ชื่อ : นายบริบูรณ์ ส่านเพ็ชร

ชื่อวิทยานิพนธ์ : การประยุกต์ใช้คลื่นอัลตราโซนิกส์ในการทคสอบการก่อตัว

และทำนายกำลังอัดของคอนกรีต

สาขาวิชา : วิศวกรรมโยชา

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก : รองศาสตราจารย์ คร.ปิติ สุคนธสุขกุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม : ผู้ช่วยศาสตราจารย์ คร.สมิตร ส่งพิริยะกิจ

ปีการศึกษา : 2553

บทคัดย่อ

งานวิจัยนี้เป็นการทดสอบกระบวนการก่อตัวของคอนกรีตด้วยคลื่นอัลตราโซนิกส์ ตัวแปรที่ ต้องการศึกษาประกอบไปด้วย สัดส่วนน้ำต่อปูนซีเมนต์ , อุณหภูมิระหว่างกระบวนการก่อตัว, สัดส่วนทรายต่อหินโดยน้ำหนัก และขนาดใหญ่สุดของมวลรวมหยาบ ผลการทดลองพบว่า รูปแบบการเปลี่ยนอัตราเร็วคลื่นของคอนกรีตขณะก่อตัวสามารถแบ่งออกได้เป็น 3 ช่วง ช่วงที่ 1 ถือว่าเป็นช่วงสงบนิ่งคอนกรีตอยู่ในสภาวะเหลว อัตราเร็วคลื่นไม่มีการเปลี่ยนแปลงมาก ทั้งนี้เนื่อง ปฏิกิริยาไฮเดรชัน ที่ยังต่ำอยู่ ช่วงที่ 2 เป็นช่วงของการก่อตัว มีการเปลี่ยนแปลงอัตราเร็วคลื่น อย่างรวดเร็วเนื่องจาก ปฏิกิริยาไฮเดรชันที่สูง (โดยถือว่าจุดต่อเปลี่ยนความชันระหว่างช่วงที่ 1 ช่วงที่ 2 เป็นตำแหน่งของการเกิดการก่อตัวตั้งต้น) และช่วงที่ 3 เป็นช่วงที่คอนกรีตเข้าสู่สภาวะ แข็งตัวแล้ว การเปลี่ยนแปลงอัตราเร็วคลื่นอัลตราโซนิกส์ช้าลงจ นถึงหยุดนิ่ง ซึ่งแสดงให้เห็นว่า ปฏิกิริยาไฮเดรชั่นได้ชะลอตัวลงอย่างมาก

ผลการทดสอบ พบว่าตัวแปรที่นำมาศึกษาส่งผลกระทบต่อกราฟความสัมพันธ์ระหว่าง อัตราเร็วคลื่นและเวลาในช่วงต่างๆแตกต่างกันออกไป ในกรณีของสัดส่วนน้ำต่อซีเมนต์พบว่า กอนกรีตที่มีก่าสัดส่วนน้ำต่อซีเมนต์ต่ำจะจุดเปลี่ยนความชันระหว่างช่วงที่และ 2 เร็วกว่า (เวลาก่อ ตัวตั้งต้นที่เร็วกว่า) และมีอัตราการเปลี่ยนแปลงความเร็วกลื่นในช่วงที่ 2 ที่สูงกว่าคอนกรีตที่มีก่า สัดส่วนน้ำต่อซีเมนต์สูง ในกรณีของอุณหภูมิพบว่าอุณหภูมิที่ต่ำจะทำให้คอนกรีตมีก่าเวลาก่อตัวตั้ง ต้นที่ช้าลง รวมถึงมีอัตราการเปลี่ยนแปลงความเร็วกลื่นที่ต่ำกว่า ในกรณีของสัดส่วนหินต่อทราย และขนาดใหญ่สุดของมวลรวมหยาบนั้น พบว่าทั้งสองตัวแปรไม่มีผลต่อก่าเวลาก่อตัวตั้งต้นและก่า อัตราเปลี่ยนแปลงความเร็วกลื่น แต่มีผลต่อก่าอัตราเร็วกลื่นสุดท้าย ที่ 24 ชม โดยพบว่าคอนกรีตที่มีขนาดของมวลรวมใหญ่ ซึ่งนอกจากนั้น ในงานวิจัยนี้ยังได้ทำการทดสอบกำลังอัดของคอนกรีต เพื่อหาความสัมพันธ์

ระหว่างอัตราการเปลี่ยนแปลงความเร็วคลื่นในช่วงที่ 2 กับค่ากำลังอัดของคอนกรีตที่ 28 วัน จากผลการทดสอบแสดงให้เห็นว่าในกรณีของคอนกรีตธรรมดาที่ใช้ในการทดสอบนี้ (ไม่มีการ ผสมปอซโซลาน หรือสารผสมเพิ่มใดๆ) ค่ากำลังอัดที่ 28 วัน มีค่าแปรผันตามค่าอัตราการ เปลี่ยนแปลงความเร็วคลื่นในช่วงที่ 2 และอัตราเร็วคลื่นที่ 24 ชั่วโมง

(วิทยานิพนธ์มีจำนวนทั้งสิ้น 143 หน้า)

คำสำคัญ: อัตราเร็วคลื่นอัลตราโซนิกส์, กระบวนการก่อตัว, ขนาดใหญ่สุดมวลรวม, ปริมาณมวลรวม Name : Mr.Boriboon Sarnpach

Thesis Title : Application of Ultrasonic Pulse Velocity to Test Concrete Setting Time and

Predict Compressive Strength

Major Field : Civil Engineering

King Mongkut's University of Technology North Bangkok

Thesis Advisor: Associate Professor Dr.Piti Sukontasukkul

Co - Advisor : Assistant Professor Dr.Smith Songpiriyakij

Academic Year: 2010

Abstract

In this study, the setting process of concrete was investigated using ultrasonic pulse velocity testing. Study variables included effect of water-cement ratio, temperature during setting, fine-coarse aggregate ratio, and maximum size of aggregate. Results indicated that typical pattern for the change of the ultrasonic pulse velocity can be divided into 3 stages. Stage 1 was during the dormant period in which the concrete was still in fresh condition. The hydration reaction was low and the pulse velocity remained unchanged. Stage 2 was when the setting started. In this stage the pulse velocity increased rapidly due to higher rate hydration reaction (the meeting point between stage 1 and 2 is considered to be the initial setting time). Stage 3 was when concrete become hardened and the change on the pulse velocity was very slow. This indicated that the hydration reaction was nearly complete.

Results also indicated that each variable affects the graph between the pulse velocity vs time at each stage differently. In the case of w/c ratio, it was found that concrete with lower w/c ratio exhibited faster time of slope changing (faster initial setting time) and higher rate of pulse velocity change (in stage 2) than concrete with higher w/c ratio. For the temperature, lower temperature seemed to prolong the point of slope change (initial setting time) and lower the rate of change in stage 3. In the case of aggregate, it was found that both fine/coarse aggregate ratio and maximum size of coarse aggregate showed very little or no effect on the initial setting time and the rate of change. However, they did affect the final pulse velocity at 24 hours. In addition, the relationship between the pulse velocity and compressive strength at 28 days was also carried out. In the case of normal concrete (without adding pozzolan or chemical admixtures), the results

pointed out that the strength of concrete is directly proportional to the rate of change of the pulse
velocity in stage 2 and value of ultrasonic pulse velocity 24 hours.
(Total 143 pages)
Keywords: Ultrasonic Pulse Velocity, Setting Process, Maximum Size of Aggregate, Aggregate
Content.

Advisor