหนาของชั้นดินชั้นที่ i
N_i คือจำนวนครั้งในการตอกกระบอกผ่าให้จมลงไปในดิน 1 ฟุตในชั้นที่ i
V_{si} คือความเร็วคลื่นเนื้อของชั้นดินชั้นที่ i
S_{ui} คือค่ากำลังเฉือนแบบไม่คายนำของชั้นดินชั้นที่ i

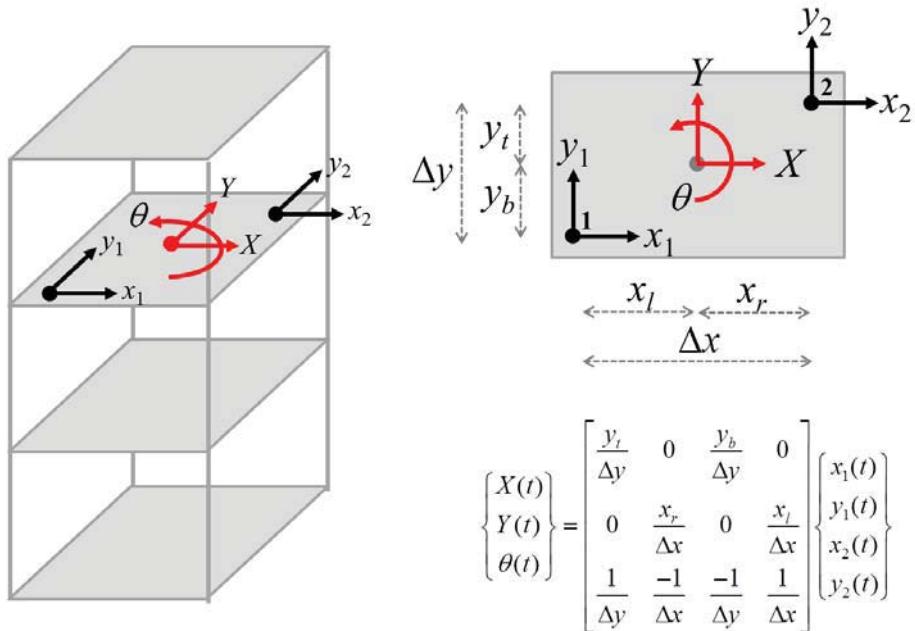
3.4 ทฤษฎีที่เกี่ยวข้องกับการวัดคุณสมบัติเชิงพลศาสตร์ของอาคาร


การตรวจวัดคุณสมบัติเชิงพลศาสตร์ มีวัตถุประสงค์เพื่อเก็บข้อมูลที่สำคัญของโครงสร้างอันได้แก่ ความถี่ธรรมชาติ รูปร่างการสั่น และอัตราส่วนความหน่วง ซึ่งเป็นปริมาณที่สำคัญที่สุดสำหรับอธิบายพฤติกรรมของอาคาร การวัดปริมาณทั้งสามดังกล่าวนี้จำเป็นต้องใช้อุปกรณ์ตรวจวัดว่างที่พื้นอาคารแต่ละชั้น และวัดการสั่นไหวของโครงสร้าง อุปกรณ์ที่มีความไวจะสามารถวัดการสั่นไหวทั้งที่เกิดโดยธรรมชาติหรือเกิดจากการกระตุนอุปกรณ์ได้ จากนั้นจึงนำที่บันทึกมาได้มาวิเคราะห์เพื่อหาคุณสมบัติเชิงพลศาสตร์ ในกระบวนการนี้จำเป็นต้องใช้ปัจจัย 3 ประการคือ

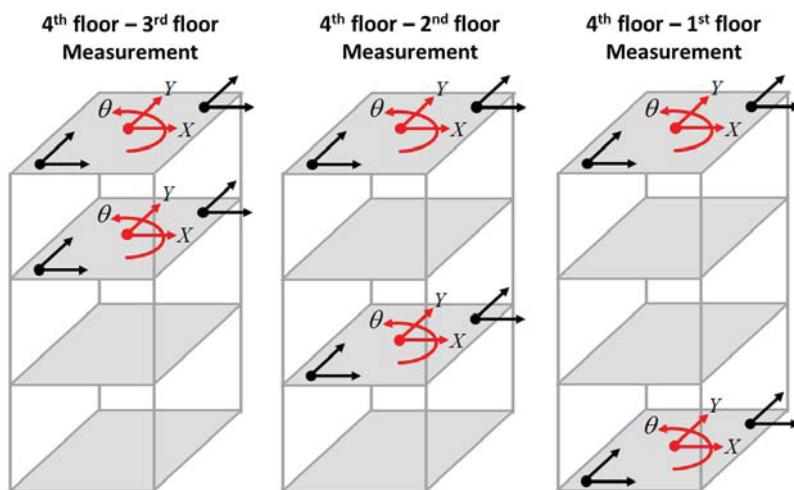
- วิธีการตรวจวัดคุณสมบัติเชิงพลศาสตร์ (หัวข้อ 3.4.1-3.4.2 และภาคผนวกที่ 2.1)
- อุปกรณ์ที่วัดสำหรับตรวจจับการเคลื่อนที่ (ภาคผนวกที่ 2.2)
- แรงกระตุ้นอาคาร ซึ่งมีสองกรณีคือ
 - แรงกระตุ้นแบบที่เกิดจากธรรมชาติ กรณีอาคารสูงที่ตรวจจับการไหว้ตัวได้ง่าย
 - แรงกระตุ้นจากเครื่องขยายอุปกรณ์ กรณีอาคารเตี้ยที่ค่อนข้างแข็ง (ภาคผนวกที่ 2.3)

รายงานในส่วนนี้จะนำเสนอทฤษฎีที่เกี่ยวข้องกับการตรวจวัดปริมาณทั้ง 3 ประการดังรายละเอียดต่อไปนี้

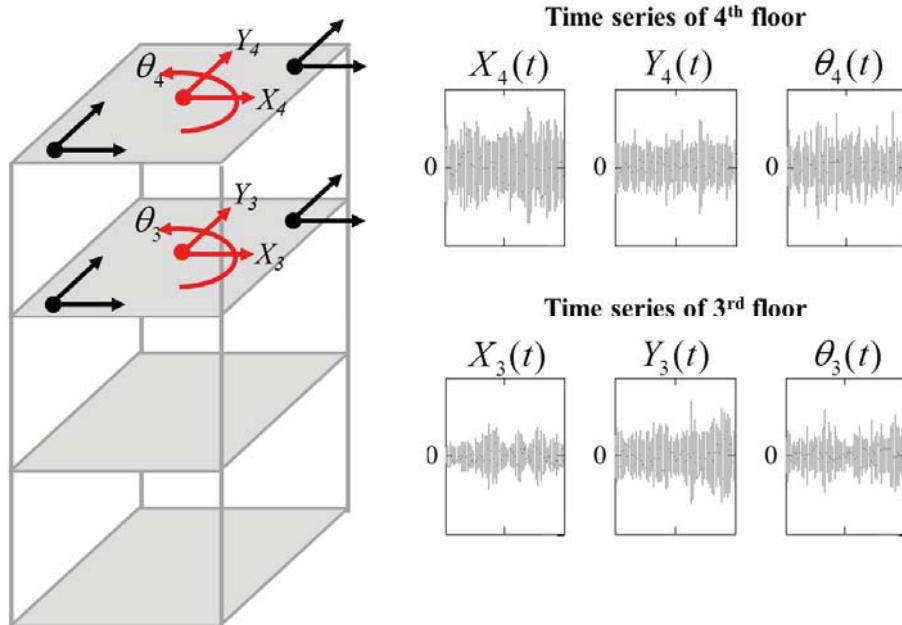
3.4.1 การวัดคุณสมบัติทางพลศาสตร์ของโครงสร้าง: ความถี่ธรรมชาติและรูปร่างการสั่น


การวิเคราะห์คุณสมบัติเชิงพลศาสตร์ของอาคารซึ่งได้แก่ ความถี่ธรรมชาติและรูปร่างการสั่น ให้สามารถทำได้โดยการพิจารณาการสั่นไหวของอาคารแต่ละชั้น สมมติให้ในระบบการเคลื่อนที่ของพื้นแต่ละชั้นมีลักษณะแข็งมาก การเคลื่อนที่ของแต่ละชั้นจึงเป็นการเคลื่อนที่แบบวัตถุแข็ง (Rigid body) ซึ่งแต่ละชั้นแสดงได้ด้วยระดับความอิสระ 3 ตัวคือการเคลื่อนที่แนวระนาบ 2 ทิศทาง และการหมุนอึก 1 ทิศทางดังรูปที่ 12

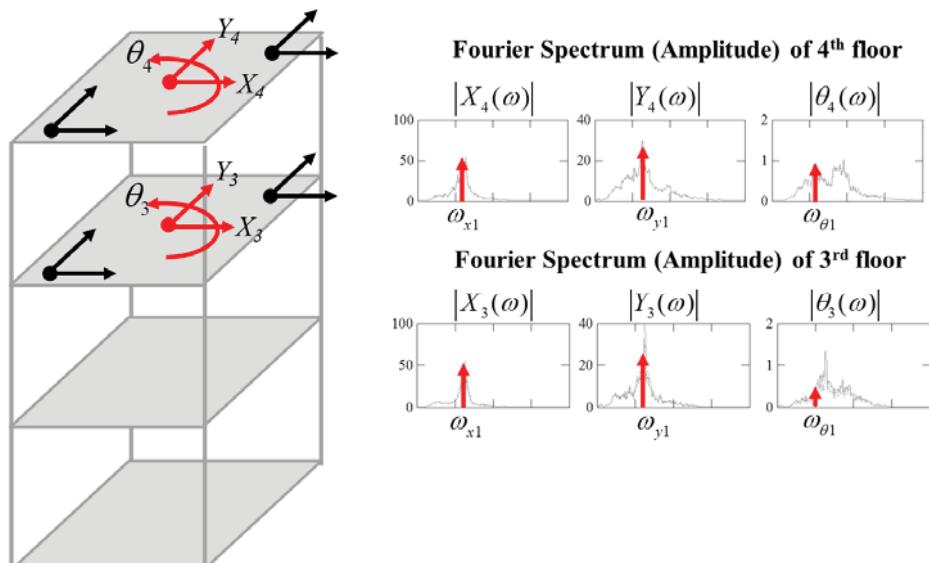
รูปที่ 3.12 การเคลื่อนที่ในแต่ละชั้นของอาคาร


การคำนวณค่าการเคลื่อนที่ของชั้นใดๆ กระทำได้โดยการติดตั้งหัววัดการสั่นไหว 2

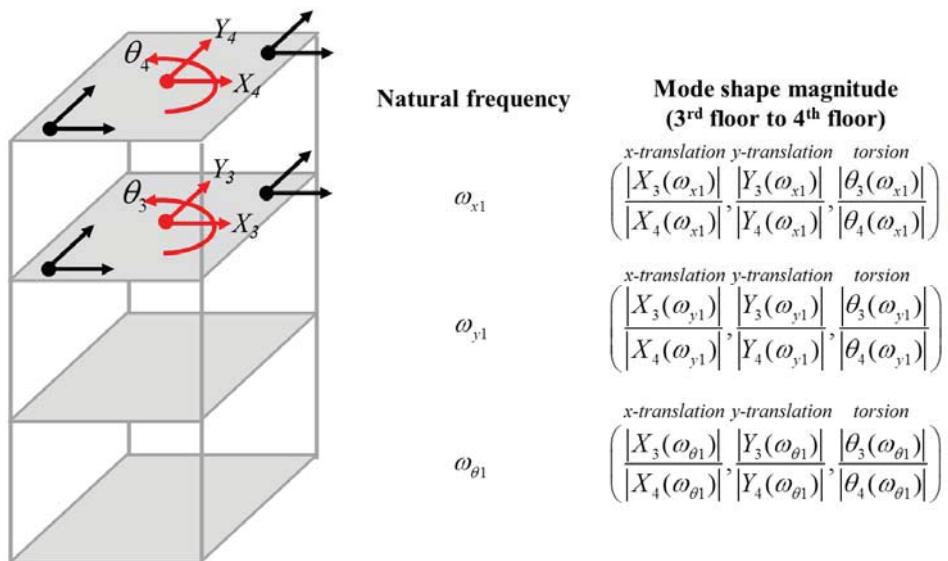
ตำแหน่งที่มุ่งอาคารแต่ละชั้น ค่าการสั่นไหวจากหัวด้ที่ได้สามารถนำมาคำนวณการเคลื่อนที่ของพื้นแต่ละชั้นได้ดังรูปที่ 13


รูปที่ 3.13 วิธีการคำนวณการเคลื่อนที่ของอาคารจากข้อมูลหัวด้

อย่างไรก็ตาม เนื่องพื้นแต่ละชั้นของอาคารมีการสั่นไหวที่ไม่เป็นอิสระจากกันและกัน จึงต้องอ้างอิงการสั่นไหวของพื้นแต่ละชั้นและเปรียบเทียบกันจึงจะได้รู้ปร่างการสั่นไหวของทั้งอาคาร กระบวนการตรวจสอบจึงต้องใช้หัวด้ทั้งหมด 4 ตัว โดยหัวด้ 2 ตัวแรกจะวางอยู่บนพื้นอาคารชั้นบนสุดเพื่อใช้ในการอ้างอิง ส่วนหัวดอีก 2 ตัวจะวางอยู่ในพื้นชั้นล่างลงมา การตรวจสอบจะกระทำในลักษณะจับคู่พื้นทั้ง 2 ชั้น เช่นนี้และໄลลงมาจนกว่าจะครบหั้งอาคาร ดังแสดงในรูปที่ 3.14


รูปที่ 3.14 วิธีการตรวจสอบโดยการจับคู่พื้นที่ละชั้น

ข้อมูลที่ได้จากการตรวจสอบโดยการจับคู่ที่ละชั้นจะเป็นการเคลื่อนที่ตามเวลาหรือ Time series ของแต่ละชั้นดังตัวอย่างในรูปที่ 15


รูปที่ 3.15 ข้อมูลสั่นไหวของอาคารที่ได้จากการตรวจวัด

จากข้อมูลในรูปที่ 16 สามารถใช้การแปลงฟูเรียร์เพื่อทำให้อยู่ในรูปของฟูเรียร์สเปกตรัม (Fourier spectrum) ซึ่งประกอบด้วยสเปกตรัมของขนาด (Magnitude spectrum) และของเฟส (Phase spectrum) ตัวอย่างขนาดของฟูเรียร์สเปกตรัมของข้อมูลในรูปที่ 15 แสดงไว้ในรูปที่ 16

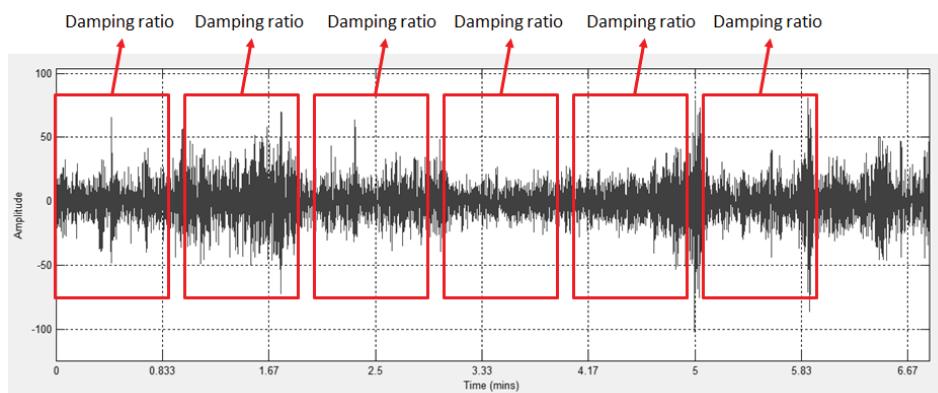
รูปที่ 3.16 ฟูเรียร์สเปกตรัมและความถี่ธรรมชาติของอาคาร

ความถี่ธรรมชาติในแต่ละทิศทางของอาคาร คำนวณได้จากการดำเนินการที่ฟูเรียร์สเปกตรัมมีค่าสูงสุดดังรูปที่ 16 ส่วนขนาดรูปร่างการสั่นไหวที่ความถี่ธรรมชาติได้ คำนวณได้จากการดำเนินการสัมพัทธ์ระหว่างความสูงของฟูเรียร์สเปกตรัมดังแสดงไว้ในรูปที่ 17

รูปที่ 3.17 การคำนวณรูปร่างการสั่นไหวของอาคาร

ส่วนทิศทางของรูปร่างการสั่นไหว สามารถคำนวณได้จากเฟสเบิคตรัมของพื้นทั้ง 2 ชั้น เทียบกัน เฟสที่ต่างกัน 0 องศาหรือ 360 องศาแสดงถึงการสั่นไหวไปในทิศทางเดียวกันขณะที่เฟสต่างกัน 180 องศา แสดงถึงการสั่นไหวไปในทิศทางตรงกันข้ามนั่นเอง

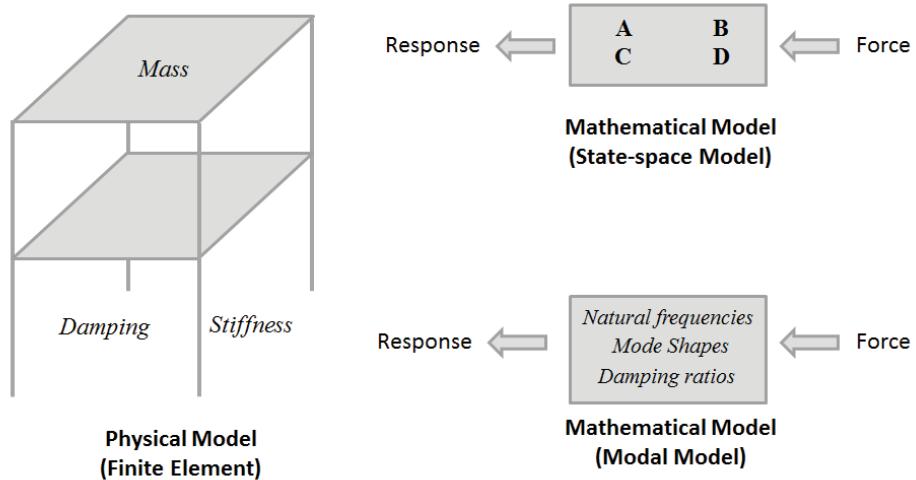
วิธีดังกล่าวเป็นการคำนวณความถี่ธรรมชาติและรูปร่างการสั่นจากการตรวจวัดพื้นคู่หนึ่ง กระบวนการวิเคราะห์นี้จะเกิดขึ้นหากสำหรับข้อมูลที่วัดจากพื้นคู่นี่จะน่าจะครบถ้วนกว่าอาคาร ด้วยวิธีการนี้จะทำให้ได้รูปร่างการสั่นของทั้งอาคาร


3.4.2 การวัดคุณสมบัติทางพลศาสตร์ของโครงสร้าง: อัตราส่วนความหน่วง

จากการตรวจวัดเบื้องต้นทำให้ทราบค่าความถี่ธรรมชาติและรูปร่างการสั่นไหว อย่างไรก็ตามคุณสมบัติเชิงพลศาสตร์ที่สำคัญอีกตัวหนึ่งคือค่าอัตราส่วนความหน่วงยังไม่ได้มีการคำนวณ เอาไว้ ในทางปฏิบัติการประมาณค่าความหน่วงโดยเฉพาะโครงสร้างที่ไม่ได้อยู่ในห้องทดลอง เช่น อาคาร เป็นสิ่งที่ทำได้ยากและให้ค่าไม่แน่นอน ที่ผ่านมาในอดีตค่าความหน่วงสามารถหาได้จากสองวิธีคือ 1) โดยการตรวจจับสัญญาณการสั่นอิสระจากการตรวจวัดจริงหรือสังเคราะห์ขึ้นมาจากการ Autocorrelation function ของการสั่นตามสภาวะแวดล้อม วิธีนี้ใช้ได้เมื่อความถี่ธรรมชาติของโครงสร้างในโหมดต่างๆ ไม่ใกล้กันมากนักและสัญญาณการสั่นอิสระมีคุณภาพที่ดีพอ และ 2) โดยการคำนวณจากฟูเรียร์เบิคตรัมในบริเวณตรงกับความถี่ธรรมชาติ (Half-power bandwidth) แต่ก็มีความคลาดเคลื่อนอยู่มาก ไม่ว่าจะเป็นวิธีใดในสองวิธีนี้ก็มักจะให้ค่าอัตราส่วนความหน่วงซึ่งกระจัดกระจายไม่แน่นอนเช่นเดียวกัน

เพื่อการปรับปรุงวิธีการหาค่าคุณสมบัติเชิงพลศาสตร์ให้ดียิ่งขึ้น ซึ่งหมายรวมทั้งหมดคือ ความถี่ธรรมชาติ รูปร่างการสั่นไหวและอัตราส่วนความหน่วง ในโครงการวิจัยนี้จึงได้ประยุกต์ใช้อัลกอริทึมที่ชื่อ System Realization using Information Matrix (SRIM) มาใช้คำนวณคุณสมบัติ

เชิงพลศาสตร์ในโหมดเมนเวลาเพื่อช่วยเพิ่มความถูกต้องให้กับเทคนิคที่ใช้อยู่ในปัจจุบันด้วย ส่วนรายละเอียดทางเทคนิคและการทดสอบประสิทธิภาพอัลกอริทึม SRIM ที่คณะผู้วิจัยได้นำมาประยุกต์ใช้ มีรายละเอียดดังแสดงไว้ในภาคผนวกที่ 2.1


ในการคำนวณหาค่าอัตราส่วนความหน่วง จำเป็นต้องใช้สัญญาจากการวัดอาคารชั้นบนสุด เนื่องจากเป็นสัญญาณที่ชัดเจนเมื่อเทียบกับชั้นอื่นๆ เมื่อแปลงสัญญาณการวัดให้เป็นค่าที่กึ่งกลางของแต่ละชั้นแล้วก็จะสามารถคำนวณหาอัตราส่วนความหน่วงได้ อย่างไรก็ตาม เนื่องจากสัญญาณการวัดมีความยาวที่ยาวมาก การคำนวณหาค่าอัตราส่วนความหน่วงจึงต้องตัดแบ่งช่วงสัญญาณออกเป็นช่วงสั้นๆ และคำนวณหาค่าความหน่วงของแต่ละช่วง ดังรูปที่ 18 จากนั้นจึงนำทุกค่ามาเฉลี่ยกัน เมื่อได้ค่าความหน่วงของอาคาร จึงถือได้ว่าแบบจำลองพุทธิกรรมทางพลศาสตร์มีความสมบูรณ์

รูปที่ 3.18 แนวทางการคำนวณค่าความหน่วง

3.4.3 แบบจำลองพุทธิกรรมทางพลศาสตร์ของโครงสร้าง

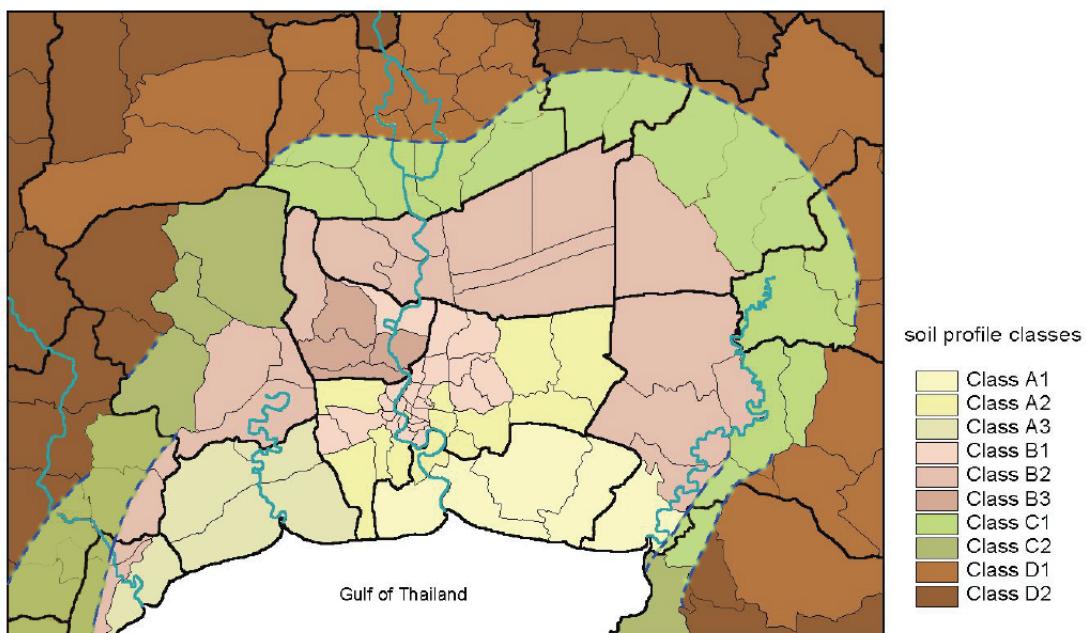
แบบจำลองของโครงสร้างดังรูปที่ 19 อาจเป็นได้ทั้งแบบจำลองเชิงกายภาพ เช่น แบบจำลองไฟไนต์อิลิเมนต์แบบจำลองดังซึ่งเป็นแบบจำลองที่เหมาะสมสำหรับการศึกษาพุทธิกรรมเชิงกายภาพของแต่ละชั้นส่วนในอาคาร หรืออาจเป็นแบบจำลองทางคณิตศาสตร์เช่นแบบจำลอง State-space ซึ่งเหมาะสมสำหรับการตรวจวัดการสั่นให้จากข้อมูลจริง ส่วนแบบจำลองที่เหมาะสมที่สุดสำหรับพุทธิกรรมทางพลศาสตร์ที่ได้มาจากการตรวจวัดก็คือแบบจำลองที่เรียกว่า Modal model ซึ่งในที่นี้ก็คือ ความถี่ธรรมชาติต่างๆ รูปร่างการสั่นต่างๆ และอัตราส่วนความหน่วง

รูปที่ 3.19 แบบจำลองพฤษติกรรมประเภทต่างๆ

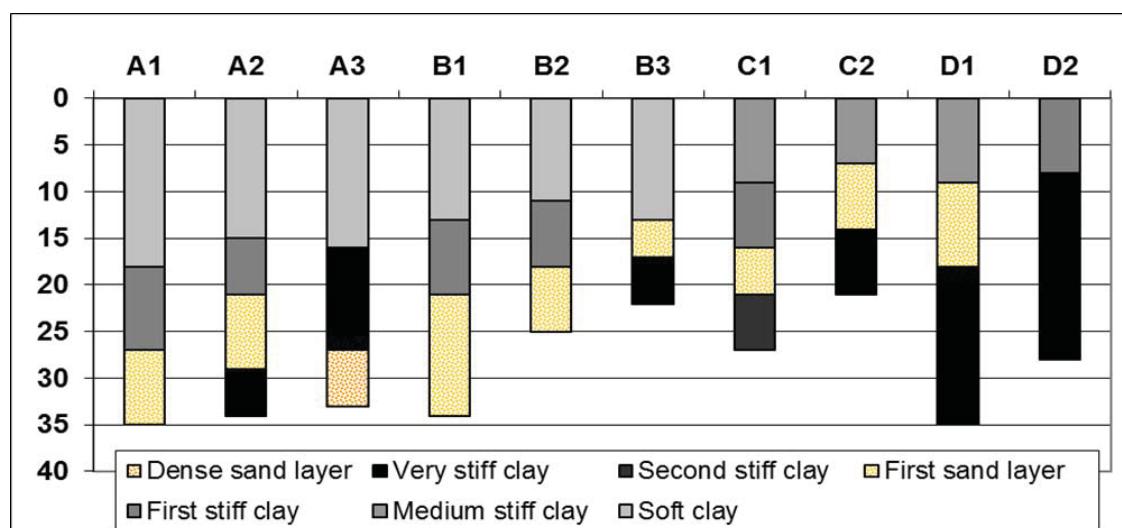
ในรายงานฉบับนี้จะนำเสนอแบบจำลองพฤษติกรรมทางพลศาสตร์ของอาคารซึ่งเป็นแบบจำลองประเภท Modal model อันประกอบไปด้วยความถี่ธรรมชาติ รูปร่างการสั่น และอัตราส่วนความหน่วง

บทที่ 4

ผลการศึกษาคุณลักษณะของชั้นดินบริเวณที่ตั้ง

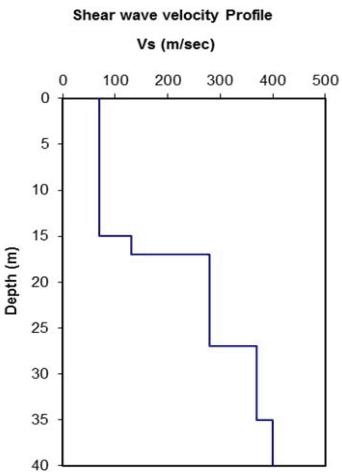
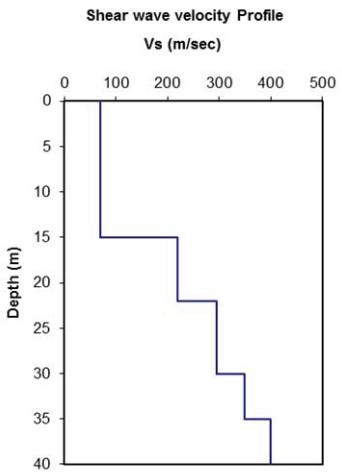
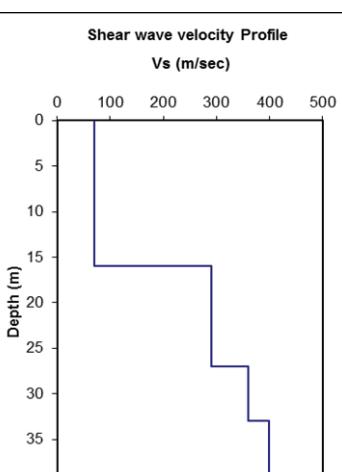

4.1 การรวบรวมข้อมูลทางธรณีเทคนิคของพื้นที่ศึกษา

การศึกษาในส่วนแรกคือการรวบรวมข้อมูลทางธรณีเทคนิคจากหลุมเจาะสำรวจดิน (Boring Log) และการทบทวนงานวิจัยที่เกี่ยวข้อง ในพื้นที่ที่ศึกษา ได้แก่ จังหวัดเชียงใหม่ จังหวัดกาญจนบุรี และแม่กรุงเทพมหานคร โดยทำการรวบรวมข้อมูลจากแหล่งข้อมูลต่างๆ ได้แก่ เว็บไซต์ ข้อมูลหลุมเจาะสำรวจดินของกรมโยธาธิการและผังเมือง (<http://www.dpt.go.th/soil>) บริษัทสำรวจ เอกชน และจากการวิจัยที่มีการศึกษามาก่อนหน้านี้

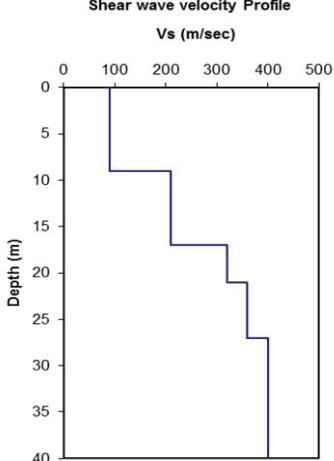
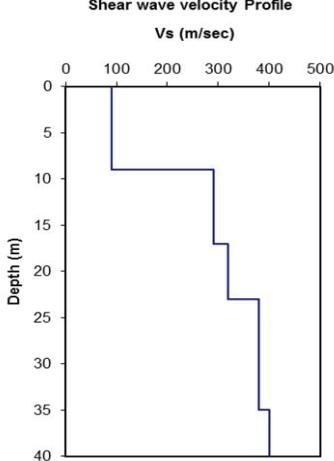
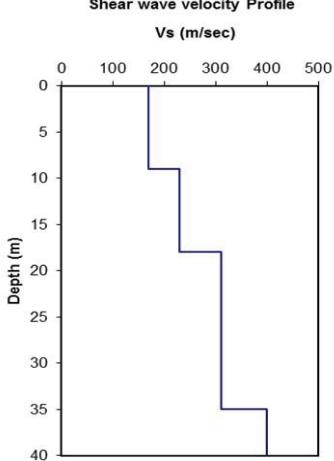

งานวิจัยที่ได้มีการทบทวนผลการวิจัยก่อนหน้าที่เกี่ยวข้องในพื้นที่กรุงเทพมหานครและปริมณฑล คือ Tuladhar (2003) ที่ได้ใช้ข้อมูลจากหลุมเจาะสำรวจดินและแบ่งประเภทชั้นดินบริเวณแม่กรุงเทพฯ ออกเป็น 10 ประเภท และมีการอธิบายถึงลักษณะของชั้นดินในแต่ละระดับความลึก ความหนาของดินแต่ละชั้น และการประมาณค่าความเร็วคลื่นเนื้อในไว้ และ อำนาจ ยานุวิริยะกุล (2552) ที่จำแนกชั้นดินเหนียวอ่อนโดยพิจารณาความหนาของดินเหนียวอ่อนจากข้อมูลหลุมเจาะสำรวจทั่วทั้งบริเวณแม่กรุงเทพฯ รวมทั้งการศึกษาของ Tuladhar (2004) ที่ได้เริ่มงานสำรวจค่าความอิทธิพลหลักของกรุงเทพมหานครและปริมณฑลด้วยการตรวจวัดแบบหนึ่งจุดและวิเคราะห์ด้วยวิธี H/V spectral ratio

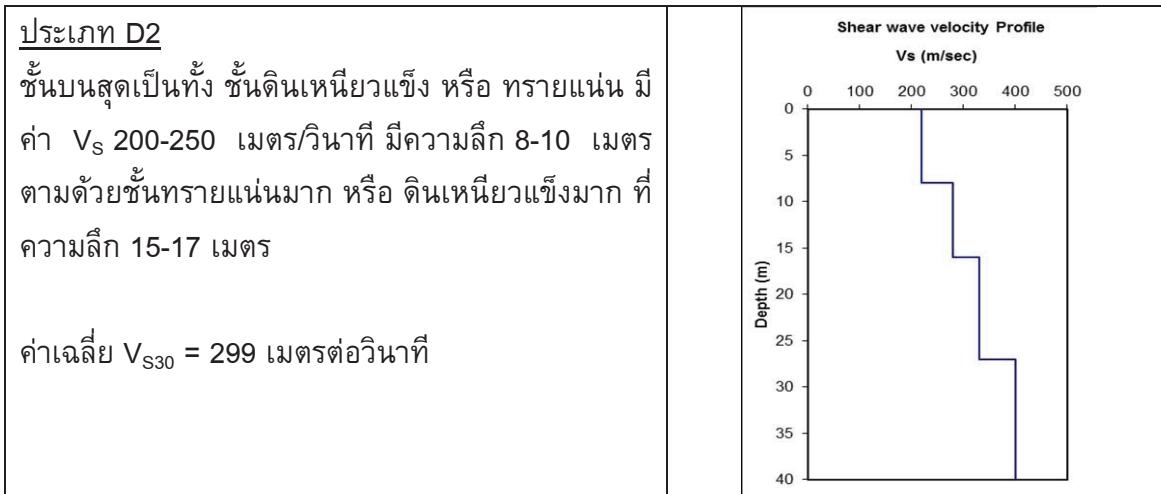
4.2 การทบทวนงานวิจัยที่เกี่ยวข้อง

Tuladhar (2003) ได้ใช้ข้อมูลหลุมเจาะสำรวจเพื่อจำแนกชั้นดินในบริเวณพื้นที่ภาคกลาง หรือแม่กรุงเทพฯ โดยแสดงผลเป็น 10 ประเภท คือ A1, A2, A3, B1, B2, B3, C1, C2, D1 และ D2 และสรุปความหนาของดินแต่ละชั้น ลักษณะของดินแต่ละชั้น ของแต่ละประเภท รวมถึงค่าความเร็วคลื่นเนื้อ (Shear wave velocity, V_s) ตามความลึกของชั้นดินที่ได้จากการประมาณด้วยพารามิเตอร์จากข้อมูลหลุมเจาะ โดยพื้นที่ศึกษาและผลการจำแนกดินเป็นพื้นที่อยู่จำนวน 10 ประเภท และรูปที่ 4.1 และรูปที่ 4.2 ที่แสดงการเปลี่ยนแปลงลักษณะของชั้นดินตามความลึก ของดินประเภทต่างๆ ตารางที่ 4.1 แสดงถึงรายละเอียดของลักษณะของชั้นดินทั้ง 10 ประเภท

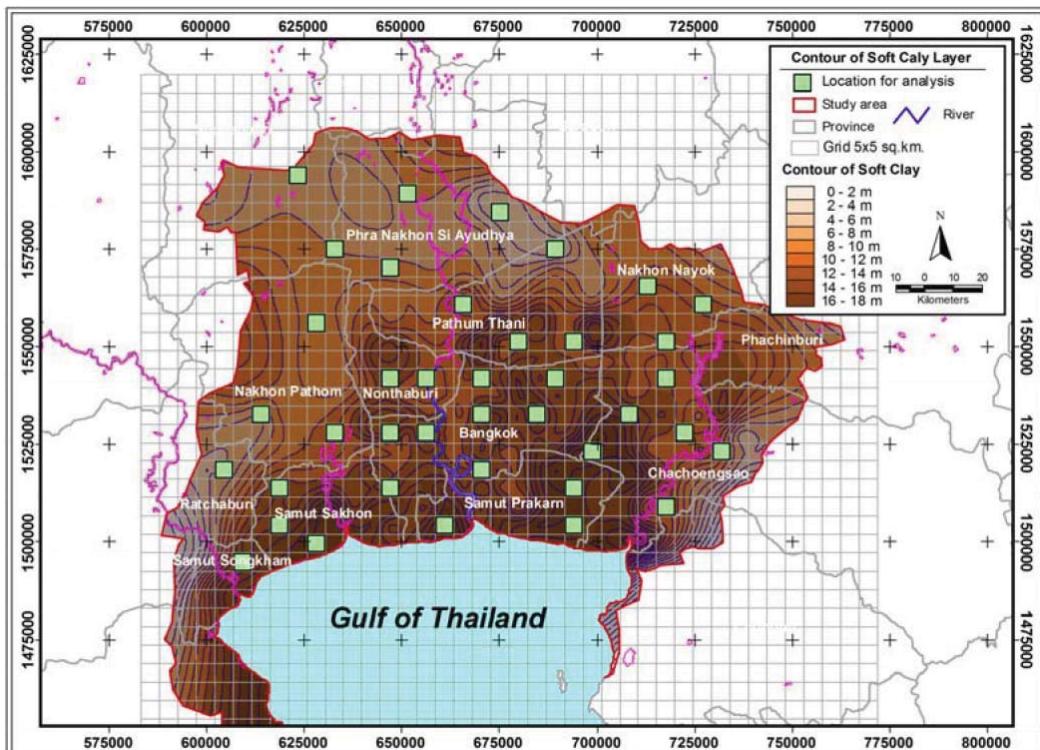




รูปที่ 4.1 แผนที่การจำแนกประเภทชั้นดิน บริเวณกรุงเทพฯและปริมณฑล (Tuladhar , 2003)

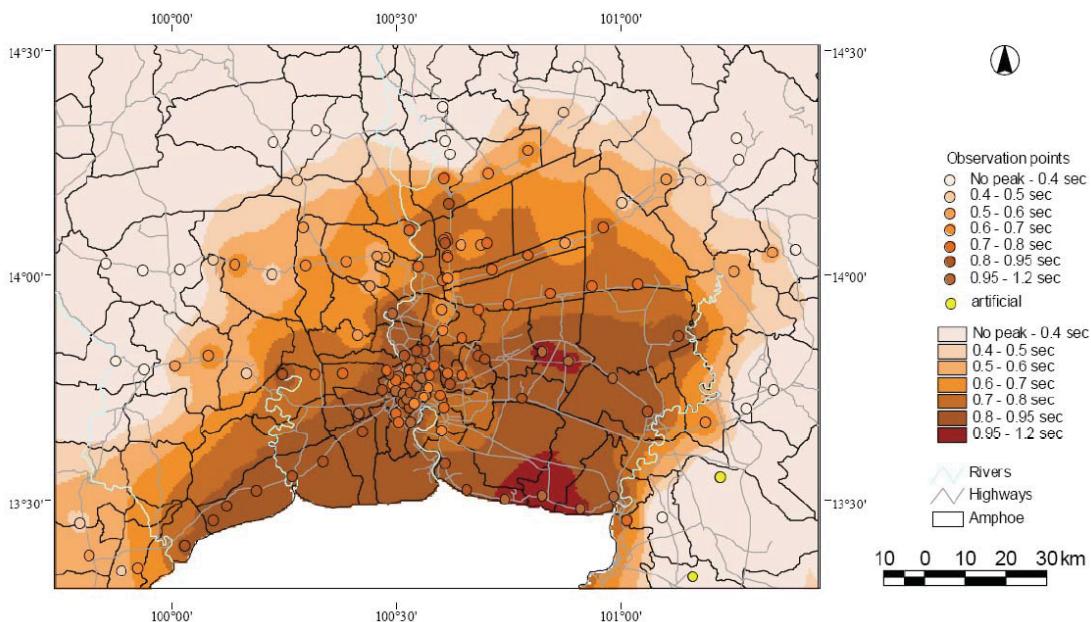

รูปที่ 4.2 แผนภูมิลักษณะของชั้นดินในแต่ละประเภท (Tuladhar, 2003)

ตารางที่ 4.1 ลักษณะของชั้นดินที่จำแนกในเขต กทม และปริมณฑล (Tuladhar, 2003)


คำอธิบาย	ความเร็วคลื่นเฉือน (V_s)
<p><u>ประเภท A1</u></p> <p>อยู่บริเวณพื้นที่ใกล้กับอ่าวไทย ในจังหวัดสมุทรปราการ มีชั้นดินเหนี่ยวอ่อนหนา 16-20 เมตร มีค่า V_s 60-80 เมตร/วินาทีตามด้วยชั้นดินเหนี่ยวแข็งชั้นแรกที่มีความลึกถึง 26-28 เมตร มีค่า V_s 250-300 เมตร/วินาที สำหรับชั้นทรายชั้นแรกอยู่ที่ความลึกต่ำกว่า 35 เมตร มีค่า V_s 350-400 เมตร/วินาที</p> <p>ค่าเฉลี่ย $V_{s30} = 113$ เมตรต่อวินาที</p>	
<p><u>ประเภท A2</u></p> <p>อยู่บริเวณตอนล่างและทางทิศตะวันออกของพื้นที่กรุงเทพฯ ความหนาดินเหนี่ยวอ่อนมีค่าตั้งแต่ 14-16 เมตร มีค่า V_s 60-80 เมตร/วินาที ตามด้วยชั้นดินเหนี่ยวแข็งชั้นแรกที่มีค่า V_s 210-250 เมตร/วินาที ชั้นทรายชั้นแรกมีความลึกอยู่ต่ำกว่า 28-30 เมตรลงไป มีค่า V_s 270-320 เมตร/วินาที</p> <p>ค่าเฉลี่ย $V_{s30} = 110$ เมตรต่อวินาที</p>	
<p><u>ประเภท A3</u></p> <p>อยู่บริเวณใกล้กับอ่าวไทย บริเวณจังหวัดสมุทรสาคร และอำเภอเมือง จังหวัดสมุทรปราการ ความหนาของดินเหนี่ยวอ่อนประมาณ 15-17 เมตร มีค่า V_s 60-80 เมตร/วินาที ตามด้วยดินเหนี่ยวแข็งมาก มีค่า V_s 260-320 เมตร/วินาที ที่ระดับความลึก 25-30 เมตร ถัดไปเป็นชั้นทรายแน่นที่มีค่า V_s 350-380 เมตร/วินาที และต่ำแห่งลงของดินเหนี่ยวแข็งอยู่ที่ระดับ 30-35 เมตร</p> <p>ค่าเฉลี่ย $V_{s30} = 109$ เมตรต่อวินาที</p>	

<p><u>ประเภท B1</u></p> <p>อยู่บริเวณตะวันตกตอนบนของพื้นที่กรุงเทพฯ ความหนาของดินเหนี่ยวอ่อนประมาณ 12-14 เมตร มีค่า V_s 60-80 เมตร/วินาที ตามด้วยชั้นดินเหนี่ยวแข็งชั้นแรก มีค่า V_s 220-240 เมตร/วินาที ที่ระดับความลึก 20-22 เมตร ชั้นทรายชั้นแรกมีค่า V_s 280-340 เมตร/วินาที อยู่ที่ระดับความลึกต่ำกว่า 33-35 เมตร</p> <p>ค่าเฉลี่ย $V_{s30} = 118$ เมตรต่อวินาที</p>	
<p><u>ประเภท B2</u></p> <p>อยู่บริเวณจังหวัดปทุมธานีและทางทิศตะวันตกของจังหวัดนนทบุรี นครนายก และชลบุรี นอกจากนี้ยังพบในพื้นที่ทางทิศตะวันออกของจังหวัดนครปฐม กาญจนบุรี และสมุทรสงคราม มีค่า V_s 60-80 เมตร/วินาที ถึงระดับความลึก 10-12 เมตร ตามด้วยชั้นดินเหนี่ยวแข็งชั้นแรก มีค่า V_s 180-240 เมตร/วินาที ที่ระดับ 16-20 เมตร ชั้นทรายชั้นแรกอยู่ต่ำกว่าระดับ 22-28 เมตร มีค่า V_s 250-320 เมตร/วินาที</p> <p>ค่าเฉลี่ย $V_{s30} = 135$ เมตรต่อวินาที</p>	
<p><u>ประเภท B3</u></p> <p>อยู่บริเวณบางอำเภอของจังหวัดนนทบุรี มีความหนาของดินเหนี่ยวอ่อนประมาณ 12-14 เมตร มีค่า V_s 60-80 เมตร/วินาที ตามด้วยชั้นทรายชั้นแรก มีค่า V_s 220-260 เมตร/วินาที ถึงระดับความลึก 16-18 เมตร ตามด้วยชั้นดินเหนี่ยวแข็งมาก ที่มีค่า V_s 260-300 เมตร/วินาที ถึงระดับความลึก 20-25 เมตร</p> <p>ค่าเฉลี่ย $V_{s30} = 122$ เมตรต่อวินาที</p>	

<p><u>ประเภท C1</u></p> <p>ชั้นดินเหนียวแข็งปานกลาง มีความหนาประมาณ 8-10 เมตร มีค่า V_s 80-100 เมตร/วินาที ตามด้วยชั้นดินเหนียวแข็งชั้นแรก และชั้นทรายชั้นแรก มีค่า V_s 200-250 เมตร/วินาที และ 300-350 เมตร/วินาที ตามลำดับ ซึ่งมีความหนาอยู่ที่ระดับ 15-18 เมตร และ 20-22 เมตร ตามลำดับ</p> <p>ค่าเฉลี่ย $V_{s30} = 172$ เมตรต่อวินาที</p>	
<p><u>ประเภท C2</u></p> <p>ชั้นดินเหนียวแข็งปานกลาง มีค่า V_s 80-100 เมตร/วินาที ที่ระดับ 8-10 เมตร ตามด้วยชั้นทรายชั้นแรก และดินเหนียวแข็งมาก มีค่า V_s 280-300 เมตร/วินาที และ 310-350 เมตร/วินาที ตามลำดับ อยู่ที่ระดับความลึก 15-18 เมตร และ 22-25 เมตร ตามลำดับ</p> <p>ค่าเฉลี่ย $V_{s30} = 182$ เมตรต่อวินาที</p>	
<p><u>ประเภท D1</u></p> <p>ชั้นดินเหนียวแข็งปานกลาง มีค่า V_s 160-180 เมตร/วินาที ที่ระดับ 8-10 เมตร ตามด้วยชั้นดินเหนียวแข็งชั้นแรก และชั้นทรายชั้นแรก มีค่า V_s 200-280 เมตร/วินาที และ 280-350 เมตร/วินาที ตามลำดับ</p> <p>ค่าเฉลี่ย $V_{s30} = 229$ เมตรต่อวินาที</p>	


สำหรับ ยานุวิริยะกุล (2552) ได้จัดทำแผนที่แสดงความหนาของชั้นดินเหนียวอ่อน โดยใช้ข้อมูลหลุมเจาะสำรวจ 3,755 หลุม จากนั้นนำข้อมูลมาวิเคราะห์เชิงพื้นที่โดยใช้คุณสมบัติดินในพื้นที่อยู่ 5x5 ตารางกิโลเมตร โดยการกำหนดตำแหน่งสำหรับเป็นตัวแทน การวิเคราะห์เชิงพื้นที่จะพิจารณาให้ตำแหน่งกระจายตัวอยู่ทั่วพื้นที่จำนวน 39 ตำแหน่ง ดังรูปที่ 4.3 มีความหนาของชั้นดินเหนียวอ่อนตั้งแต่ 6-18 เมตร ซึ่งความหนาของชั้นดินเหนียวอ่อน จำแนกโดยใช้ค่ากำลังรับแรงเฉือนของดินแบบไม่ระบายน้ำ (Undrained shear strength, S_u)

รูปที่ 4.3 ความหนาดินเหนียวอ่อนมาก–ดินเหนียวอ่อนบริเวณแอ่งกรุงเทพฯ
(สำนักงานพัฒนาสหศึกษา (สก.) 2552)

จากรูปที่ 4.1 และ 4.3 สังเกตได้ว่า ความหนาของชั้นดินเหนียวอ่อนมากถึงอ่อนน้ำมีความหนามากบริเวณใกล้กับปากอ่าวไทย และค่อยๆลดลงเมื่อ远离ห่างจากปากอ่าวไทยขึ้นไปทางตอนเหนือของแผนที่ บริเวณตอนบนของจังหวัดพระนครศรีอยุธยา แต่เมื่อพิจารณาการเปลี่ยนแปลงความหนาของชั้นดินในทิศตะวันตก-ตะวันออก บริเวณจังหวัดราชบุรี เพชรบุรี นครปฐม สุพรรณบุรี ชลบุรี และฉะเชิงเทรา แล้วจะพบว่า ความหนาของชั้นดินเหนียวอ่อนจะลดลงเร็วกว่าทางตอนเหนือของพื้นที่ศึกษา

ในปี 2004 Tuladhar ได้ศึกษา Seismic Microzonation บริเวณแม่น้ำแม่กก โดยวิธี Microtremor Observation แบบ 1 จุด และนำข้อมูลจากการสำรวจมาวิเคราะห์เพื่อหาค่าคابอิทธิพลหลัก (Predominant period, T_p) ของการสั่นไหวบริเวณผิวดินด้วยวิธี Horizontal to Vertical (H/V) spectral ratio analysis โดยที่ตำแหน่งการสำรวจด้วยวิธี Microtremor Observation กำหนดให้มีระยะห่างกันประมาณ 10 กิโลเมตร โดยมีข้อมูลทั้งหมด 145 ตำแหน่งสำหรับการวิเคราะห์ โดยพบว่าค่า T_p มีค่าค่อนข้างยาวประมาณ 0.8 ถึง 1.2 วินาทีในบริเวณใกล้อ่าวไทยของจังหวัดสมุทรปราการและสมุทรสาคร และมีความสอดคล้องกับความหนาของชั้นดินเหนียวอ่อน ค่า T_p มีค่าประมาณ 0.8 ถึง 1.0 วินาที สำหรับบริเวณตอนกลางของพื้นที่ศึกษา และมีค่าลดลงบริเวณตอนเหนือบริเวณจังหวัดปทุมธานี โดย T_p มีค่าประมาณ 0.7 ถึง 0.8 วินาที จนถึงจังหวัดอยุธยาที่มีค่าต่ำกว่า 0.4 วินาที ค่า T_p ลดลงในด้านตะวันออก และตะวันตกเช่นกัน ผลการเปลี่ยนแปลงค่า T_p แสดงดังรูปที่ 4.4

รูปที่ 4.4 ค่าอิทธิพลหลัก (Predominant period, T_p) บริเวณแม่น้ำแม่กก (Tuladhar, 2004)

4.3 ผลของการรวมข้อมูล

จากข้อมูลหลุมเจาะสำรวจที่รวมรวม ได้ทำการจำแนกลักษณะของชั้นดินโดยใช้พารามิเตอร์ที่สนใจ คือ ค่าการทดสอบฝังจมมาตรฐาน (Standard Penetration Test, SPT) ที่ระดับความลึกต่าง ๆ และค่ากำลังรับแรงเฉือนแบบไม่ระบายน้ำ (Undrained Shear Strength, S_u) เพื่อนำไปจำแนกประเภทชั้นดินเหมือนกัน ซึ่งค่า SPT ที่ระดับความลึกต่าง ๆ นี้จะนำมาทำการหาค่าเฉลี่ยจากผิวถึงระดับความลึก โดยมีเป้าหมายที่ 30 เมตร และหากหลุมเจาะตื้นกว่า 30 เมตร จะทำการหาค่าเฉลี่ยตามข้อมูลที่ได้ เช่น การหาค่าเฉลี่ย SPT ที่ระดับความลึก (\bar{N}) ใช้การคำนวณดังสมการที่ 4.1

$$\bar{N} = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{N_i}} \quad (4.1)$$

โดยที่ N_i เป็นค่าการทดสอบฝังจมมาตรฐาน สำหรับชั้นดินทราย ดินเหนียว และหิน ชั้นดินที่ i

d_i เป็นความหนา สำหรับชั้นดินทราย ดินเหนียว และหิน ชั้นดินที่ i

n เป็น จำนวนชั้นดิน ในช่วงความลึกที่พิจารณา

ค่า S_u นำมาใช้ในการจำแนกชั้นดินเหมือนกับเป็นประเภทต่าง ๆ ดังแสดงในตารางที่ 4.2 ซึ่งมีความสัมพันธ์กับค่า Unconfined compressive strength ดังสมการที่ 4.2

$$S_u = Q_u/2 \quad (4.2)$$

โดยที่ $S_u = \text{Undrained shear strength (T/m}^2\text{)}$

$Q_u = \text{Unconfined compressive strength (T/m}^2\text{)}$

ที่มา : Braja M.Das, 2008

ตารางที่ 4.2 ความสัมพันธ์ระหว่าง SPT, Q_u กับความแข็งแรงของดินเหนียว

SPT (N) (blows/ft)	Unconfined compressive strength, Q_u (T/m^2)	Consistency
< 2	< 2.5	very soft
2 – 4	2.5 – 5.0	soft
4 – 8	5.0 – 10.0	medium stiff
8 – 15	10.0 – 20.0	stiff

SPT (N) (blows/ft)	Unconfined compressive strength, Q_u (T/m ²)	Consistency
15 – 30	20.0 – 40.0	very stiff
> 30	> 40.0	hard

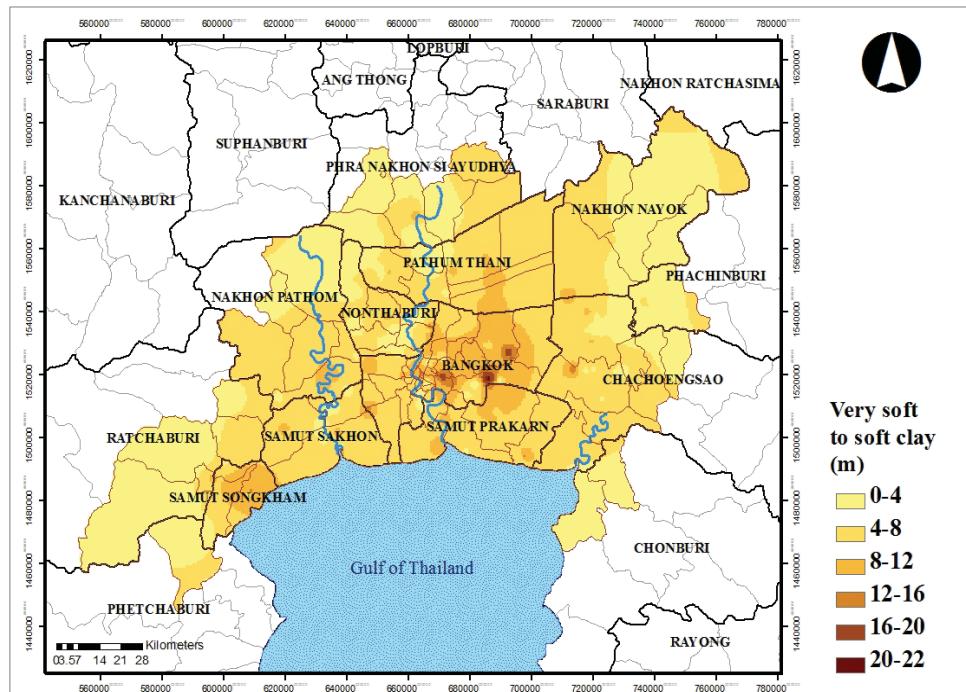
ที่มา : http://www.gerd.eng.ku.ac.th/Cai/Ch16/ch162_theory.htm

ในการศึกษาให้ความสนใจต่อชั้นดินเหนียวอ่อน (Soft Clay) และชั้นดินเหนียวอ่อนมาก (Very Soft Clay) เนื่องจากเป็นชั้นดินเหนียวที่มีความสามารถในการแผ่ขยายคลื่นแผ่นดินไหวได้ในบริเวณกรุงเทพฯและปริมณฑล ดังนั้น เมื่อนำเกณฑ์จากตารางที่ 4.2 และความสัมพันธ์กับสมการที่ 4.2 มาใช้พิจารณาหาค่าความหนาของชั้นดินเหนียวจากข้อมูลผลการเจาะสำรวจดิน จึงพิจารณาเฉพาะค่า S_u ที่มีค่าไม่เกิน 2.5 ตันต่อตารางเมตร หรือ Q_u ที่มีค่าไม่เกิน 5 ตันต่อตารางเมตร (เกณฑ์ของชั้นดินเหนียวอ่อน ดังตารางที่ 4.2) แล้วนำค่าความหนาของชั้นดินเหนียวในแต่ละพื้นที่ที่ได้นั้น ไปจัดทำฐานข้อมูลในรูปของแผนที่ของพื้นที่ศึกษา

จากข้อมูลของหลุมเจาะสำรวจที่รวบรวมได้ และตำแหน่งของหลุมเจาะที่ได้จากการอ้างอิงในข้อมูลได้ถูกนำมาประมวลผล และแสดงเป็นรูปแผนที่ของค่าที่เปลี่ยนแปลงของบริเวณที่ทำการศึกษา โดยนำเสนอด้วยรูปของ แผนที่แสดงผลของค่าเฉลี่ย SPT ที่ระดับความลึกต่างๆ ในพื้นที่ทำการศึกษา และ แผนที่แสดงผลของความหนาของชั้นดินเหนียวประเภทต่างๆ โดยใช้ค่า S_u เป็นพารามิเตอร์ในการจำแนกชั้นดิน

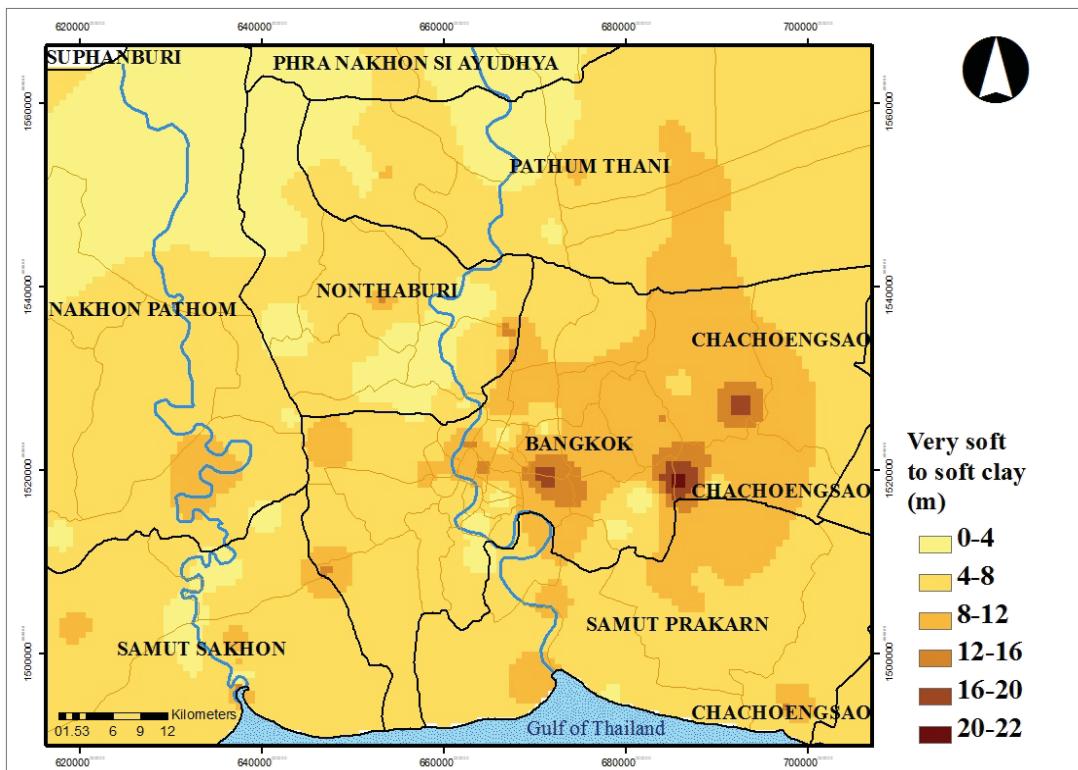
ในการจำแนกชั้นดินเพื่อประโยชน์ในการศึกษาด้านแผ่นดินไหว “ได้อ้างอิงกับมาตรฐานการจำแนกประเภทชั้นดินของมาตรฐานการออกแบบอาคารต้านท่านการสั่นสะเทือนของแผ่นดินไหว (มยพ. 1302, 2552) ดังตารางที่ 4.3

ตารางที่ 4.3 การจำแนกประเภทชั้นดินตาม มยพ.1302 (พ.ศ. 2552)


ประเภทชั้นดิน	Shear wave velocity*	SPT*	Undrained Shear Strength*
A	> 1500 เมตรต่อวินาที	-	-
B	750 - 1500 เมตรต่อวินาที	-	-
C	360 - 750 เมตรต่อวินาที	> 50	> 100 กิโลปascal
D	180 - 360 เมตรต่อวินาที	15 - 50	50 - 100 กิโลปascal
E	< 180 เมตรต่อวินาที มีชั้นดินที่มีความหนามากกว่า 3 เมตร ที่มีคุณสมบัติดังนี้ Plasticity Index (PI) > 20 Moisture Content (w) > 40% $S_u < 25$ กิโลปascal	< 15	< 50 กิโลปascal

* ใช้ค่าเฉลี่ยถึงระดับความลึก 30 เมตรจากผิวดิน

พื้นที่ที่ทำการศึกษาประกอบด้วย 3 พื้นที่หลัก ๆ ได้แก่ (ก) บริเวณแอ่งกรุงเทพฯ (ได้แก่ กรุงเทพฯ นนทบุรี ปทุมธานี นครปฐม สมุทรสาคร สมุทรปราการ สมุทรสงคราม ราชบุรี เพชรบุรี อุบลราชธานี นครนายก ฉะเชิงเทรา ชลบุรี และปราจีนบุรี) (ข) กาญจนบุรี และ (ค) เชียงใหม่ จากการรวบรวมข้อมูลพารามิเตอร์เกี่ยวกับคุณสมบัติของดินซึ่งประกอบด้วย ค่าการทดสอบผังจมมารฐาน (Standard penetration test, SPT) และกำลังรับแรงเฉือนแบบไม่ระบายน้ำ (Undrained shear strength, S_u) ของพื้นที่ที่ทำการศึกษาทั้ง 3 พื้นที่หลัก จากนั้นนำข้อมูลที่ได้มาสร้างเป็นฐานข้อมูลในรูปของแผนที่ ซึ่งการศึกษาวิจัยได้ผลดังนี้

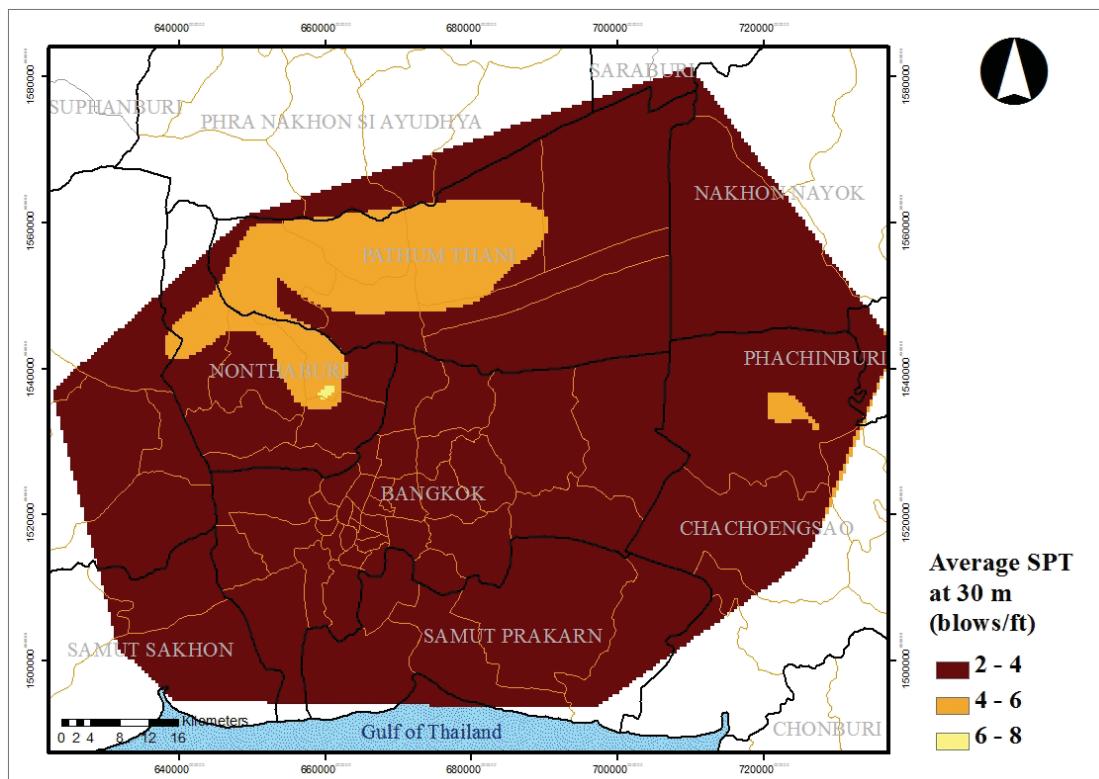

ก) กรุงเทพมหานครและปริมณฑล

จากผลการศึกษาบริเวณแม่น้ำกรุงเทพฯ โดยมีพื้นที่ที่ใช้ในการศึกษาที่จำนวน 265 จุด พบว่า เมื่อจำแนกพื้นที่ตามด้วยค่า S_p ที่มีค่าตั้งแต่ 0-2.5 ต้นต่อตารางเมตร ซึ่งจัดเป็นดินประเภทดินเหนียวอ่อนมาก-ดินเหนียวอ่อน ได้ผลคือ ความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อน มีค่าตั้งแต่ 0-20 เมตร ซึ่งความหนาของดินเหนียวอ่อนมาก-ดินเหนียวอ่อน จะมากบริเวณพื้นที่ที่ใกล้กับอ่าวไทย เมื่อสูงขึ้นไปทางเหนือของแม่น้ำกรุงเทพฯ พบว่าความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อน จะค่อยๆลดลง จนกระทั่งไม่มีความหนาของชั้นดินเหนียวอ่อนเลย ในพื้นที่ของจังหวัดพระนครศรีอยุธยา แต่สังเกตพบว่าการเปลี่ยนแปลงความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อน ในแนวทิศตะวันตก-ตะวันออก บริเวณจังหวัดเพชรบุรี ราชบุรี นครปฐม สุพรรณบุรี ชลบุรี และฉะเชิงเทรา มีอัตราการเปลี่ยนแปลงความหนาของชั้นดินเหนียวอ่อนเร็วกว่า เมื่อเปรียบเทียบกับอัตราการเปลี่ยนแปลงความหนาของชั้นดินเหนียวอ่อนในแนวทิศเหนือ-ใต้ ดังแสดงในรูปที่ 4.5

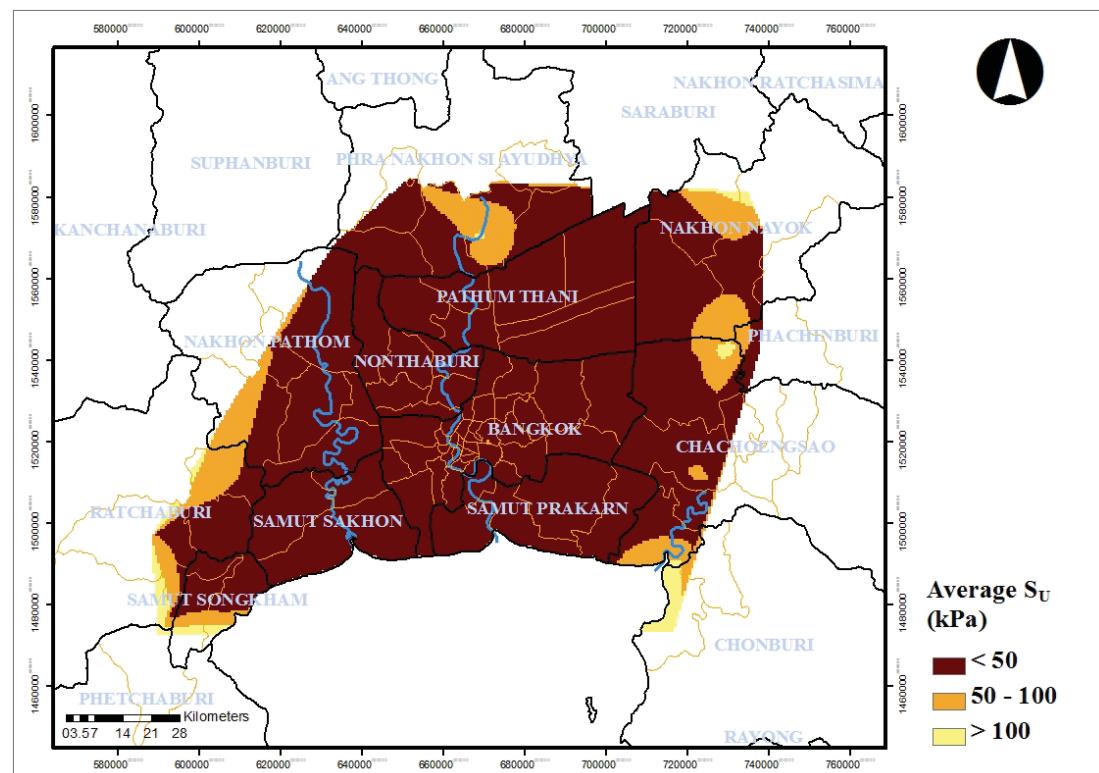
รูปที่ 4.5 แผนที่แสดงความหนาชั้นดินเหนียวอ่อนมาก – ดินเหนียวอ่อน บริเวณกรุงเทพฯ และปริมณฑล

เมื่อพิจารณาในพื้นที่ศูนย์กลางของพื้นที่กรุงเทพฯ และปริมณฑล แสดงดังรูปที่ 4.6 พบว่าพื้นที่ส่วนใหญ่ของกรุงเทพฯ และปริมณฑล มีความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อน ประมาณ 4-16 เมตร และพบว่าพื้นที่ทางตอนกลางของกรุงเทพมหานคร เลยไปทางทิศตะวันออกมีความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อน 20 เมตร และมีบางจุดที่มีความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อนถึง 22 เมตร

รูปที่ 4.6 แผนที่แสดงความหนาชั้นดินเหนียวอ่อนมาก บริเวณกรุงเทพฯ และปริมณฑล


เมื่อนำผลการศึกษาที่ได้มาเปรียบเทียบกับผลการวิจัยของ Tuladhar ในเรื่องการแบ่งความหนาของชั้นดินเหนียวอ่อนตามประเภทชั้นดินต่างๆ และเปรียบเทียบกับผลของ สำนักงานทรัพยากรดูแลฯ ในเรื่องของการจำแนกความหนาของชั้นดินเหนียวอ่อนบริเวณแอ่งกรุงเทพฯ สามารถสรุปได้ดังตารางที่ 4.4

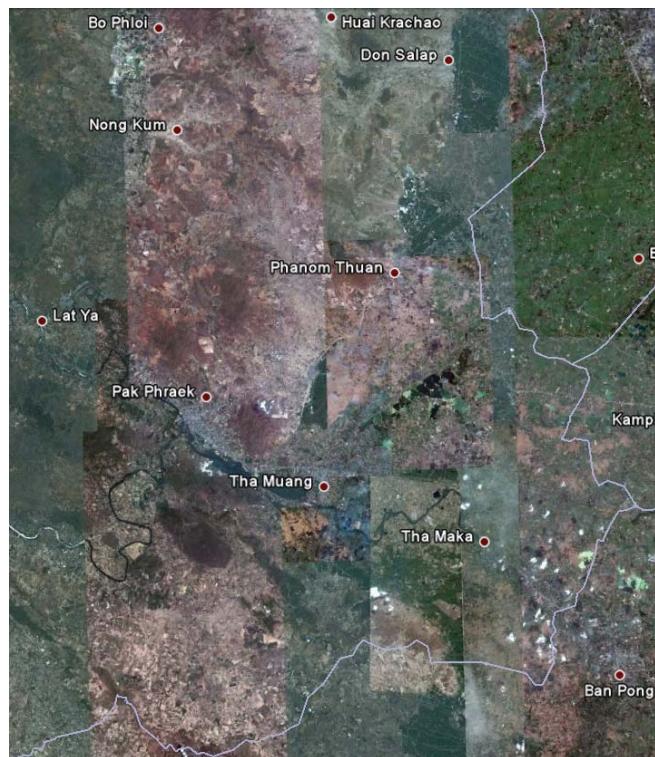
ตารางที่ 4.4 การเปรียบเทียบผลการศึกษาความหนาของชั้นดินเหนียวอ่อนมาก-ดินเหนียวอ่อนในเขต กทม และปริมณฑล


ประเภท	ผลจากข้อมูลงานนี้	Tuladhar (2003)	สำนักงานทรัพยากรดูแลฯ (พ.ศ. 2552)
A1	ดินเหนียวอ่อน 8-16 เมตร	ดินเหนียวอ่อน 16-20 เมตร	ดินเหนียวอ่อน 14-18 เมตร
A2	ดินเหนียวอ่อน 12-16 เมตร	ดินเหนียวอ่อน 14-16 เมตร	ดินเหนียวอ่อน 12-16 เมตร

ประเภท	ผลจากข้อมูลงานที่	Tuladhar (2003)	จำนวน (พ.ศ. 2552)
	บางบริเวณหนา 20-22 เมตร		
A3	ดินเหนียวอ่อน 8-16 เมตร	ดินเหนียวอ่อน 15-17 เมตร	ดินเหนียวอ่อน 14-18 เมตร
B1	ดินเหนียวอ่อน 8-16 เมตร	ดินเหนียวอ่อน 12-14 เมตร	ดินเหนียวอ่อน 12-16 เมตร
B2	ดินเหนียวอ่อน 8-16 เมตร	ดินเหนียวอ่อน 10-12 เมตร	ดินเหนียวอ่อน 2-14 เมตร
B3	ดินเหนียวอ่อน 4-12 เมตร	ดินเหนียวอ่อน 12-14 เมตร	ดินเหนียวอ่อน 10-16 เมตร
C1	ดินเหนียวอ่อนน้อยกว่า 4 เมตรหรือไม่มีความหนาของดินเหนียวอ่อน	ไม่พบความหนาของชั้นดินเหนียวอ่อน	ดินเหนียวอ่อน 0-4 เมตร
C2	ดินเหนียวอ่อนน้อยกว่า 4 เมตรหรือไม่มีความหนาของดินเหนียวอ่อน	ไม่พบความหนาของชั้นดินเหนียวอ่อน	ดินเหนียวอ่อน 0-4 เมตร
D1	ดินเหนียวอ่อนน้อยกว่า 4 เมตรหรือไม่มีความหนาของชั้นดินเหนียวอ่อนเลย	ไม่พบความหนาของชั้นดินเหนียวอ่อน	ไม่พบความหนาของชั้นดินเหนียวอ่อน
D2	ดินเหนียวอ่อนน้อยกว่า 4 เมตรหรือไม่มีความหนาของชั้นดินเหนียวอ่อนเลย	ไม่พบความหนาของชั้นดินเหนียวอ่อน	ไม่พบความหนาของชั้นดินเหนียวอ่อน

เมื่อจำแนกประเภทชั้นดินตามมาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ.1302, 2552) พบว่า พื้นที่บริเวณจังหวัดสมุทรปราการ กรุงเทพฯ สมุทรสาคร นนทบุรี ปทุมธานี และบางพื้นที่ของจังหวัดนครปฐม จัดอยู่ในประเภท E ตามมาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ.1302, 2552) โดยมีค่า SPT อยู่ในช่วง 2-4 ครั้งต่อฟุต ซึ่งน้อยกว่า 15 ครั้งต่อฟุต และค่า S₃₀ มีค่ามากกว่า 50 กิโลปascal ดังแสดงในรูปที่ 4.7 และ 4.8 ตามลำดับ

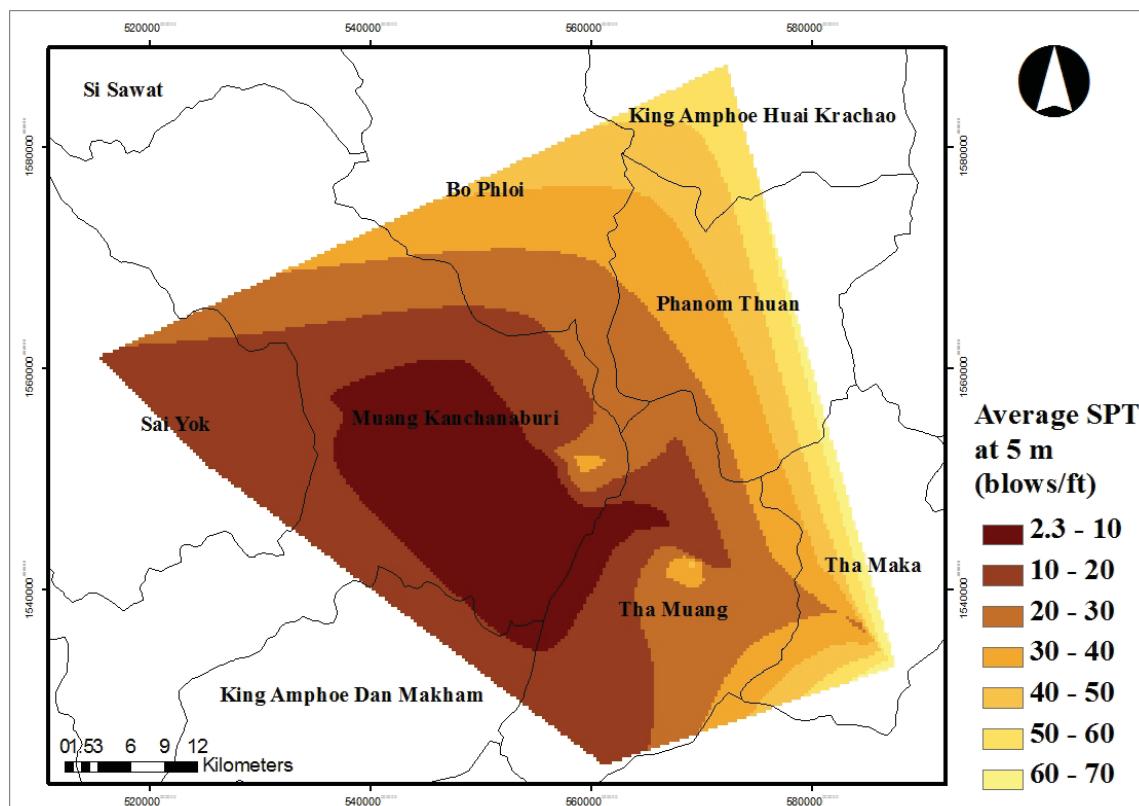
รูปที่ 4.7 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 30 เมตร บริเวณกรุงเทพฯและปริมณฑล



รูปที่ 4.8 ค่าเฉลี่ยกำลังรับแรงเฉือนแบบไม่ระบายน้ำ ที่ความลึกจากผิวถึง 30 เมตร

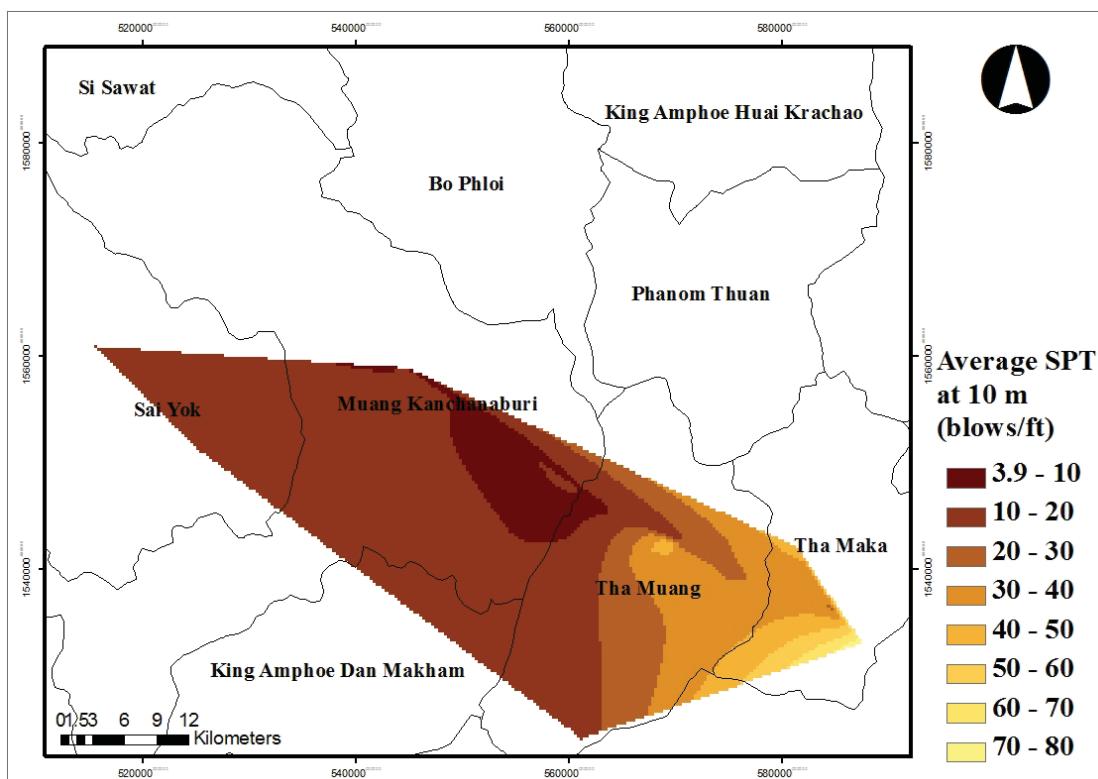
เมื่อพิจารณาพื้นที่โดยรอบกรุงเทพฯ จังหวัดสมุทรสาคร สมุทรปราการ และปทุมธานีแล้ว พบว่า มีค่าเฉลี่ย S_b อยู่ในช่วง 50-100 กิโลปascal และมีค่ามากกว่า 100 กิโลปascal ในบริเวณพื้นที่รอบๆ ขอบของข้อมูลที่ใช้ศึกษาได้แก่ จังหวัดชลบุรี เพชรบุรี ราชบุรี และนครปฐม หากพิจารณาเพียงค่าเฉลี่ย S_b พื้นที่ดังกล่าวนี้จะถูกจัดอยู่ในประเภท D ถึง C ตามมาตรฐานการอภิแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว (มยพ.1302, 2552) ซึ่งไม่สอดคล้องกับค่าเฉลี่ย SPT ที่มีค่า น้อยกว่า 15 ครั้งต่อฟุต ที่บ่งบอกว่าพื้นที่บริเวณดังกล่าวควรถูกจัดให้อยู่ในประเภท E

ข) จังหวัดกาญจนบุรี

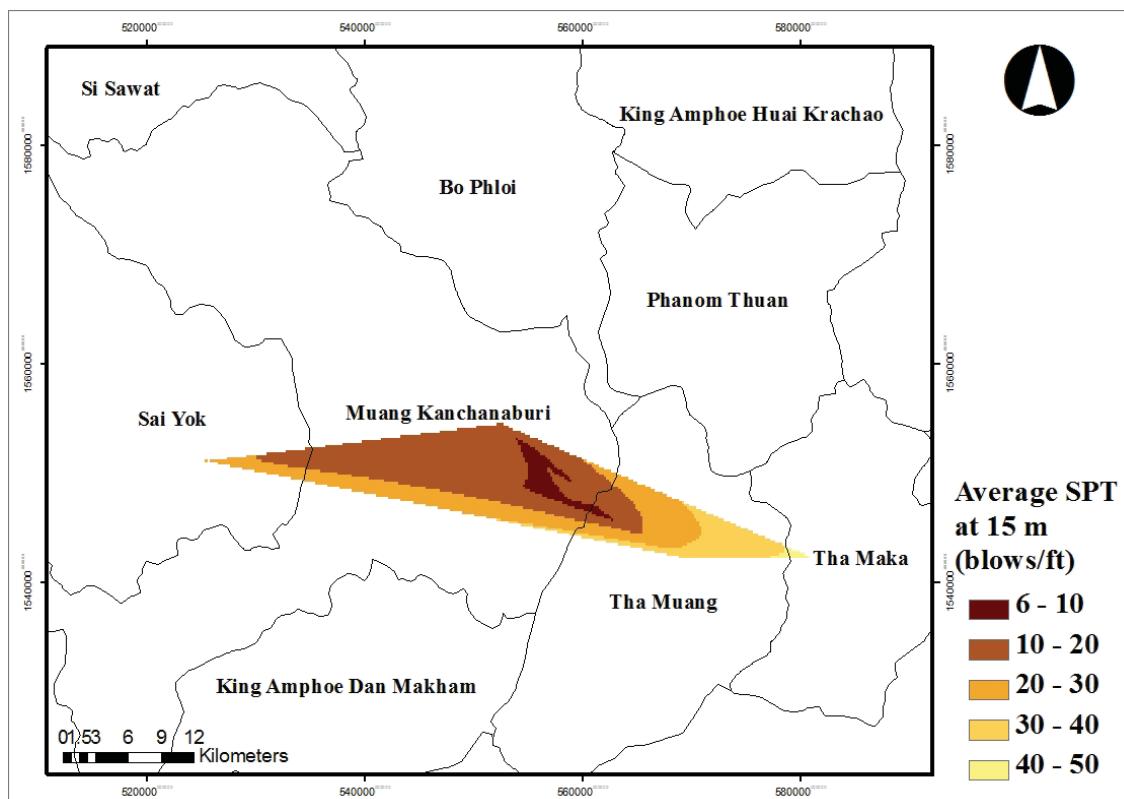

จังหวัดกาญจนบุรีตั้งอยู่ในภาคตะวันตกของประเทศไทย ลักษณะภูมิประเทศโดยทั่วไปมีแนวเขายื่นทางตะวันตกและทางตอนเหนือของจังหวัด มีแม่น้ำแควตัดผ่าน และมีแนวเขากลัดกับแม่น้ำแคว ซึ่งอยู่ในบริเวณที่มีชุมชนหนาแน่น สำหรับพื้นที่ที่อยู่ห่างจากชุมชนมีลักษณะโดยส่วนใหญ่ เป็นพื้นที่โล่ง ดังแสดงในรูปที่ 4.9

รูปที่ 4.9 ลักษณะทางภูมิประเทศของจังหวัดกาญจนบุรี

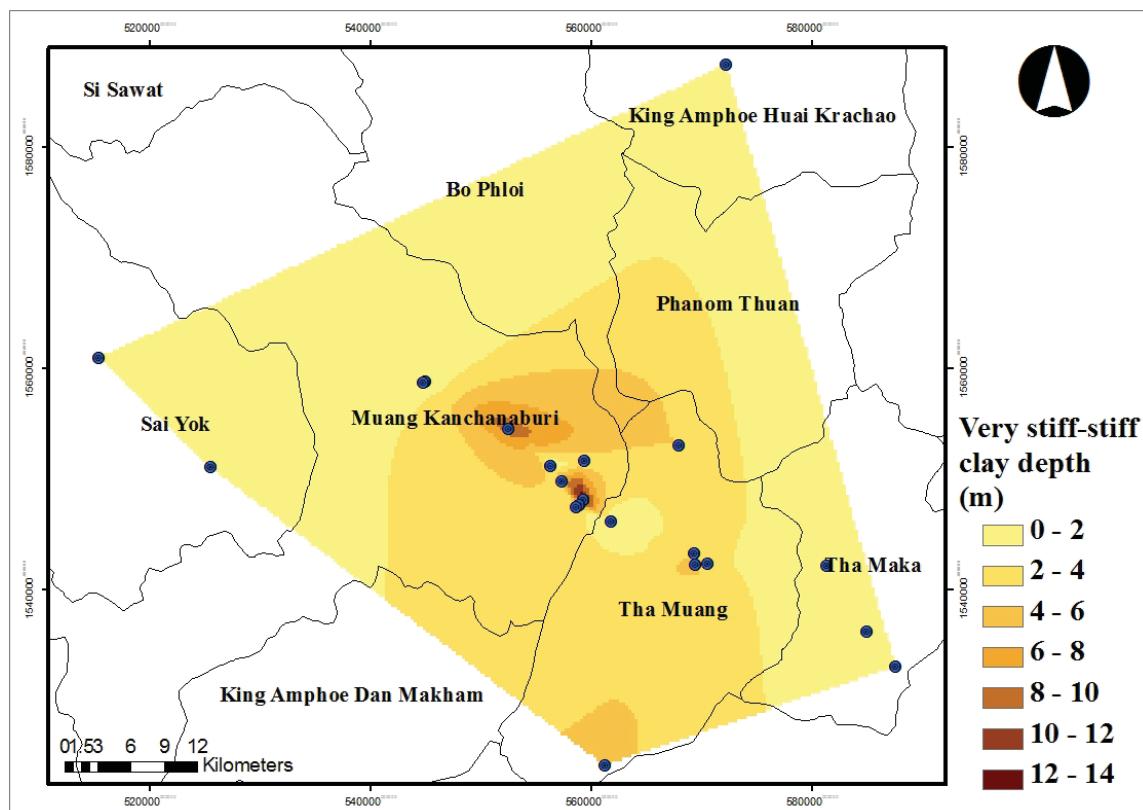
จากการศึกษาในพื้นที่จังหวัดกาญจนบุรี โดยการรวบรวมข้อมูลหลุมเจาะทั้งหมด จำนวน 21 ข้อมูล ครอบคลุมพื้นที่อำเภอไทรโยค อำเภอเมือง อำเภอท่าเมือง อำเภอท่ามะกา และกิ่งอำเภอห้วยกระเจา แล้วนำมาจัดทำฐานข้อมูลในรูปของแผนที่โดยใช้พารามิเตอร์เกี่ยวกับคุณสมบัติของดิน


ได้แก่ ค่า SPT และค่า R_p เนื่องจากข้อมูลหลุมเจาะที่รวบรวมได้มีระดับความลึกไม่ถึง 30 เมตร การเปรียบเทียบค่าเฉลี่ย SPT ในแต่ละระดับความลึก จึงแบ่งเป็น 3 ระดับ ได้แก่ 5 เมตร 10 เมตร และ 15 เมตร ดังรูปที่ 10 - 12 ตามลำดับ และความหนาของชั้นดินเห็นยิ่งมาก-ดินเห็นยิ่งแสดงดังรูปที่ 13 ซึ่งการจำแนกชั้นดินพื้นที่จังหวัดกาญจนบุรีนี้ จำแนกด้วยค่า S_p ที่มีค่าไม่เกิน 20 ตันต่ำต่ำาระเมตร กล่าวคือ คิดความหนาของชั้นดินเห็นยิ่งนี้จะนรทั่งทั้งชั้นดินประเภท very stiff clay และไม่สามารถจำแนกประเภทตามมาตรฐาน อย. 1302 ได้ ซึ่งเป็นข้อจำกัดของการจำแนกประเภทจากหลุมเจาะ ดังนั้น จึงเป็นการศึกษาลักษณะของชั้นดินในภาพรวมของพื้นที่เท่านั้น เมื่อพิจารณาค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 5 เมตร พบว่าพื้นที่อำเภอเมืองมีค่าเฉลี่ย SPT น้อยกว่า 10 ครั้งต่อฟุต จากนั้นค่าเฉลี่ย SPT จะเพิ่มขึ้นเมื่อยกจากอำเภอเมือง ไปในพื้นที่อำเภอไทรโยค บ่อพลอย พนมทวน ท่ามะกา ท่าม่วง และกิ่งอำเภอหัวยกระเจา จนมีค่าสูงสุดถึง 70 ครั้งต่อฟุต บริเวณอำเภอท่ามะกาและกิ่งอำเภอหัวยกระเจา ดังรูปที่ 4.10

รูปที่ 4.10 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 5 เมตร


เมื่อพิจารณาค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10 เมตร เนื่องจากสภาพดินส่วนใหญ่ในพื้นที่จังหวัดกาญจนบุรี เป็นดินแข็ง ทำให้มีอิฐสำร่องไปแล้วมากต่อการหาค่า SPT จำนวนข้อมูลที่ใช้ในการวิเคราะห์จึงมีจำนวนลดลง จากผลการศึกษาพบว่า บริเวณอำเภอเมืองที่ระดับความลึกจากผิวถึง 5 เมตร มีค่าเฉลี่ย SPT น้อยกว่า 10 ครั้งต่อฟุต ในระดับความลึกจากผิว

ถึง 10 เมตร ก็ยังคงพบว่าพื้นที่เดียวกันนี้ยังมีค่าเฉลี่ย SPT น้อยกว่า 10 ครั้งต่อฟุตเช่นเดิม แต่พื้นที่มีขนาดเล็กลง พื้นที่อำเภอเมืองส่วนที่เหลือ และอำเภอไทรโยค มีค่าเฉลี่ย SPT ประมาณ 10 – 20 ครั้งต่อฟุต เมื่อพื้นที่อยู่ห่างจากอำเภอเมืองออกไป ค่าเฉลี่ย SPT มีค่าเพิ่มขึ้นไปทางทิศตะวันออกเฉียงใต้ของจังหวัด บริเวณอำเภอท่ามะกา ซึ่งมีค่าสูงถึง 70-80 ครั้งต่อฟุต แสดงดังรูปที่ 4.11


รูปที่ 4.11 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10 เมตร

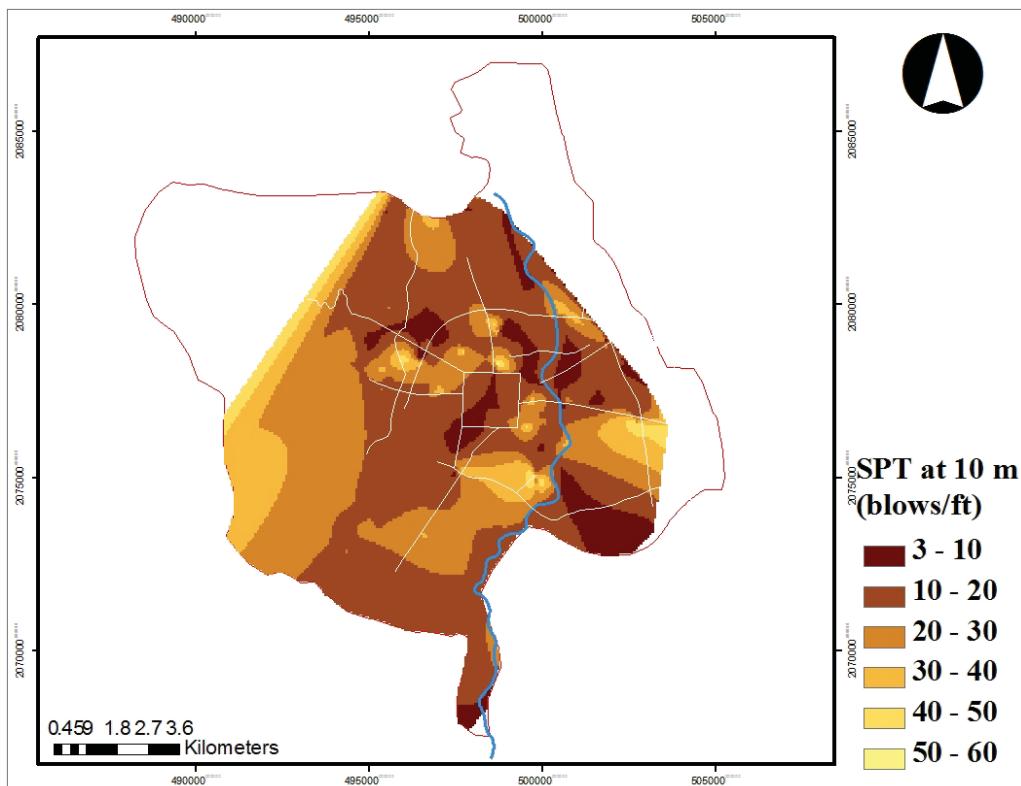
เมื่อพิจารณาค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 15 เมตร ซึ่งอยู่ในพื้นที่อำเภอเมือง อำเภอไทรโยค อำเภอท่าม่วง และอำเภอท่ามะกาบางส่วน มีจำนวนข้อมูลที่ใช้ในการวิเคราะห์อยู่จำนวนน้อย แต่แนวโน้มของผลการศึกษายังคงมีลักษณะที่คล้ายกัน กล่าวคือ มีบางพื้นที่ของอำเภอเมืองที่มีค่าเฉลี่ย SPT ต่ำกว่า 10 ครั้งต่อฟุต โดยพื้นที่มีขนาดเล็กลง แต่พื้นที่ส่วนใหญ่ของอำเภอเมืองมีค่าประมาณ 10 – 20 ครั้งต่อฟุต ค่าเฉลี่ย SPT มีค่าเพิ่มขึ้นไปทางอำเภอท่าม่วงและอำเภอท่ามะกา มีค่าเฉลี่ย SPT 40 – 50 ครั้งต่อฟุตบริเวณอำเภอท่ามะกา และมีค่า 20 - 40 ครั้ง บริเวณอำเภอท่าม่วง สำหรับพื้นที่อำเภอไทรโยค มีค่าเฉลี่ย SPT ประมาณ 10 – 30 ครั้งต่อฟุต ดังแสดงในรูปที่ 4.12

รูปที่ 4.12 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 15 เมตร

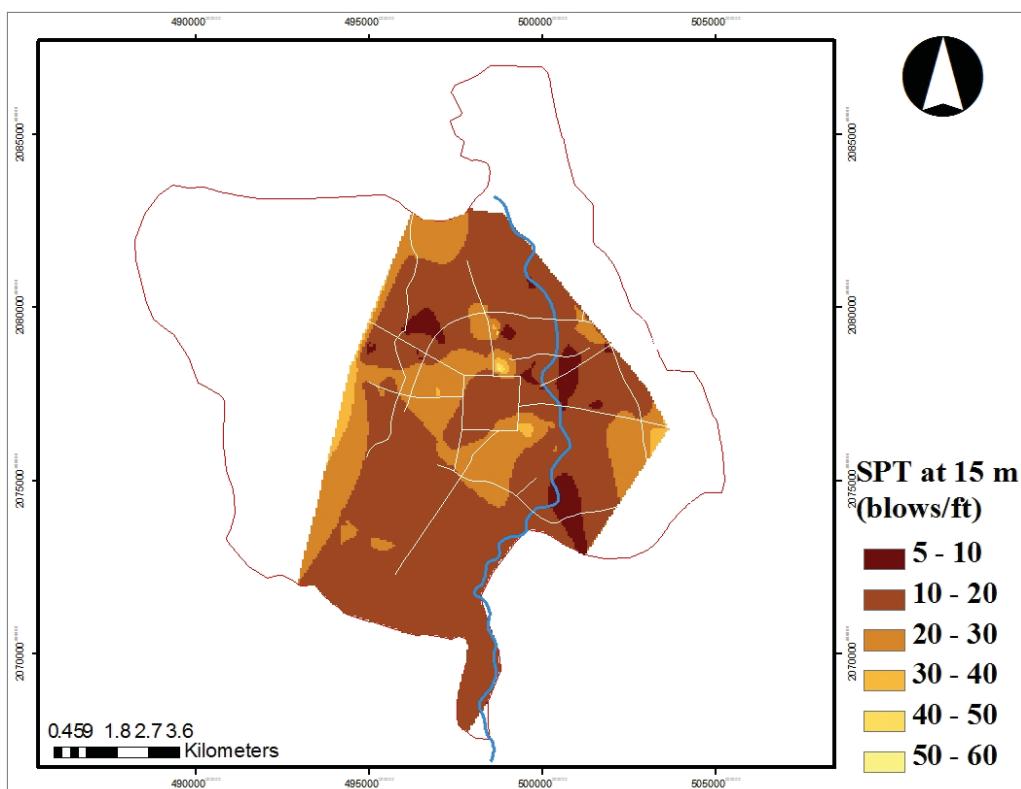

เมื่อพิจารณาความหนาของชั้นดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็ง โดยใช้ค่า S_U ที่มีค่าต่ำกว่า 20 ตันต่อมตร. ผลการศึกษาพบว่า บริเวณที่มีความหนาของดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็ง มากกว่า 10 เมตร พบรอยในบริเวณอำเภอเมือง จากนั้นความหนาจะมีค่าลดลงจนกระทั่งมีความหนาน้อยกว่า 2 เมตรบริเวณอำเภอไทรโยค บ่อพلوย กิ่งอำเภอหัวยกระเจา ท่ามะกา และบางพื้นที่ของอำเภอพนมทวน ได้ผลดังแสดงในรูปที่ 4.13 หากเปรียบเทียบความหนาของชั้นดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็ง กับค่าเฉลี่ย SPT แล้วพบว่ามีแนวโน้มสอดคล้องกันกล่าวคือ บริเวณที่มีความหนาของดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็ง มากกว่า 10 เมตรซึ่งอยู่บริเวณอำเภอเมือง มีค่าเฉลี่ย SPT ที่ต่ำกว่า 10 ครั้งต่อฟุต ที่ระดับความลึกจากผิวถึง 5 เมตร และมีค่า น้อยกว่า 20 ครั้งต่อฟุต ที่ระดับความลึกจากผิวถึง 10 เมตร และ 15 เมตร ตามลำดับ สำหรับพื้นที่ที่ห่างจากอำเภอเมือง ความหนาของชั้นดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็งมีค่าลดลง แต่มีค่าเฉลี่ย SPT ที่เพิ่มขึ้น เนื่องจากดินเริ่มแข็งขึ้น ได้แก่ บริเวณอำเภอท่าม่วง ซึ่งมีความหนาน้อยกว่า 4 เมตร มีค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 5 เมตร, 10 เมตร, และ 15 เมตร ตามลำดับ ประมาณ 10-40 ครั้งต่อฟุต และอำเภอท่ามะกาที่มีความหนาน้อยกว่า 2 เมตร มีค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 5 เมตร และ 10 เมตร ประมาณ 40-70 ครั้งต่อฟุต และมีค่า 40-50 ครั้งต่อฟุต ที่ระดับความลึกจากผิวถึง 15 เมตร ดังแสดงในรูปที่ 10-12 ตามลำดับ

รูปที่ 4.13 ความหนาของชั้นดินเหนี่ยวแข็งมาก-ดินเหนี่ยวแข็ง

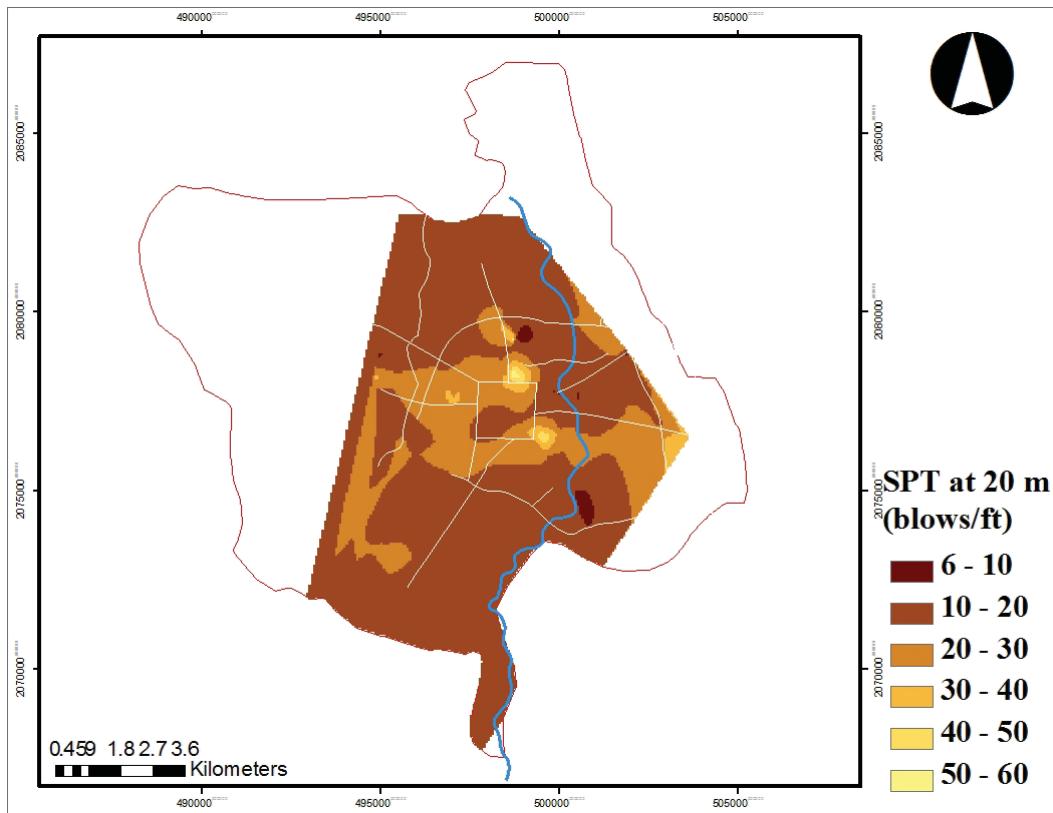
ค) จังหวัดเชียงใหม่


จังหวัดเชียงใหม่ตั้งอยู่ทางภาคเหนือของประเทศไทย มีแม่น้ำปิงไหลผ่าน และในอำเภอเมืองมีคูน้ำล้อมรอบเป็นลักษณะสี่เหลี่ยมจัตุรัส สำหรับบริเวณที่ใช้ในการศึกษา คือบริเวณอำเภอเมือง มีแนวเข้าอยู่ทางทิศตะวันตกของอำเภอเมือง และมีแม่น้ำปิงไหลผ่านทางทิศตะวันออกของคุเมือง แสดงดังรูปที่ 4.14

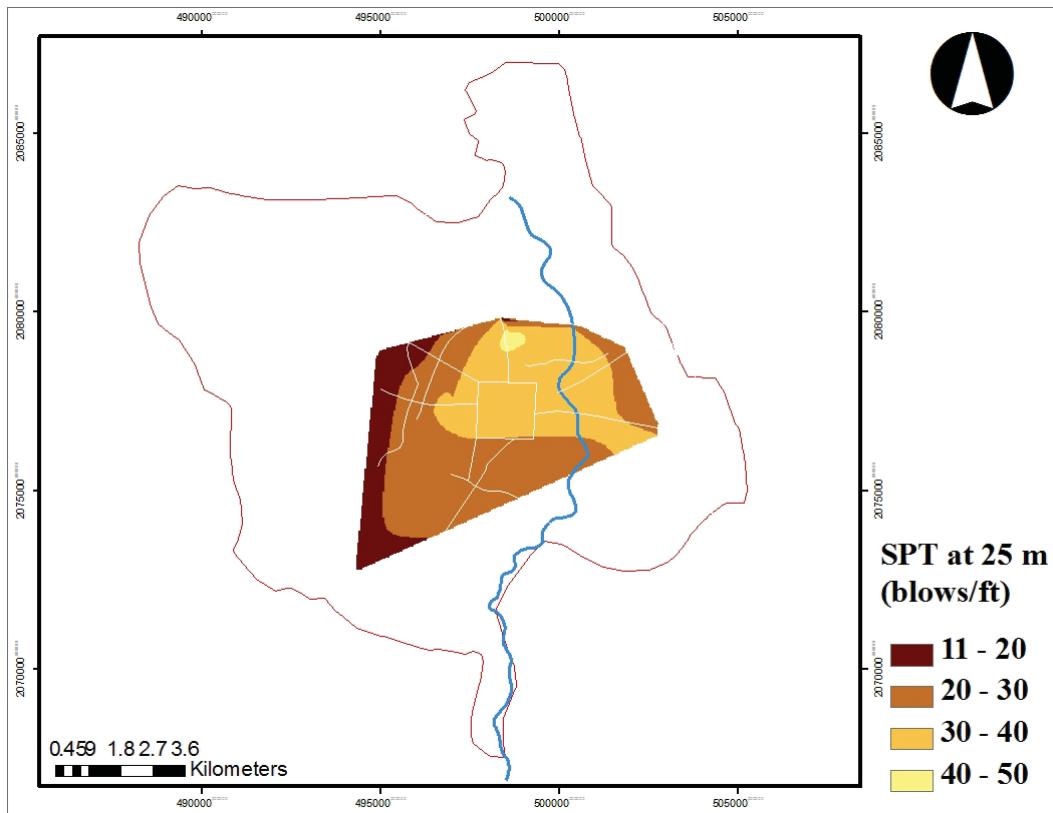
รูปที่ 4.14 ลักษณะภูมิประเทศบริเวณอำเภอเมืองเชียงใหม่


ในการศึกษาพื้นที่จังหวัดเชียงใหม่ ได้ทำการรวบรวมข้อมูลหลุมเจาะสำรวจจำนวนทั้งสิ้น 274 ข้อมูล ครอบคลุมพื้นที่อำเภอเมืองเชียงใหม่ แล้วจำแนกพารามิเตอร์ตามคุณสมบัติของดิน ได้แก่ ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10, 15, 20, และ 25 เมตร เนื่องจากระดับที่ใช้ในการว量ปลายเสาเข็มของงานก่อสร้างในจังหวัดเชียงใหม่มอยู่ที่ระดับ 8-22 เมตร และค่า S_u เพื่อใช้สำหรับแบ่งความหนาของชั้นดิน ซึ่งใช้ค่าไม่เกิน 20 ตันต่อตารางเมตร กล่าวคือ พิจารณาความหนาของชั้นดินจนถึงชั้น very stiff clay

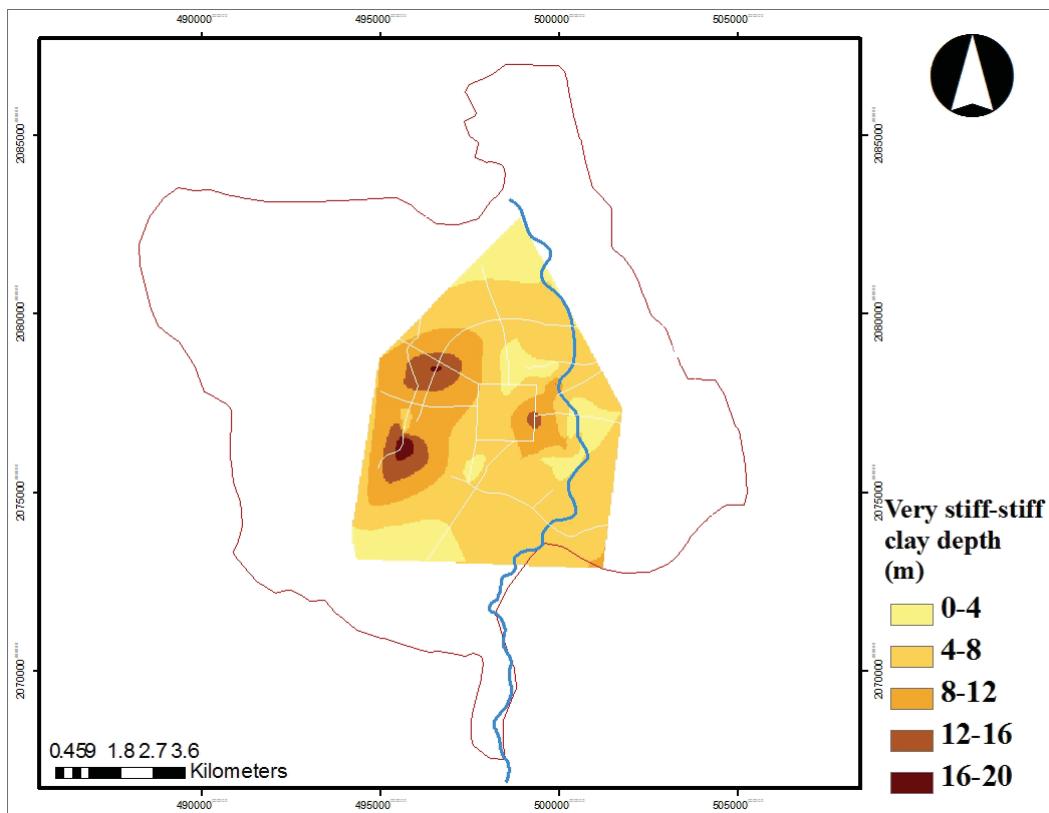
เมื่อพิจารณาความสัมพันธ์ระหว่างค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10, 15, 20 และ 25 เมตร ตามลำดับ กับความหนาของชั้นดินเห็นiyawแข็งมาก-ดินเห็นiyawแข็ง พบร่วมกับค่าเฉลี่ย SPT ที่ระดับ 10 เมตร มีค่าน้อยกว่า 10 ครั้งต่อฟุต บริเวณเมือง และบริเวณที่ใกล้กับแม่น้ำปิง และค่าเฉลี่ย SPT เพิ่มขึ้นถึงประมาณ 60 ครั้งต่อฟุตเมื่อเข้าใกล้เชิงเขาบริเวณตำบลลสุเทพ (ทิศตะวันตกของอำเภอเมือง) และบริเวณตำบลล่าคลา (ทิศตะวันออกของอำเภอเมือง) และพบว่ามีบางจุดบริเวณทางเหนือและตะวันออกเฉียงใต้ของคุเมือง มีค่าเฉลี่ย SPT สูงถึง 50-60 ครั้งต่อฟุต ดังแสดงในรูปที่ 4.15


รูปที่ 4.15 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10 เมตร

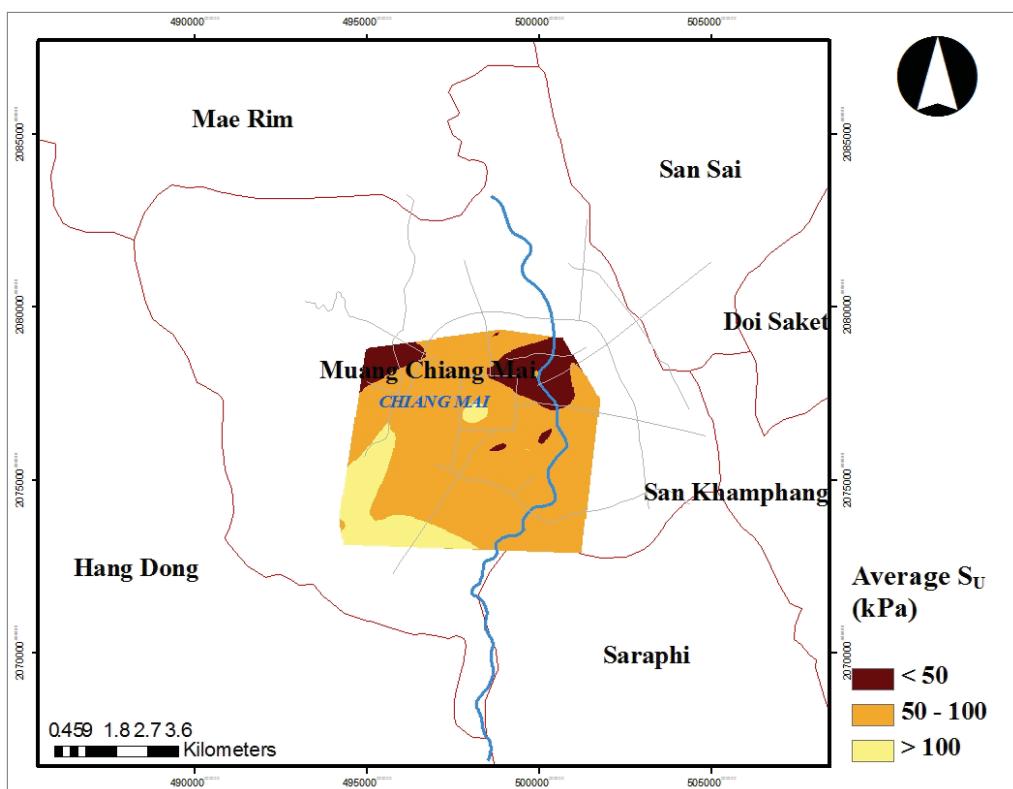
เมื่อพิจารณาค่าเฉลี่ย SPT ที่ความลึกจากผิวถึง 15 เมตร แนวโน้มยังคงมีลักษณะที่คล้ายกับค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10 เมตร โดยมีค่าเฉลี่ย SPT ต่ำกว่า 10 ครั้งต่อฟุตบริเวณที่ใกล้กับแม่น้ำปิง และบริเวณที่ใกล้กับบ่อน้ำในเขตตำบลลช้างเผือก สำหรับบริเวณตำบลลสุเทพ ใกล้เชิงเขา มีค่าเฉลี่ย SPT ประมาณ 30-40 ครั้งต่อฟุต เช่นเดียวกับบริเวณตำบลท่าศาลา สำหรับพื้นที่ส่วนใหญ่มีค่าเฉลี่ย SPT ประมาณ 10-20 ครั้งต่อฟุต และพบว่ามีบางจุดบริเวณทางเหนือและตะวันออกเฉียงใต้ของคุเมือง มีค่าเฉลี่ย SPT สูงถึง 50-60 ครั้งต่อฟุต ดังแสดงในรูปที่ 4.16


รูปที่ 4.16 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 15 เมตร

เมื่อพิจารณาค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 20 เมตร พบว่ามีพื้นที่ใกล้กับแม่น้ำปิงบางพื้นที่ที่มีค่าเฉลี่ย SPT ต่ำกว่า 10 ครั้งต่อฟุต และพื้นที่บริเวณลำลูกกาและแม่น้ำปิงที่มีค่าเฉลี่ย SPT ประมาณ 20-30 ครั้งต่อฟุต สำหรับพื้นที่ส่วนใหญ่ของอำเภอเมืองมีค่าเฉลี่ย SPT ประมาณ 10-20 ครั้งต่อฟุต และพบว่าพื้นที่ทางเหนือและตะวันออกเฉียงใต้ของคุ้มเมือง มีค่าเฉลี่ย SPT สูงถึง 50-60 ครั้งต่อฟุต ดังแสดงในรูปที่ 4.17


รูปที่ 4.17 ค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 20 เมตร

เมื่อพิจารณาค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 25 เมตร พบร่วมบริเวณรอบคุเมือง มีค่าเฉลี่ย SPT ประมาณ 30-40 ครั้งต่อฟุต โดยบริเวณตอนเหนือของคุเมืองมีบางจุดที่มีค่าสูงถึง 40-50 ครั้งต่อฟุต ค่าเฉลี่ย SPT มีค่าลดลง เมื่อเข้าใกล้เชิงเขาริเวณตำบลลสุเทพโดยมีค่าเฉลี่ย SPT ประมาณ 20 ครั้งต่อฟุต ซึ่งมีค่าที่น้อยกว่า เมื่อเปรียบเทียบกับค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 10, 15, และ 20 เมตร ตามลำดับ ดังแสดงในรูปที่ 4.18


รูปที่ 4.18 แผนที่แสดงค่าเฉลี่ย SPT ที่ระดับความลึกจากผิวถึง 25 เมตร

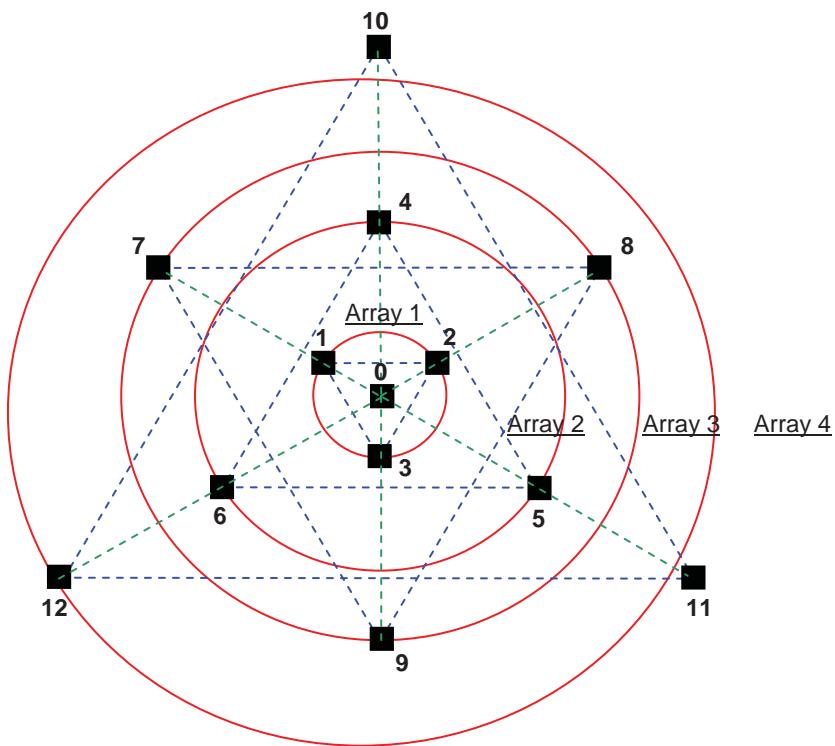
เมื่อพิจารณาความหนาของชั้นดินเหนียวแข็งมาก-ดินเหนียวแข็ง ซึ่งจำแนกโดยใช้ค่า S_{PT} ต่ำกว่า 20 ตันต่ำตาร่างเมตร กล่าวคือ พิจารณาความหนาของดินเหนียวถึงชั้น very stiff clay ผลการศึกษาพบว่าความหนาของดินเหนียวแข็งมาก-ดินเหนียวแข็ง มีค่าระหว่าง 0-20 เมตร เมื่อพิจารณาในแต่ละพื้นที่พบว่าบริเวณตะวันออกของคุณเมืองมีความหนาประมาณ 8-16 เมตร และบริเวณตำบลสุเทพ ใกล้กับเชียงเข้า มีความหนาประมาณ 8-20 เมตร แต่สำหรับพื้นที่โดยทั่วไปของอำเภอเมืองเชียงใหม่ มีความหนาประมาณ 4-8 เมตร แสดงดังรูปที่ 4.19

รูปที่ 4.19 ความหนาของชั้นดินเหนียวแข็งมาก-ดินเหนียวแข็ง

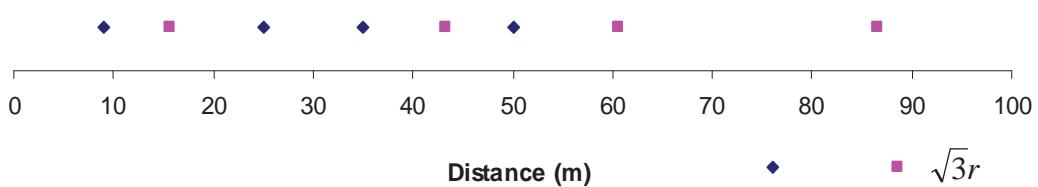
เมื่อพิจารณาค่าเฉลี่ย S_u พบว่าบริเวณทางตะวันออกเฉียงเหนือของคุเมือง และบางพื้นที่ใกล้กับมหาวิทยาลัยเชียงใหม่ มีค่าเฉลี่ย S_u ประมาณ 18-50 กิโลปascal แนวโน้มของค่าเฉลี่ย S_u มีค่าเพิ่มขึ้นไปทางทิศตะวันตกเฉียงใต้ของอำเภอเมืองเชียงใหม่ โดยค่าเฉลี่ย S_u ส่วนใหญ่ของพื้นที่มีค่าประมาณ 50-100 กิโลปascal และมีค่าสูงสุดประมาณ 150-200 กิโลปascal บริเวณใกล้กับสนามบินเชียงใหม่ ดังแสดงในรูปที่ 4.20

รูปที่ 4.20 ค่าเฉลี่ยกำลังรับแรงเฉือนแบบไม่ระบายน้ำ ที่ความลึกจากผิวถึง 30 เมตร (S_u)

4.4 พื้นที่ศึกษาภาคสนาม


พื้นที่ในการศึกษารังนี้ประกอบด้วย 2 กลุ่มหลัก คือ พื้นที่กรุงเทพมหานครและจังหวัดไอล์เดียง และพื้นที่จังหวัดเชียงใหม่และไอล์เดียง โดยที่ กลุ่มที่ 1 ครอบคลุม 17 จังหวัดในพื้นที่ภาคกลางตอนล่าง ได้แก่ พระนครศรีอยุธยา ปทุมธานี นนทบุรี นครนายก กรุงเทพมหานคร นครปฐม ปราจีนบุรี ฉะเชิงเทรา สมุทรปราการ สมุทรสงคราม สมุทรสาคร เพชรบุรี ราชบุรี ชลบุรี ยะลา กาญจนบุรี และสุพรรณบุรี ส่วนกลุ่มที่ 2 คือจังหวัดเชียงใหม่และบางส่วนของจังหวัดลำพูน

4.5 ขั้นตอนการวิจัย


4.3.1 การเก็บข้อมูลภาคสนาม

ในการเก็บข้อมูลภาคสนาม ใช้วิธีตรวจวัดคลื่นขนาดเล็กบนผิวดิน (Microtremor) แบบ 1 ชุด สำหรับการประเมินหาค่าความอิทธิพลหลัก (Dominant Period) และใช้วิธี SPAC เพื่อใช้ประเมินหาค่าความเร็วเฟส ด้วยวิธี SPAC โดยรูปแบบการวางหัววัดเพื่อเก็บข้อมูลสำหรับ วิธี SPAC คือรูปสามเหลี่ยมด้านเท่า โดยใช้หัววัด 4 หัวพร้อมกัน และจัดเรียงเป็น Array ที่มีรัศมีต่างๆ กัน รวม 4 Array ดังเช่นในรูปที่ 4.21 ตัวอย่างการเก็บข้อมูล เช่น ใน Array 1 ใช้สัญญาณจาก

หัวดัดที่คุกันระหว่างตัวแทนกลางกับตัวแทนที่มุ่งลงสามเหลี่ยมซึ่งมีระยะห่างกันเท่ากับ r มาคำนวณ Spac coefficient ได้จำนวน 3 คู่ คือระหว่าง หัวดัด 0 กับ 1 หัวดัด 0 กับ 2 และหัวดัด 0 กับ 3 นอกจากนี้ ยังสามารถใช้สัญญาณจากคู่ของหัวดัดที่วางอยู่บนมุ่งลงสามเหลี่ยมที่มีระยะห่าง $\sqrt{3}r$ มาคำนวณ Spac coefficient ได้อีกจำนวน 3 คู่ คือระหว่าง หัวดัด 1 กับ 2 หัวดัด 2 กับ 3 และหัวดัด 3 กับ 1 ทำให้ได้ข้อมูล 2 รัศมี ๆ ละ 3 ชุด จากการตรวจวัดหนึ่งครั้ง เมื่อตรวจวัดเสร็จสิ้นแล้วจึงทำการเปลี่ยนแปลงขนาดของ Array เพื่อให้ได้การตรวจวัดที่ครอบคลุมช่วงความยาวคลื่นต่าง ๆ ได้ โดยที่การตรวจวัดส่วนมากในการศึกษานี้ได้เลือก Array ที่มีรัศมี r คือ 9.00 เมตร 25.00 เมตร 35.00 เมตร และ 50.00 เมตร และได้ข้อมูลสำหรับระยะ $\sqrt{3}r$ คือ 15.59 เมตร 43.30 เมตร 60.62 เมตร และ 86.60 เมตร จากการใช้รัศมีการตรวจวัดดังกล่าวทำให้มีขนาดของ Array เพื่อใช้คำนวณ Spac coefficient รวม 8 รัศมี และมีการกระจายตัวของระยะค่อนข้างสม่ำเสมอแสดงดังรูปที่ 4.22

รูปที่ 4.21 การจัดเรียง Array ในการเก็บข้อมูล

รูปที่ 4.22 การกระจายตัวของระยะทางระหว่างหัวดัดในรูปแบบที่ใช้ศึกษา

4.6 อุปกรณ์ในการวิจัย

งานวิจัยนี้เป็นการศึกษาคุณลักษณะบริเวณที่ตั้งของชั้นดินด้วยการตรวจวัด โดยใช้การตรวจวัดแบบ Microtremor ซึ่งเป็นการตรวจวัดการสั่นสะเทือนขนาดเล็กที่พื้นผิวดิน ที่เกิดขึ้นเนื่องจากการกระตุ้นตามธรรมชาติและไม่ได้ใช้แหล่งกระตุ้นจากภายนอกได้ ดังนั้น เครื่องมือที่ใช้ในการตรวจวัดจะต้องมีความสามารถในการตรวจวัดที่ระดับการสะเทือนต่ำมาก ได้ เครื่องมือที่ใช้ในงานวิจัยนี้คือ อุปกรณ์วัดความเร็ว (Velocity Sensor) ซึ่งใช้ 2 ชุด ชุดแรกสำหรับโครงข่ายขนาดเล็กที่มีรัศมีประมาณ 50 ถึง 60 เมตร และชุดที่สองสำหรับโครงข่ายขนาดใหญ่รัศมีหลายร้อยเมตร

4.6.1 อุปกรณ์สำหรับโครงข่ายขนาดเล็ก

1. อุปกรณ์รับข้อมูล (Data Acquisition Instrument)

อุปกรณ์รับข้อมูลเป็นรุ่น GEODAS-10-24DS ดังรูปที่ 4.23 ซึ่งพัฒนาโดย Buttan Service Co,Ltd. ของประเทศญี่ปุ่นและมีคุณสมบัติของเครื่องดังตารางที่ 4.5

รูปที่ 4.23 อุปกรณ์รับข้อมูล (Data Acquisition Instrument) GEODAS-10-24DS

ตารางที่ 4.5 คุณสมบัติของอุปกรณ์รับข้อมูล GEODAS-10-24DS

จำนวนช่องสัญญาณวัด	8 หรือ 24 ช่อง
A/D Conversion Method	$\Delta - \Sigma$ Over Sampling (ทุกช่องสัญญาณที่วัดพร้อมกัน)

A/D Resolution/Dynamic Range	24 Bit
A/D Conversion Speed (Stationary)	50kHz
Signal Voltage(Full Scale)	± 2.5 V.
Sampling Rate (Frequency)	50/100/200/500/1K/2K Hz
Pre-Amplifier Impedance	$10 k\Omega$
Pre-Amplifier Gain	0/20/40/dB
Low-Pass Filter	12.4/50/150/0 Hz
แหล่งจ่ายไฟ	DC.12 V.
ปริมาณไฟฟ้าที่ใช้	36 VA(Maximum)
อุณหภูมิที่เหมาะสม	10-45 องศาเซลเซียส
ความชื้นสัมพัทธ์	20-80%
ขนาด (กว้างxยาวxสูง)	367x270x90 (mm.)
น้ำหนัก	5 kg.

2. หัววัดสัญญาณ (Sensor)

หัววัดสัญญาณเป็นรุ่น CR4.5-2S ดังรูปที่ 4.24 ซึ่งพัฒนาโดย Buttan Service Co,Ltd. ของประเทศไทย ใช้ได้ร่วมกับอุปกรณ์รับข้อมูล ซึ่งสามารถวัดทิศทางการสั่นได้ 3 ส่วน (Component) คือ 1 แนวตั้ง และ 2 แนวระนาบ มีคุณสมบัติของเครื่องดังตารางที่ 4.6

รูปที่ 4.24 หัววัดสัญญาณ (Sensor) CR4.5-2S

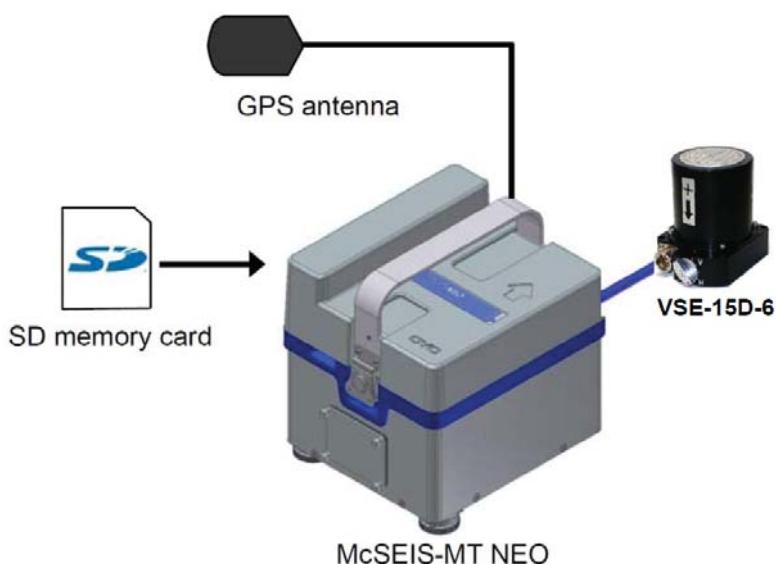
ตารางที่ 4.6 คุณสมบัติของหัวดัชน้ำวน (Sensor) CR4.5-2S

จำนวนทิศทางที่วัดได้ (Component)	3 (1 แนวตั้งและ 2 แนวระนาบ)
Element	4
Coil Reactance	$4 \text{ k}\Omega$
Natural Period (Frequency)	2 s(0.5Hz)
Sensitivity	1.0V./cm/s
Available Frequency Range	0.5-20 Hz (-3dB)
Available Stroke	$\pm 1 \text{ mm.}$
แหล่งจ่ายไฟ	DC.12 V. (จาก GEODAS)
ขนาด (กว้างxยาวxสูง)	100x100x105 (mm.)
น้ำหนัก	1.2 kg.

4.6.2 อุปกรณ์สำหรับโครงข่ายขนาดใหญ่

- หัวดัชน้ำสั่นสะเทือนแบบวัดความเร็ว รุ่น VSE-15D-6 ผลิตโดยบริษัท Tokyo Sokushin ประเทศญี่ปุ่น ทำหน้าที่ตรวจจับการสั่นสะเทือนที่ตำแหน่งที่ติดตั้งในรูปของความเร็ว โดยมีคุณลักษณะที่สำคัญดังตารางที่ 4.7

ตารางที่ 4.7 คุณลักษณะของหัวดัชน้ำสั่นสะเทือนแบบวัดความเร็ว

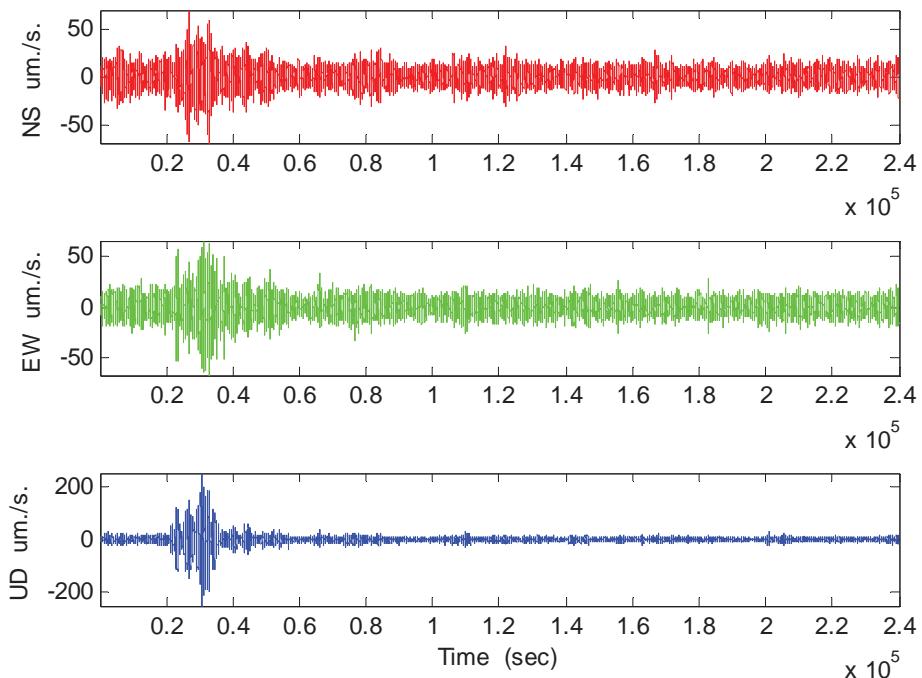

Frequency range	0.1 to 70 Hz.
Mode of operation	Horizontal, Vertical (switchable)
Max. measuring range	$\pm 0.1 \text{ m/s}$
Max. output voltage	$\pm 10 \text{ V}$
Linearity	0.03% of full scale
Resolution	Approximately $2 \times 10^{-8} \text{ m/s}^2$
Dynamic range	Approximately 140 dB
Temperature range	-10 to 50 °C
Dimension	55x69.5x72 mm

- อุปกรณ์ขยายสัญญาณและบันทึกข้อมูลการสั่นสะเทือน รุ่น McSEIS-MT NEO ผลิตโดยบริษัท OYO Cooperation ประเทศญี่ปุ่น ทำหน้าที่รับสัญญาณจากหัวดัชน้ำสั่นสะเทือนมาเพื่อขยายกำลัง แปลงให้เป็นข้อมูลเชิงดิจิตัล และบันทึกลงการ์ดความจำ (Memory card)

นอกจากนั้นยังทำหน้าที่บันทึกเวลาที่ตรวจวัดด้วยความคลาดเคลื่อนไม่เกิน 1/100 วินาที และบันทึกตำแหน่งที่ตั้งหัววัดโดยการรับสัญญาณกับระบบดาวเทียม GPS โดยมีคุณลักษณะที่สำคัญดังตารางที่ 4.8

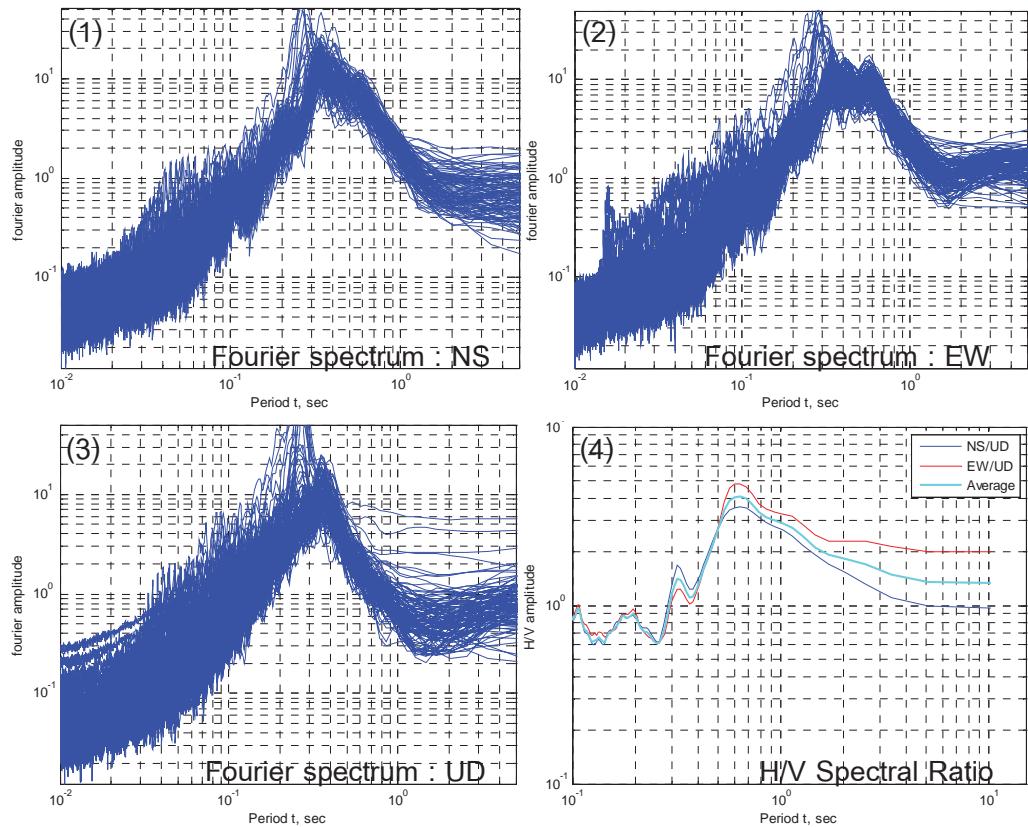
ตารางที่ 4.8 คุณลักษณะของอุปกรณ์ขยายสัญญาณและบันทึกข้อมูลการสั่นสะเทือน

Built-in sensor	Servo accelerometer (vertical)
Dynamic range	120 dB
System dynamic range	156 dB
Frequency band	0.1 to 200 Hz.
A/D convertor	32-bit delta sigma type
Sampling time	2, 4, 10, 20, 50 ms
Indicator	128x64 dots monochrome LCD
Dynamic range	Approximately 140 dB
Temperature range	-10 to 50 °C
Dimension	55x69.5x72 mm
Power supply	Built-in lead-acid battery 12V, 7.2 Ah
Consumption current	500 mA
Temperature range	-20 to 55 °C
Dimension	250x220x245 mm
Weight	Approximately 7.5 kg


รูปที่ 4.25 ชุดอุปกรณ์การตรวจวัดคลื่นขนาดเล็กที่ผิวดิน

ชุดอุปกรณ์การตรวจวัดคลื่นขนาดเล็กที่ผิด din แสดงดังรูปที่ 4.25 และ โดยในการศึกษานี้ ประกอบด้วยชุดอุปกรณ์จำนวน 3 ชุด ใช้ตรวจวัดคลื่นขนาดเล็กที่ผิด din พร้อมกันเป็นโครงข่าย โดย แต่ละชุดวางห่างกันด้วยระยะห่างที่กำหนด และปรับเวลาที่บันทึกสัญญาณคลื่นที่วัดแต่ละชุดให้ ตรงกันด้วยค่าเวลาจากระบบดาวเทียม GPS

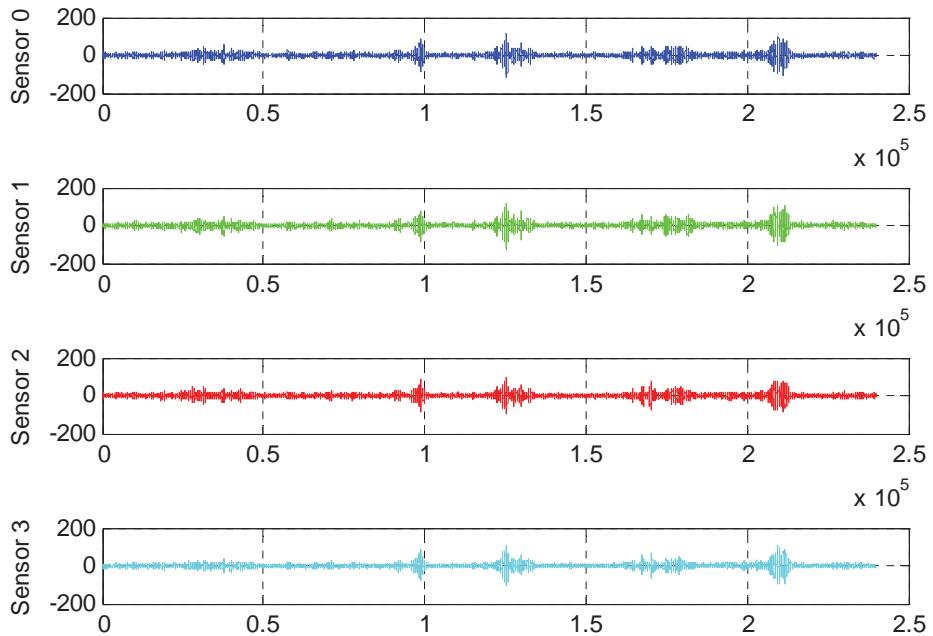
4.7 การวิเคราะห์หาค่าค่าบอทธิพลดลักษณะ


ในการวิเคราะห์หาค่าค่าบอทธิพลดลักษณะ โดยวิธี H/V Spectrum Ratio มีขั้นตอนการ วิเคราะห์ดังต่อไปนี้

1. ตรวจวัดคลื่นขนาดเล็กบนผิด din แบบ 1 จุด ซึ่งมีองค์ประกอบ 3 แกน ได้แก่ แกน ราบ 2 แกน และแกนดิ่ง 1 แกน โดยข้อมูลที่ได้จากการตรวจวัดอยู่ในรูปของ Time Domain ดังรูปที่ 4.26

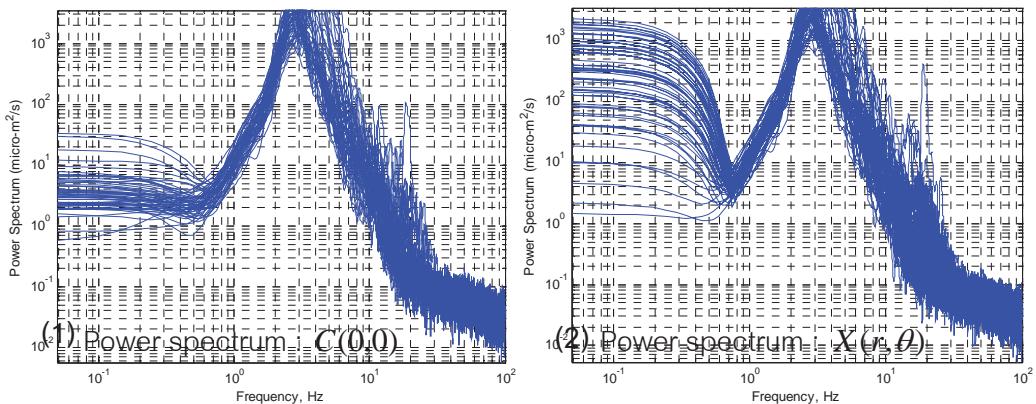
รูปที่ 4.26 ข้อมูลที่ได้จากการตรวจวัดทั้ง 3 แกน

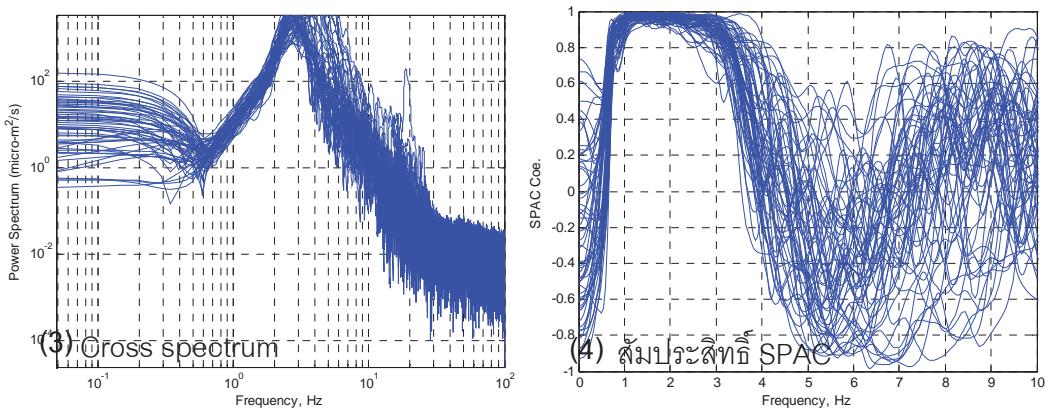
2. คำนวณขนาดของฟูเรียร์สเปกตรัมของคลื่นในแนวเหนือ-ใต้, แนวตะวันออก-ตะวันตก และแนวตั้ง จากนั้นนำขนาดของฟูเรียร์สเปกตรัมทั้ง 3 แกนมาคำนวณหาค่าค่าบอทธิพลดลักษณะด้วยสมการที่ 3.1 ได้ผลดังรูปที่ 4.27 ซึ่งเป็นความสัมพันธ์ระหว่างขนาดของ H/V Spectral Ratio และค่าเวลา



รูปที่ 4.27 ขั้นตอนนวิเคราะห์หาค่าค่าบอิทธิพลหลัก

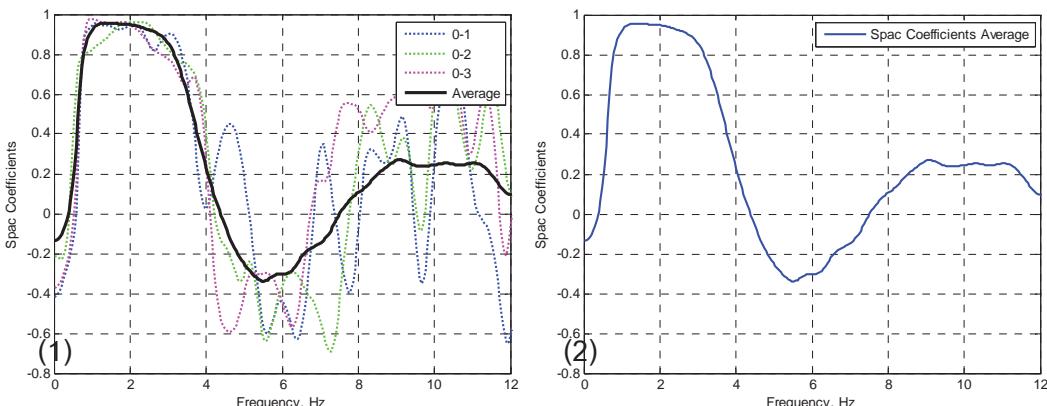
4.8 การวิเคราะห์ค่าสัมประสิทธิ์ SPAC


ขั้นตอนการวิเคราะห์หาค่า สัมประสิทธิ์ SPAC มีขั้นตอนดังต่อไปนี้


1. ข้อมูลที่ใช้ในการวิเคราะห์หาค่า สัมประสิทธิ์ SPAC นั้นมาจากข้อมูลที่มีองค์ประกอบในแนวเด่นนั้น ซึ่งมีทั้งหมด 4 ชุด และอยู่ในรูปของ Time Domain ดังแสดงในรูปที่ 4.28

รูปที่ 4.28 องค์ประกอบของคลื่นในแนวตั้ง

2. นำข้อมูลแต่ละคู่มาคำนวณหาค่า Power Spectrum ที่ตำแหน่งกึ่งกลาง $C(0,0)$, Power Spectrum ที่ตำแหน่ง r ของวงกลม $X(r, \theta)$ และ Cross Spectrum ระหว่าง $u(t; \omega, 0, 0)$ และ $u(t; \omega, r, \theta)$ ซึ่งมีทั้งหมด 3 กราฟต่อหัววัด 1 คู่ จากนั้นคำนวณหาค่าสัมประสิทธิ์ SPAC ด้วยสมการที่ 3.23 ดังแสดงในรูปที่ 4.29

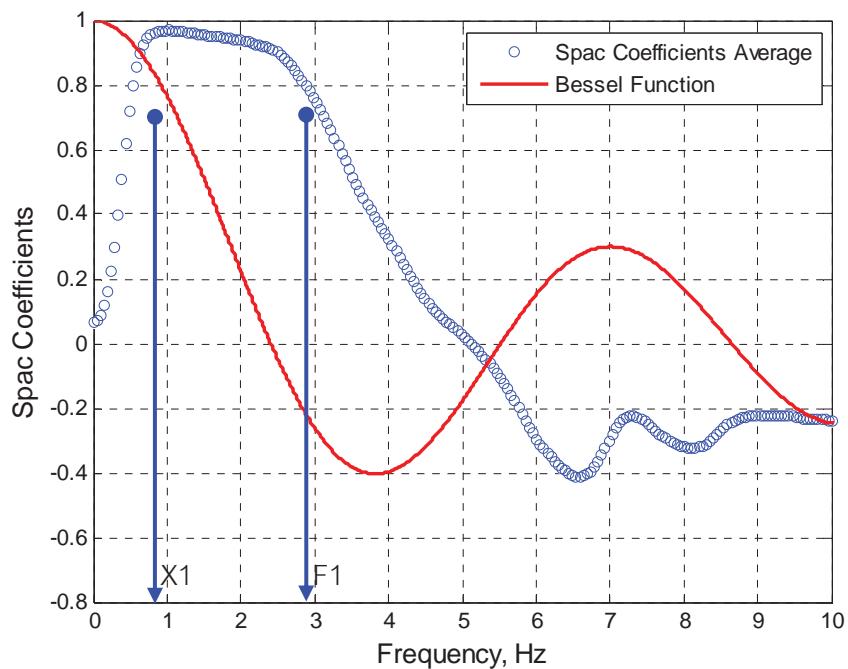


รูปที่ 4.29 ขั้นตอนวิเคราะห์หาค่าสัมประสิทธิ์ SPAC

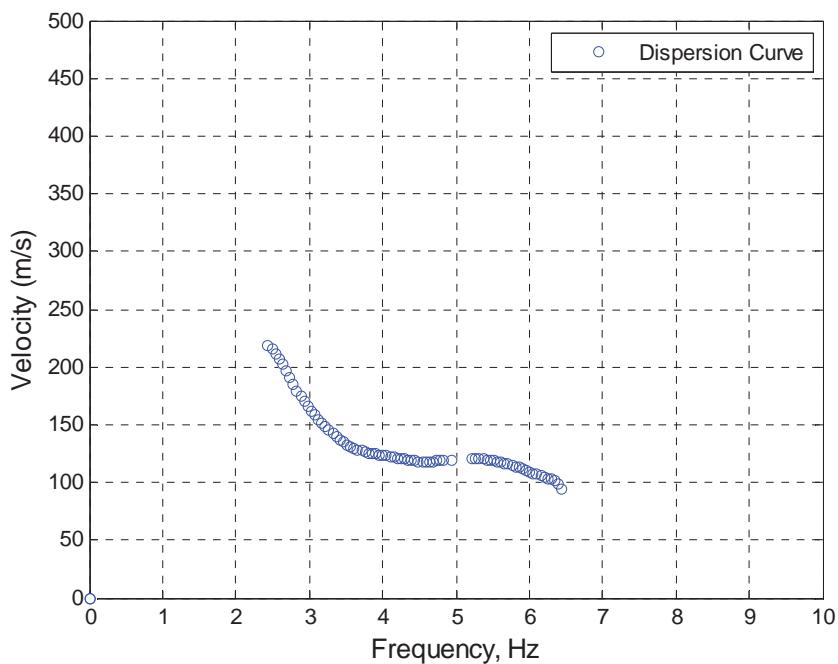
ทำขั้นตอนที่ 2 จนครบทั้ง 3 คู่ จากนั้นหาค่าหาค่าเฉลี่ยจากสัมประสิทธิ์ SPAC ทั้ง 3 คู่ ดังรูปที่ 4.30

3. วิเคราะห์หาค่าสัมประสิทธิ์ SPAC ตั้งแต่ข้อ 2-4 ซึ่งครบถ้วนแล้ว จากนั้นนำมาแสดงรวมกันดังรูปที่ 4.31 เพื่อนำไปใช้ในการวิเคราะห์หาค่าความเร็วเฟสในขั้นตอนถัดไป

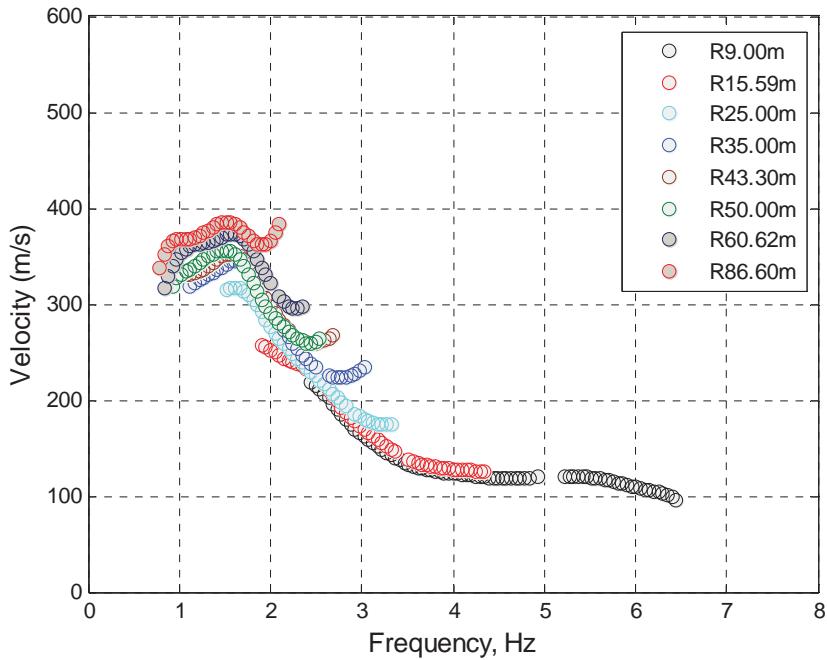
รูปที่ 4.30 สัมประสิทธิ์ SPAC (ซ้าย) และค่าเฉลี่ยสัมประสิทธิ์ SPAC (ขวา)

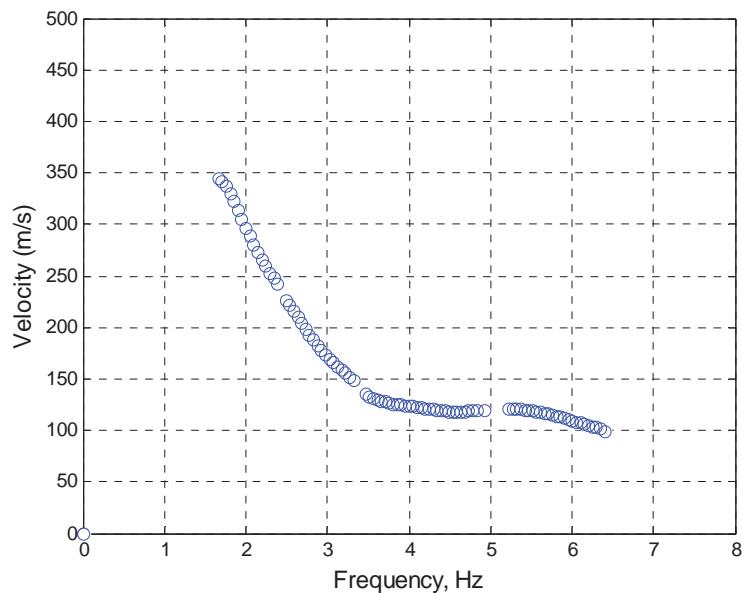

รูปที่ 4.31 ค่าเฉลี่ย สัมประสิทธิ์ SPAC ทั้ง 8 รัศมี

4.9 การวิเคราะห์หาค่าความเร็วเฟส


หลังจากวิเคราะห์หาค่า สัมประสิทธิ์ SPAC ครบทั้ง 8 รัศมีแล้ว ขั้นตอนต่อไปคือการวิเคราะห์หาค่าความเร็วเฟส ที่ความถี่ต่างๆ หรือการวิเคราะห์ Dispersion Curve โดยมีขั้นตอนการวิเคราะห์ดังต่อไปนี้

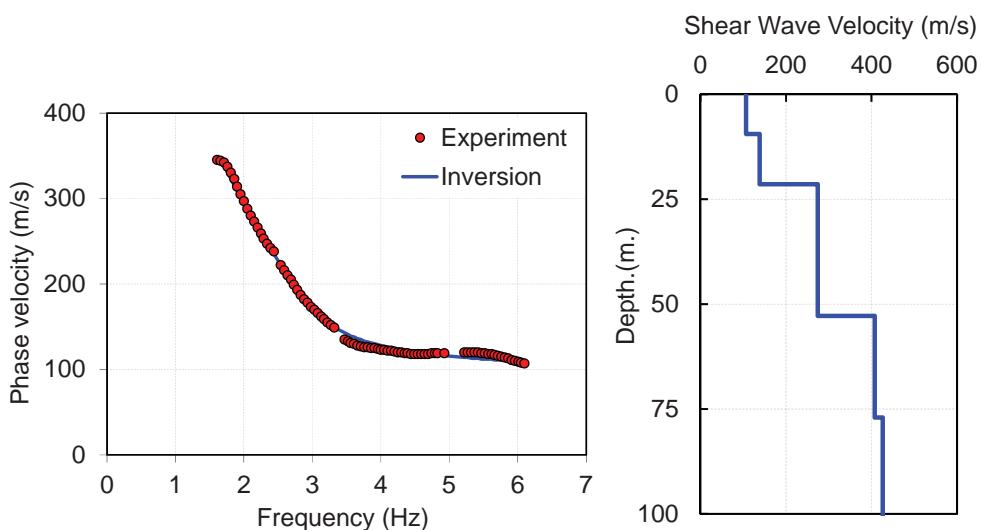
1. นำค่าที่ได้จากการวิเคราะห์หา สัมประสิทธิ์ SPAC มาแสดงคู่กับ Bessel Function ชนิดที่ 1 ลำดับที่ 0 ดังรูปที่ 4.32
2. คำนวณหาค่าความเร็วเฟสที่ความถี่ต่างๆ ที่อยู่ในช่วงแรกของสัมประสิทธิ์ SPAC ด้วยสมการที่ 3.24 ได้ผลดังรูปที่ 4.33
3. ทำขั้นตอนที่ 3 ซ้ำจนครบทั้ง 8 ชุดของ สัมประสิทธิ์ SPAC
4. นำ Dispersion Curve ที่ได้ทั้ง 8 ชุดมาแสดงรวมกัน ดังรูปที่ 4.34


จากนั้นนำ Dispersion Curve ที่ได้จากการรวมกันของทุกรัศมี มาทำการเลือกตัดเพื่อให้ออกมาเพียงเส้นเดียว ดังรูปที่ 4.35 เพื่อใช้ในการวิเคราะห์หาความเร็วคลื่นเฉือนในขั้นตอนการคำนวณย้อนกลับต่อไป


รูปที่ 4.32 กราฟ สัมประสิทธิ์ SPAC คู่กับ Bessel Function

รูปที่ 4.33 Dispersion Curve ของรัศมี 9 เมตร

รูปที่ 4.34 Dispersion Curve ของทุกรัศมี

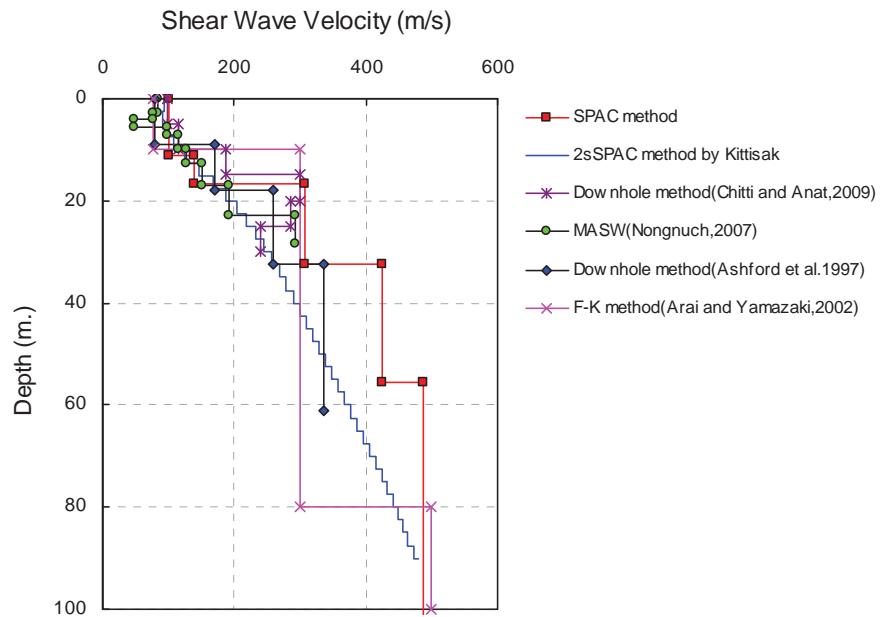


รูปที่ 4.35 Dispersion Curve ขั้นตอนสุดท้าย

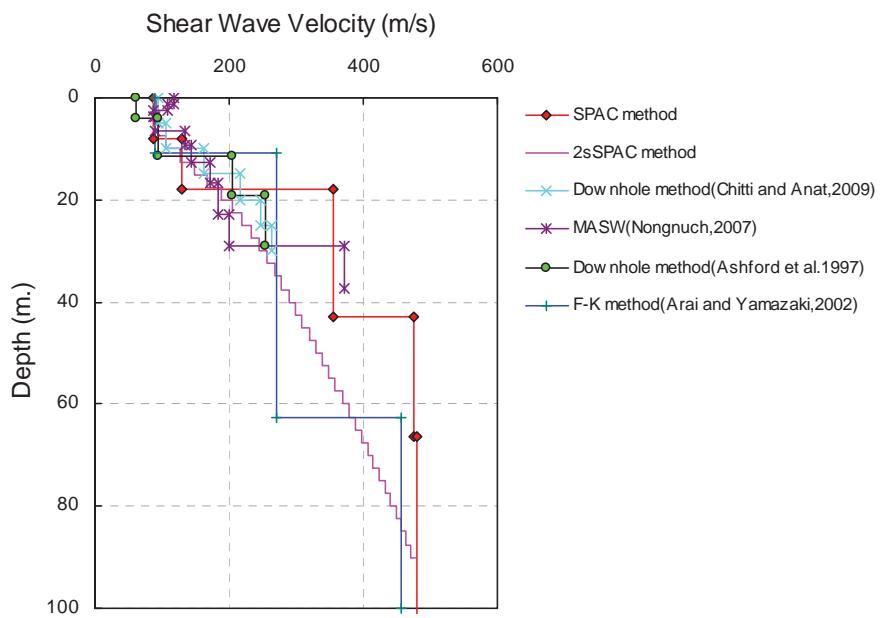
4.10 การวิเคราะห์ค่าความเร็วคลื่นเฉือน

การวิเคราะห์ค่าความเร็วคลื่นเฉือน ด้วยวิธีคำนวณแบบย้อนกลับ (Inversion Analysis) พารามิเตอร์ที่นำมาใช้ในการวิเคราะห์ ประกอบด้วย ความเร็วเฟสที่ความถี่ต่างๆ (Dispersion

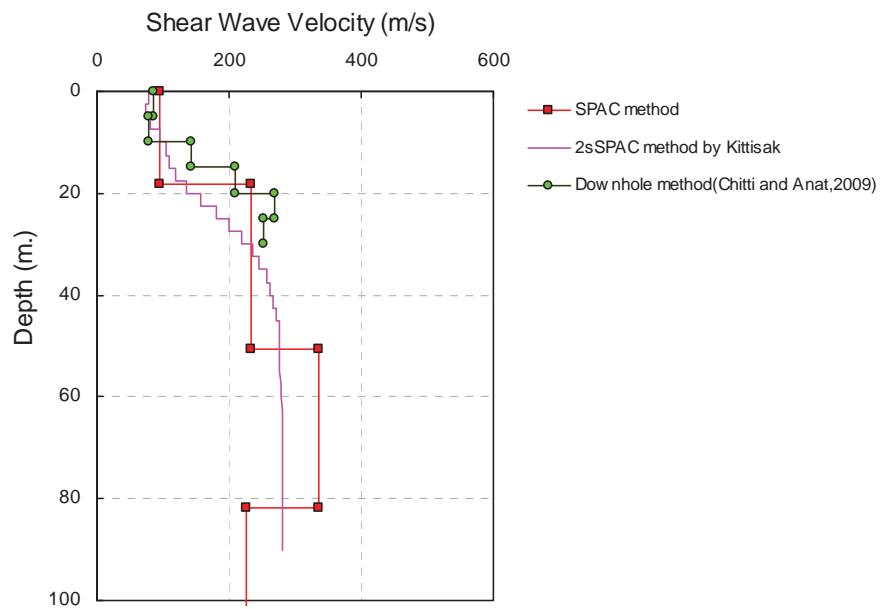
Curve) และคุณสมบัติของดินบริเวณที่ต้องการวิเคราะห์ ผลที่ได้คือการเปรียบเทียบค่าระหว่าง Dispersion Curve ที่ได้จากการตรวจจับ กับค่าที่ได้จากการคำนวณแบบย้อนกลับ หากค่าที่ได้จากการคำนวณแบบย้อนกลับมีค่าใกล้เคียงกับค่าที่ได้จากการทดลอง แสดงว่าผลของความเร็วคลื่นเนื่องที่ได้มาันนี้มีความน่าเชื่อถือ สามารถนำความเร็วคลื่นเนื่องตามความลึกไปใช้ในการวิเคราะห์ ผลตอบสนองของชั้นดินได้ในขั้นตอนเดียว รูปที่ 4.36 แสดงค่า Dispersion Curve ที่ได้จากการทดลองและการคำนวณและความเร็วคลื่นเนื่อง

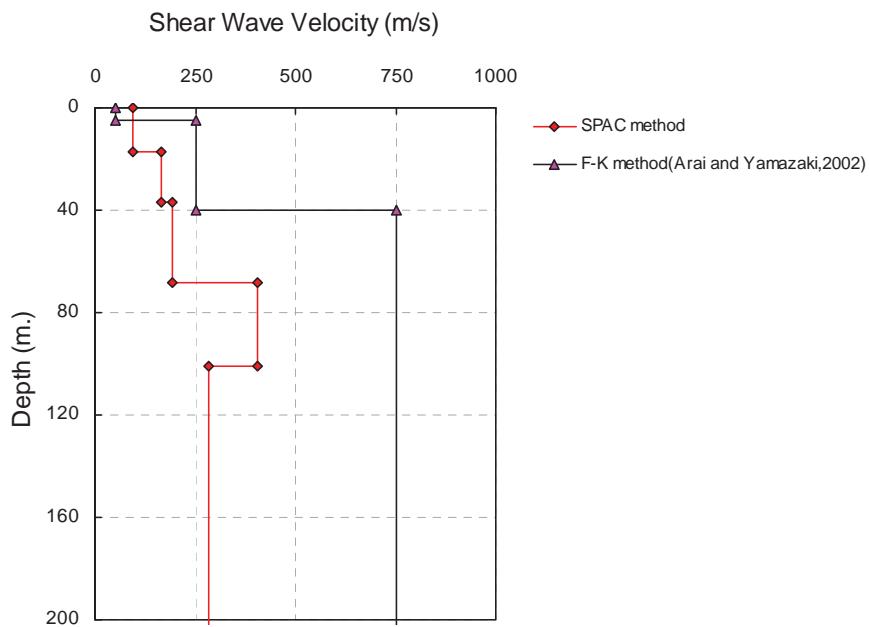


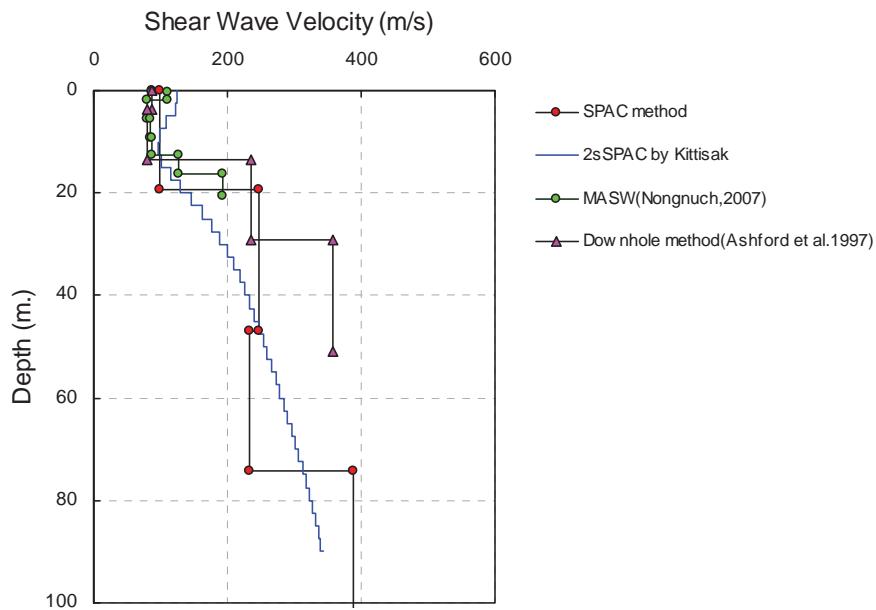
รูปที่ 4.36 Dispersion Curve ที่ได้จากการทดลองและการคำนวณและความเร็วคลื่นเนื่อง

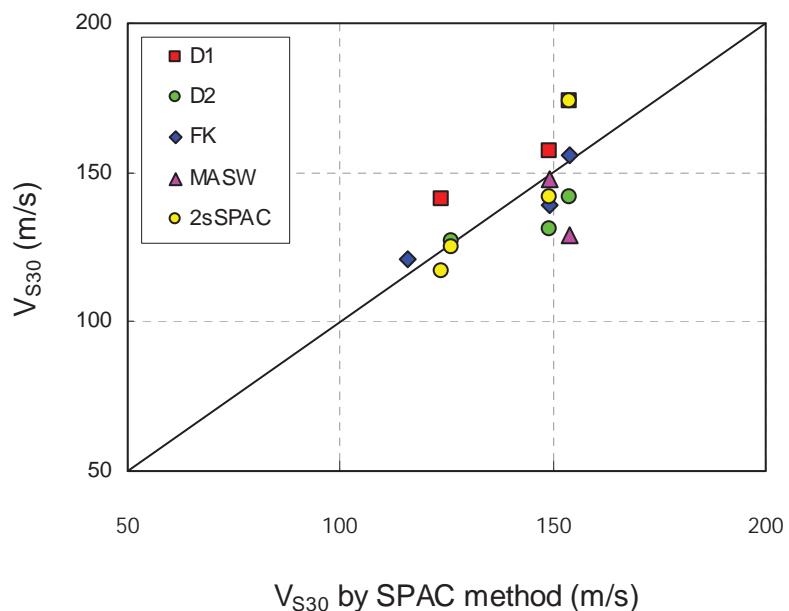

4.11 การเปรียบเทียบผลกับวิธีการสำรวจอื่น

เพื่อการตรวจสอบความถูกต้องของเทคนิคที่ใช้ศึกษา จึงมีการเปรียบเทียบค่าความเร็วคลื่น เนื่องกับงานวิจัยอื่นก่อนหน้าที่ดำเนินการด้วยวิธีต่าง ๆ โดยการเปรียบเทียบในส่วนแรก พิจารณา ค่าความเร็วคลื่นเนื่องเฉลี่ยที่ระดับความลึก 30 เมตร ที่ได้จากการศึกษานี้กับการทดสอบด้วย เทคนิคอื่น ๆ ในบริเวณเดียวกันจากงานวิจัยก่อนหน้า นี้ ซึ่งประกอบไปด้วยวิธี seismic downhole โดย จิตติและอาณัติ (2552) แทนด้วยสัญลักษณ์ (D1) และ Ashford (2000) แทนด้วยสัญลักษณ์ (D2) วิธีการตรวจวัดคลื่นขนาดเล็กบนผิวดินด้วยเทคนิค FK โดย Arai and Yamazaki (2002) แทนด้วยสัญลักษณ์ (FK) การวิเคราะห์คลื่นผิวดินแบบหดหายช่องสัญญาณ โดยประภาพร (2550) แทนด้วยสัญลักษณ์ (MASW) และวิธีการตรวจวัดคลื่นขนาดเล็กบนผิวดินด้วยเทคนิค โดย กิตติ ศักดิ์ (2553) แทนด้วยสัญลักษณ์ (2sSPAC) บริเวณที่มีข้อมูลเปรียบเทียบทั้งสิ้น 5 บริเวณ คือ สถาบันเทคโนโลยีแห่งเอเชีย (สนาฟุตบอล) จุฬาลงกรณ์มหาวิทยาลัย (สนาฟรักษ์ประตุใหญ่) ม. ธรรมศาสตร์ ศูนย์รังสิต (สนาฟรักษ์) กรมอุตุนิยมวิทยา (สนาฟุตบอล) และวัดต่ำหุ จ. สมุทรปราการ (สนาฟด้านหลังวัด) ผลที่ได้จากการเปรียบเทียบในแต่ละบริเวณแสดงไว้ในรูปที่ 4.37


ที่ 4.41 และผลการเปรียบเทียบรวมในทุกบริเวณแสดงไว้ในตารางที่ 4.9 และ รูปที่ 4.42 พบว่า ค่าที่ได้จากการศึกษานี้ให้ผลที่สอดคล้องดีกับการทดสอบด้วยเทคนิคต่าง ๆ


รูปที่ 4.37 ผลเปรียบเทียบความเร็วคลื่นเนื้อในบริเวณสถาบันเทคโนโลยีแห่งเอเชียกับงานวิจัยอื่น


รูปที่ 4.38 ผลเปรียบเทียบความเร็วคลื่นเนื้อในบริเวณจุฬาลงกรณ์มหาวิทยาลัยกับงานวิจัยอื่น


รูปที่ 4.39 ผลเปรียบเทียบความเร็วคลื่นเฉือนบริเวณกรมอุตุนิยมวิทยากับงานวิจัยอื่น

รูปที่ 4.40 ผลเปรียบเทียบความเร็วคลื่นเฉือนบริเวณวัดตำแหน่ง จ. สมุทรปราการ กับงานวิจัยอื่น

รูปที่ 4.41 ผลเปรียบเทียบความเร็วคลื่นเนื้อนบริเวณมหาวิทยาลัยธรรมศาสตร์กับงานวิจัยอื่น

รูปที่ 4.42 ผลสรุปการเปรียบเทียบความเร็วเฉลี่ยที่ระดับความลึก 30 เมตร

ตารางที่ 4.9 ผลเปรียบเทียบค่าความเร็วเฉลี่ยที่ระดับความลึก 30 เมตร กับงานวิจัยอื่น

สถานที่	ค่าความเร็วคลื่นเนื้อönเฉลี่ยที่ระดับความลึก 30 เมตร V_{S30} (m/s)					
	SPAC	2sSPAC	D1	MASW	D2	F-K
สถาบันเทคโนโลยีแห่งเอเชีย	154	174	174	129	142	156
จุฬาลงกรณ์มหาวิทยาลัย	149	142	157	148	131	139
ม.ธรรมศาสตร์ ศูนย์รังสิต	126	125	-	104	127	-
กรมอุตุนิยมวิทยา	124	117	141	-	-	-
วัดต้ำหรุ สมุทรปราการ	116	-	-	-	-	121

ในการตรวจสอบความถูกต้องของการสำรวจด้วยโครงข่ายขนาดใหญ่ ได้ดำเนินการเพื่อศึกษาเปรียบเทียบกับผลจากการวิจัยในอดีต (Arai and Yamazaki 2002) ที่ได้ทำการสำรวจความเร็วคลื่นเนื้อönด้วยการตรวจวัดแบบ Array microtremor ขนาดใหญ่ และประเมินความเร็วคลื่นเนื้อönถึงชั้นหินใต้ผิวดินด้วยระดับความลึกหลายร้อยเมตร โดยที่จุดสำรวจที่เปรียบเทียบมี 2 ตำแหน่งคือ สถาบันเทคโนโลยีแห่งเอเชีย และจุฬาลงกรณ์มหาวิทยาลัย โดยมีตำแหน่งที่สำรวจของการศึกษานี้เปรียบเทียบกับงานของ Arai and Yamazaki 2002 แสดงดังตารางที่ 4.10

ตารางที่ 4.10 ตำแหน่งที่สำรวจของการศึกษานี้เปรียบเทียบกับงานของ Arai and Yamazaki 2002

สถานที่	Arai and Yamazaki 2002		Array microtremor	
	ละติจูด	ลองจิจูด	ละติจูด	ลองจิจูด
สถาบันเทคโนโลยีแห่งเอเชีย	14°4'27.34"	100°36'33.69"	14°4'45.91"	100°36'34.13"
จุฬาลงกรณ์มหาวิทยาลัย	13°43'59.91"	100°31'50.43"	13°44'18.72"	100°31'51.64"

ผลการเปรียบเทียบความเร็วเฟส แสดงดังรูปที่ 4.43 และ 4.44 สำหรับตำแหน่ง สถาบันเทคโนโลยีแห่งเอเชีย และจุฬาลงกรณ์มหาวิทยาลัย ตามลำดับ ซึ่งจากการเปรียบเทียบนี้พบว่า ค่าความเร็วเฟสตามความถี่จาก 2 การศึกษามีค่าใกล้เคียงกัน โดยที่ค่าความเร็วเฟสในช่วงความถี่ ที่เป็นค่าที่สำคัญสำหรับการคำนวณความเร็วคลื่นเนื้อönที่ความลึกมาก และจากการศึกษานี้พบว่าระดับความลึกที่สามารถประเมินความเร็วคลื่นเนื้อönได้ถึงระดับลึกมากกว่า 1000 เมตร (ความลึกที่สำรวจได้ประเมินจาก ค่าประมาณของ 1/2 ของค่าความยาวคลื่นที่ตรวจวัดได้ ซึ่งค่าความยาวคลื่นที่ตรวจวัดได้มาจากค่าความเร็วเฟสหารด้วยความถี่)